Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = capacitive electrocardiogram

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2171 KiB  
Article
An Ultra-Low-Voltage Transconductance Stable and Enhanced OTA for ECG Signal Processing
by Yue Yin, Xinbing Zhang, Ziting Feng, Haobo Qi, Haodong Lu, Jiayu He, Chaoqi Jin and Yihao Luo
Micromachines 2024, 15(9), 1108; https://doi.org/10.3390/mi15091108 - 30 Aug 2024
Cited by 2 | Viewed by 1617
Abstract
In this paper, a rail-to-rail transconductance stable and enhanced ultra-low-voltage operational transconductance amplifier (OTA) is proposed for electrocardiogram (ECG) signal processing. The variation regularity of the bulk transconductance of pMOS and nMOS transistors and the cancellation mechanism of two types of transconductance variations [...] Read more.
In this paper, a rail-to-rail transconductance stable and enhanced ultra-low-voltage operational transconductance amplifier (OTA) is proposed for electrocardiogram (ECG) signal processing. The variation regularity of the bulk transconductance of pMOS and nMOS transistors and the cancellation mechanism of two types of transconductance variations are revealed. On this basis, a transconductance stabilization and enhancement technique is proposed. By using the “current-reused and transconductance-boosted complementary bulk-driven pseudo-differential pairs” structure, the bulk-driven pseudo-differential pair during the input common-mode range (ICMR) is stabilized and enhanced. The proposed OTA based on this technology is simulated using the TSMC 0.18 μm process in a Cadence environment. The proposed OTA consumes a power below 30 nW at a 0.4 V voltage supply with a DC gain of 54.9 dB and a gain-bandwidth product (GBW) of 14.4 kHz under a 15 pF capacitance load. The OTA has a high small signal figure-of-merit (FoM) of 7410 and excellent common-mode voltage (VCM) stability, with a transconductance variation of about 1.35%. Based on a current-scaling version of the proposed OTA, an OTA-C low-pass filter (LPF) for ECG signal processing with VCM stability is built and simulated. With a −3 dB bandwidth of 250 Hz and a power consumption of 20.23 nW, the filter achieves a FoM of 3.41 × 10−13, demonstrating good performance. Full article
(This article belongs to the Topic Advanced Integrated Circuit Design and Application)
Show Figures

Figure 1

14 pages, 636 KiB  
Article
A Capacitive-Feedback Amplifier with 0.1% THD and 1.18 μVrms Noise for ECG Recording
by Xi Chen, Taishan Mo, Peng Wu and Bin Wu
Electronics 2024, 13(2), 378; https://doi.org/10.3390/electronics13020378 - 17 Jan 2024
Cited by 2 | Viewed by 2523
Abstract
This paper presents an amplifier with low noise, high gain, low power consumption, and high linearity for electrocardiogram (ECG) recording. The core of this design is a chopper-stabilized capacitive-feedback operational transconductance amplifier (OTA). The proposed OTA has a two-stage structure, with the first [...] Read more.
This paper presents an amplifier with low noise, high gain, low power consumption, and high linearity for electrocardiogram (ECG) recording. The core of this design is a chopper-stabilized capacitive-feedback operational transconductance amplifier (OTA). The proposed OTA has a two-stage structure, with the first stage using a combination of current reuse and cascode techniques to obtain a large gain at low power and the second stage operating in Class A state for better linearity. The amplifier additionally uses a DC servo loop (DSL) to improve the rejection of DC offsets. The amplifier is implemented in a standard 0.13 μm CMOS process, consuming 1.647 μA current from the supply voltage of 1.5 V and occupying an area of 0.97 mm2. The amplifier has a 0.5 Hz to 6.1 kHz bandwidth and 59.7 dB gain while having no less than a 65 dB common-mode rejection ratio (CMRR). The amplifier’s total harmonic distortion (THD) is less than 0.1% at 800 mVpp output. The amplifier can provide a noise level of 1.18 μVrms in the 0.5 Hz to 500 Hz bandwidth that the ECG signal is interested in and has 3.38 μVrms input-referred noise (IRN) over the entire bandwidth, so its noise efficiency factor (NEF) is 2.13. Full article
Show Figures

Figure 1

16 pages, 1947 KiB  
Article
Stress Level Detection Based on the Capacitive Electrocardiogram Signals of Driving Subjects
by Tamara Škorić
Sensors 2023, 23(22), 9158; https://doi.org/10.3390/s23229158 - 14 Nov 2023
Cited by 7 | Viewed by 1844
Abstract
The automotive industry and scientific community are making efforts to develop innovative solutions that would increase successful driver performance in preventing crashes caused by drivers’ health and concentration. High stress is one of the causes of impaired driver performance. This study investigates the [...] Read more.
The automotive industry and scientific community are making efforts to develop innovative solutions that would increase successful driver performance in preventing crashes caused by drivers’ health and concentration. High stress is one of the causes of impaired driver performance. This study investigates the ability to classify different stress levels based on capacitive electrocardiogram (cECG) recorded during driving by unobtrusive acquisition systems with different hardware implementations. The proposed machine-learning model extracted only four features, based on the detection of the R peak, which is the most reliably detected characteristic point even in inferior quality cECG. Another criterion for selecting the features is their low computational complexity, which enables real-time application. The proposed method was validated on three open data sets recorded during driving: electrocardiogram (ECG) recorded by electrodes with direct skin contact (high quality); cECG recorded without direct skin contact through clothes by electrodes built into a portable multi-modal cushion (middle quality); and cECG recorded through the clothes without direct skin contact by electrodes built into a car seat (lowest quality). The proposed model achieved a high accuracy of 100% for high-quality ECG, 96.67% for middle-quality cECG, and 98.08% for the lower-quality cECG. Full article
(This article belongs to the Topic Communications Challenges in Health and Well-Being)
Show Figures

Figure 1

23 pages, 5861 KiB  
Article
Design and Development of a Non-Contact ECG-Based Human Emotion Recognition System Using SVM and RF Classifiers
by Aftab Alam, Shabana Urooj and Abdul Quaiyum Ansari
Diagnostics 2023, 13(12), 2097; https://doi.org/10.3390/diagnostics13122097 - 16 Jun 2023
Cited by 11 | Viewed by 3384
Abstract
Emotion recognition becomes an important aspect in the development of human-machine interaction (HMI) systems. Positive emotions impact our lives positively, whereas negative emotions may cause a reduction in productivity. Emotionally intelligent systems such as chatbots and artificially intelligent assistant modules help make our [...] Read more.
Emotion recognition becomes an important aspect in the development of human-machine interaction (HMI) systems. Positive emotions impact our lives positively, whereas negative emotions may cause a reduction in productivity. Emotionally intelligent systems such as chatbots and artificially intelligent assistant modules help make our daily life routines effortless. Moreover, a system which is capable of assessing the human emotional state would be very helpful to assess the mental state of a person. Hence, preventive care could be offered before it becomes a mental illness or slides into a state of depression. Researchers have always been curious to find out if a machine could assess human emotions precisely. In this work, a unimodal emotion classifier system in which one of the physiological signals, an electrocardiogram (ECG) signal, has been used is proposed to classify human emotions. The ECG signal was acquired using a capacitive sensor-based non-contact ECG belt system. The machine-learning-based classifiers developed in this work are SVM and random forest with 10-fold cross-validation on three different sets of ECG data acquired for 45 subjects (15 subjects in each age group). The minimum classification accuracies achieved with SVM and RF emotion classifier models are 86.6% and 98.2%, respectively. Full article
(This article belongs to the Section Point-of-Care Diagnostics and Devices)
Show Figures

Figure 1

21 pages, 12879 KiB  
Article
A Portable Multi-Modal Cushion for Continuous Monitoring of a Driver’s Vital Signs
by Onno Linschmann, Durmus Umutcan Uguz, Bianca Romanski, Immo Baarlink, Pujitha Gunaratne, Steffen Leonhardt, Marian Walter and Markus Lueken
Sensors 2023, 23(8), 4002; https://doi.org/10.3390/s23084002 - 14 Apr 2023
Cited by 10 | Viewed by 2943
Abstract
With higher levels of automation in vehicles, the need for robust driver monitoring systems increases, since it must be ensured that the driver can intervene at any moment. Drowsiness, stress and alcohol are still the main sources of driver distraction. However, physiological problems [...] Read more.
With higher levels of automation in vehicles, the need for robust driver monitoring systems increases, since it must be ensured that the driver can intervene at any moment. Drowsiness, stress and alcohol are still the main sources of driver distraction. However, physiological problems such as heart attacks and strokes also exhibit a significant risk for driver safety, especially with respect to the ageing population. In this paper, a portable cushion with four sensor units with multiple measurement modalities is presented. Capacitive electrocardiography, reflective photophlethysmography, magnetic induction measurement and seismocardiography are performed with the embedded sensors. The device can monitor the heart and respiratory rates of a vehicle driver. The promising results of the first proof-of-concept study with twenty participants in a driving simulator not only demonstrate the accuracy of the heart (above 70% of medical-grade heart rate estimations according to IEC 60601-2-27) and respiratory rate measurements (around 30% with errors below 2 BPM), but also that the cushion might be useful to monitor morphological changes in the capacitive electrocardiogram in some cases. The measurements can potentially be used to detect drowsiness and stress and thus the fitness of the driver, since heart rate variability and breathing rate variability can be captured. They are also useful for the early prediction of cardiovascular diseases, one of the main reasons for premature death. The data are publicly available in the UnoVis dataset. Full article
(This article belongs to the Special Issue Sensors for Smart Vehicle Applications)
Show Figures

Figure 1

23 pages, 10805 KiB  
Article
3.6 mW Active-Electrode ECG/ETI Sensor System Using Wideband Low-Noise Instrumentation Amplifier and High Impedance Balanced Current Driver
by Xuan Tien Nguyen, Muhammad Ali and Jong-Wook Lee
Sensors 2023, 23(5), 2536; https://doi.org/10.3390/s23052536 - 24 Feb 2023
Cited by 2 | Viewed by 3038
Abstract
An active electrode (AE) and back-end (BE) integrated system for enhanced electrocardiogram (ECG)/electrode-tissue impedance (ETI) measurement is proposed. The AE consists of a balanced current driver and a preamplifier. To increase the output impedance, the current driver uses a matched current source and [...] Read more.
An active electrode (AE) and back-end (BE) integrated system for enhanced electrocardiogram (ECG)/electrode-tissue impedance (ETI) measurement is proposed. The AE consists of a balanced current driver and a preamplifier. To increase the output impedance, the current driver uses a matched current source and sink, which operates under negative feedback. To increase the linear input range, a new source degeneration method is proposed. The preamplifier is realized using a capacitively-coupled instrumentation amplifier (CCIA) with a ripple-reduction loop (RRL). Compared to the traditional Miller compensation, active frequency feedback compensation (AFFC) achieves bandwidth extension using the reduced size of the compensation capacitor. The BE performs three types of signal sensing: ECG, band power (BP), and impedance (IMP) data. The BP channel is used to detect the Q-, R-, and S-wave (QRS) complex in the ECG signal. The IMP channel measures the resistance and reactance of the electrode-tissue. The integrated circuits for the ECG/ETI system are realized in the 180 nm CMOS process and occupy a 1.26 mm2 area. The measured results show that the current driver supplies a relatively high current (>600 μApp) and achieves a high output impedance (1 MΩ at 500 kHz). The ETI system can detect resistance and capacitance in the ranges of 10 mΩ–3 kΩ and 100 nF–100 μF, respectively. The ECG/ETI system consumes 3.6 mW using a single 1.8 V supply. Full article
(This article belongs to the Special Issue Advanced CMOS Integrated Circuit Design and Application II)
Show Figures

Figure 1

21 pages, 4762 KiB  
Article
Dependence of Skin-Electrode Contact Impedance on Material and Skin Hydration
by Krittika Goyal, David A. Borkholder and Steven W. Day
Sensors 2022, 22(21), 8510; https://doi.org/10.3390/s22218510 - 4 Nov 2022
Cited by 30 | Viewed by 11299
Abstract
Dry electrodes offer an accessible continuous acquisition of biopotential signals as part of current in-home monitoring systems but often face challenges of high-contact impedance that results in poor signal quality. The performance of dry electrodes could be affected by electrode material and skin [...] Read more.
Dry electrodes offer an accessible continuous acquisition of biopotential signals as part of current in-home monitoring systems but often face challenges of high-contact impedance that results in poor signal quality. The performance of dry electrodes could be affected by electrode material and skin hydration. Herein, we investigate these dependencies using a circuit skin-electrode interface model, varying material and hydration in controlled benchtop experiments on a biomimetic skin phantom simulating dry and hydrated skin. Results of the model demonstrate the contribution of the individual components in the circuit to total impedance and assist in understanding the role of electrode material in the mechanistic principle of dry electrodes. Validation was performed by conducting in vivo skin-electrode contact impedance measurements across ten normative human subjects. Further, the impact of the electrode on biopotential signal quality was evaluated by demonstrating an ability to capture clinically relevant electrocardiogram signals by using dry electrodes integrated into a toilet seat cardiovascular monitoring system. Titanium electrodes resulted in better signal quality than stainless steel electrodes. Results suggest that relative permittivity of native oxide of electrode material come into contact with the skin contributes to the interface impedance, and can lead to enhancement in the capacitive coupling of biopotential signals, especially in dry skin individuals. Full article
Show Figures

Figure 1

14 pages, 4376 KiB  
Article
Development and Optimization of Silicon−Dioxide−Coated Capacitive Electrode for Ambulatory ECG Measurement System
by Younghwan Kang, Sangdong Choi, Chiwan Koo and Yeunho Joung
Sensors 2022, 22(21), 8388; https://doi.org/10.3390/s22218388 - 1 Nov 2022
Cited by 3 | Viewed by 2809
Abstract
This paper presents a silicon−dioxide−coated capacitive electrode system for an ambulatory electrocardiogram (ECG). The electrode was coated with a nano−leveled (287 nm) silicon dioxide layer which has a very high resistance of over 200 MΩ. Due to this high resistance, the electrode can [...] Read more.
This paper presents a silicon−dioxide−coated capacitive electrode system for an ambulatory electrocardiogram (ECG). The electrode was coated with a nano−leveled (287 nm) silicon dioxide layer which has a very high resistance of over 200 MΩ. Due to this high resistance, the electrode can be defined as only a capacitor without a resistive characteristic. This distinct capacitive characteristic of the electrode brings a simplified circuit analysis to achieve the development of a high−quality ambulatory ECG system. The 240 um thickness electrode was composed of a stainless−steel sheet layer for sensing, a polyimide electrical insulation layer, and a copper sheet connected with the ground to block any electrical noises generated from the back side of the structure. Six different diameter electrodes were prepared to optimize ECG signals in ambulatory environment, such as the amplitude of the QRS complex, amplitude of electromagnetic interference (EMI), and baseline wandering of the ECG signals. By combining the experimental results, optimal ambulatory ECG signals were obtained with electrodes that have a diameter from 1 to 3 cm. Moreover, we achieved high−quality ECG signals in a sweating simulation environment with 2 cm electrodes. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

22 pages, 4727 KiB  
Article
Reduction of Artifacts in Capacitive Electrocardiogram Signals of Driving Subjects
by Tamara Škorić
Entropy 2022, 24(1), 13; https://doi.org/10.3390/e24010013 - 22 Dec 2021
Cited by 6 | Viewed by 3421
Abstract
The development of smart cars with e-health services allows monitoring of the health condition of the driver. Driver comfort is preserved by the use of capacitive electrodes, but the recorded signal is characterized by large artifacts. This paper proposes a method for reducing [...] Read more.
The development of smart cars with e-health services allows monitoring of the health condition of the driver. Driver comfort is preserved by the use of capacitive electrodes, but the recorded signal is characterized by large artifacts. This paper proposes a method for reducing artifacts from the ECG signal recorded by capacitive electrodes (cECG) in moving subjects. Two dominant artifact types are coarse and slow-changing artifacts. Slow-changing artifacts removal by classical filtering is not feasible as the spectral bands of artifacts and cECG overlap, mostly in the band from 0.5 to 15 Hz. We developed a method for artifact removal, based on estimating the fluctuation around linear trend, for both artifact types, including a condition for determining the presence of coarse artifacts. The method was validated on cECG recorded while driving, with the artifacts predominantly due to the movements, as well as on cECG recorded while lying, where the movements were performed according to a predefined protocol. The proposed method eliminates 96% to 100% of the coarse artifacts, while the slow-changing artifacts are completely reduced for the recorded cECG signals larger than 0.3 V. The obtained results are in accordance with the opinion of medical experts. The method is intended for reliable extraction of cardiovascular parameters to monitor driver fatigue status. Full article
(This article belongs to the Special Issue Information Theory in Emerging Biomedical Applications)
Show Figures

Figure 1

18 pages, 1982 KiB  
Article
Capacitively-Coupled ECG and Respiration for Sleep–Wake Prediction and Risk Detection in Sleep Apnea Patients
by Dorien Huysmans, Ivan Castro, Pascal Borzée, Aakash Patel, Tom Torfs, Bertien Buyse, Dries Testelmans, Sabine Van Huffel and Carolina Varon
Sensors 2021, 21(19), 6409; https://doi.org/10.3390/s21196409 - 25 Sep 2021
Cited by 4 | Viewed by 3031
Abstract
Obstructive sleep apnea (OSA) patients would strongly benefit from comfortable home diagnosis, during which detection of wakefulness is essential. Therefore, capacitively-coupled electrocardiogram (ccECG) and bioimpedance (ccBioZ) sensors were used to record the sleep of suspected OSA patients, in parallel with polysomnography (PSG). The [...] Read more.
Obstructive sleep apnea (OSA) patients would strongly benefit from comfortable home diagnosis, during which detection of wakefulness is essential. Therefore, capacitively-coupled electrocardiogram (ccECG) and bioimpedance (ccBioZ) sensors were used to record the sleep of suspected OSA patients, in parallel with polysomnography (PSG). The three objectives were quality assessment of the unobtrusive signals during sleep, prediction of sleep–wake using ccECG and ccBioZ, and detection of high-risk OSA patients. First, signal quality indicators (SQIs) determined the data coverage of ccECG and ccBioZ. Then, a multimodal convolutional neural network (CNN) for sleep–wake prediction was tested on these preprocessed ccECG and ccBioZ data. Finally, two indices derived from this prediction detected patients at risk. The data included 187 PSG recordings of suspected OSA patients, 36 (dataset “Test”) of which were recorded simultaneously with PSG, ccECG, and ccBioZ. As a result, two improvements were made compared to prior studies. First, the ccBioZ signal coverage increased significantly due to adaptation of the acquisition system. Secondly, the utility of the sleep–wake classifier increased as it became a unimodal network only requiring respiratory input. This was achieved by using data augmentation during training. Sleep–wake prediction on “Test” using PSG respiration resulted in a Cohen’s kappa (κ) of 0.39 and using ccBioZ in κ = 0.23. The OSA risk model identified severe OSA patients with a κ of 0.61 for PSG respiration and κ of 0.39 using ccBioZ (accuracy of 80.6% and 69.4%, respectively). This study is one of the first to perform sleep–wake staging on capacitively-coupled respiratory signals in suspected OSA patients and to detect high risk OSA patients based on ccBioZ. The technology and the proposed framework could be applied in multi-night follow-up of OSA patients. Full article
Show Figures

Figure 1

21 pages, 11706 KiB  
Article
Novel Stable Capacitive Electrocardiogram Measurement System
by Chi-Chun Chen, Shu-Yu Lin and Wen-Ying Chang
Sensors 2021, 21(11), 3668; https://doi.org/10.3390/s21113668 - 25 May 2021
Cited by 11 | Viewed by 5297
Abstract
This study presents a noncontact electrocardiogram (ECG) measurement system to replace conventional ECG electrode pads during ECG measurement. The proposed noncontact electrode design comprises a surface guard ring, the optimal input resistance, a ground guard ring, and an optimal voltage divider feedback. The [...] Read more.
This study presents a noncontact electrocardiogram (ECG) measurement system to replace conventional ECG electrode pads during ECG measurement. The proposed noncontact electrode design comprises a surface guard ring, the optimal input resistance, a ground guard ring, and an optimal voltage divider feedback. The surface and ground guard rings are used to reduce environmental noise. The optimal input resistor mitigates distortion caused by the input bias current, and the optimal voltage divider feedback increases the gain. Simulated gain analysis was subsequently performed to determine the most suitable parameters for the design, and the system was combined with a capacitive driven right leg circuit to reduce common-mode interference. The present study simulated actual environments in which interference is present in capacitive ECG signal measurement. Both in the case of environmental interference and motion artifact interference, relative to capacitive ECG electrodes, the proposed electrodes measured ECG signals with greater stability. In terms of R–R intervals, the measured ECG signals exhibited a 98.6% similarity to ECGs measured using contact ECG systems. The proposed noncontact ECG measurement system based on capacitive sensing is applicable for use in everyday life. Full article
(This article belongs to the Special Issue Advances in ECG Sensing and Monitoring)
Show Figures

Figure 1

15 pages, 5373 KiB  
Article
Development and Test of a Portable ECG Device with Dry Capacitive Electrodes and Driven Right Leg Circuit
by Alessandro Zompanti, Anna Sabatini, Simone Grasso, Giorgio Pennazza, Giuseppe Ferri, Gianluca Barile, Massimo Chello, Mario Lusini and Marco Santonico
Sensors 2021, 21(8), 2777; https://doi.org/10.3390/s21082777 - 15 Apr 2021
Cited by 25 | Viewed by 7223
Abstract
The use of wearable sensors for health monitoring is rapidly growing. Over the past decade, wearable technology has gained much attention from the tech industry for commercial reasons and the interest of researchers and clinicians for reasons related to its potential benefit on [...] Read more.
The use of wearable sensors for health monitoring is rapidly growing. Over the past decade, wearable technology has gained much attention from the tech industry for commercial reasons and the interest of researchers and clinicians for reasons related to its potential benefit on patients’ health. Wearable devices use advanced and specialized sensors able to monitor not only activity parameters, such as heart rate or step count, but also physiological parameters, such as heart electrical activity or blood pressure. Electrocardiogram (ECG) monitoring is becoming one of the most attractive health-related features of modern smartwatches, and, because cardiovascular disease (CVD) is one of the leading causes of death globally, the use of a smartwatch to monitor patients could greatly impact the disease outcomes on health care systems. Commercial wearable devices are able to record just single-lead ECG using a couple of metallic contact dry electrodes. This kind of measurement can be used only for arrhythmia diagnosis. For the diagnosis of other cardiac disorders, additional ECG leads are required. In this study, we characterized an electronic interface to be used with multiple contactless capacitive electrodes in order to develop a wearable ECG device able to perform several lead measurements. We verified the ability of the electronic interface to amplify differential biopotentials and to reject common-mode signals produced by electromagnetic interference (EMI). We developed a portable device based on the studied electronic interface that represents a prototype system for further developments. We evaluated the performances of the developed device. The signal-to-noise ratio of the output signal is favorable, and all the features needed for a clinical evaluation (P waves, QRS complexes and T waves) are clearly readable. Full article
(This article belongs to the Special Issue Wearable/Wireless Body Sensor Networks for Healthcare Applications)
Show Figures

Figure 1

15 pages, 4172 KiB  
Letter
Non-Contact Measurements of Electrocardiogram and Cough-Associated Electromyogram from the Neck Using In-Pillow Common Cloth Electrodes: A Proof-of-Concept Study
by Akira Takano, Hiroshi Ishigami and Akinori Ueno
Sensors 2021, 21(3), 812; https://doi.org/10.3390/s21030812 - 26 Jan 2021
Cited by 11 | Viewed by 4763
Abstract
Asthma and chronic obstructive pulmonary disease are associated with nocturnal cough and changes in heart rate. In this work, the authors propose a proof-of-concept non-contact system for performing capacitive electrocardiogram (cECG) and cough-associated capacitive electromyogram (cEMG) measurements using cloth electrodes under a pillowcase. [...] Read more.
Asthma and chronic obstructive pulmonary disease are associated with nocturnal cough and changes in heart rate. In this work, the authors propose a proof-of-concept non-contact system for performing capacitive electrocardiogram (cECG) and cough-associated capacitive electromyogram (cEMG) measurements using cloth electrodes under a pillowcase. Two electrodes were located along with the approximate vector of lead II ECG and were used for both cECG and cEMG measurements. A signature voltage follower was introduced after each electrode to detect biopotentials with amplitudes of approximately 100 µV. A bootstrapping technique and nonlinear electrical component were combined and implemented in the voltage follower to attain a high input impedance and rapid static discharge. The measurement system was evaluated in a laboratory experiment for seven adult males and one female (average age: 22.5 ± 1.3 yr). The accuracy of R-wave detection for 2-min resting periods was 100% in six subjects, with an overall average of 87.5% ± 30.0%. Clearly visible cEMGs were obtained for each cough motion for all subjects, synchronized with reference EMGs from submental muscle. Although there remains room for improvement in practical use, the proposed system is promising for unobtrusive detection of heart rate and cough over a prolonged period of time. Full article
(This article belongs to the Special Issue Contactless Sensors for Healthcare)
Show Figures

Figure 1

16 pages, 836 KiB  
Article
Supervised SVM Transfer Learning for Modality-Specific Artefact Detection in ECG
by Jonathan Moeyersons, John Morales, Amalia Villa, Ivan Castro, Dries Testelmans, Bertien Buyse, Chris Van Hoof, Rik Willems, Sabine Van Huffel and Carolina Varon
Sensors 2021, 21(2), 662; https://doi.org/10.3390/s21020662 - 19 Jan 2021
Cited by 4 | Viewed by 3157
Abstract
The electrocardiogram (ECG) is an important diagnostic tool for identifying cardiac problems. Nowadays, new ways to record ECG signals outside of the hospital are being investigated. A promising technique is capacitively coupled ECG (ccECG), which allows ECG signals to be recorded through insulating [...] Read more.
The electrocardiogram (ECG) is an important diagnostic tool for identifying cardiac problems. Nowadays, new ways to record ECG signals outside of the hospital are being investigated. A promising technique is capacitively coupled ECG (ccECG), which allows ECG signals to be recorded through insulating materials. However, as the ECG is no longer recorded in a controlled environment, this inevitably implies the presence of more artefacts. Artefact detection algorithms are used to detect and remove these. Typically, the training of a new algorithm requires a lot of ground truth data, which is costly to obtain. As many labelled contact ECG datasets exist, we could avoid the use of labelling new ccECG signals by making use of previous knowledge. Transfer learning can be used for this purpose. Here, we applied transfer learning to optimise the performance of an artefact detection model, trained on contact ECG, towards ccECG. We used ECG recordings from three different datasets, recorded with three recording devices. We showed that the accuracy of a contact-ECG classifier improved between 5 and 8% by means of transfer learning when tested on a ccECG dataset. Furthermore, we showed that only 20 segments of the ccECG dataset are sufficient to significantly increase the accuracy. Full article
(This article belongs to the Special Issue Recent Advances in ECG Monitoring)
Show Figures

Figure 1

12 pages, 4448 KiB  
Article
Power Line Interference Reduction Technique with a Current-Reused Current-Feedback Instrumentation Amplifier for ECG Recording
by Donggeun You, Hyunwoo Heo, Hyungseup Kim, Yongsu Kwon, Sangmin Lee and Hyoungho Ko
Appl. Sci. 2020, 10(23), 8478; https://doi.org/10.3390/app10238478 - 27 Nov 2020
Cited by 4 | Viewed by 4893
Abstract
This paper presents a power line interference (PLI) reduction technique with a current-reused current-feedback instrumentation amplifier (CFIA) for electrocardiogram (ECG) recording. In a portable two-electrode ECG monitoring application, the presence of undesired PLI may severely corrupt the quality of ECG recording. Since PLI [...] Read more.
This paper presents a power line interference (PLI) reduction technique with a current-reused current-feedback instrumentation amplifier (CFIA) for electrocardiogram (ECG) recording. In a portable two-electrode ECG monitoring application, the presence of undesired PLI may severely corrupt the quality of ECG recording. Since PLI can be over a few volts, the input signal including the ECG signal can exceed the supply or ground level by an electrostatic discharge (ESD) diode in input/output (I/O) pad. To prevent this problem, this paper presents a continuous-time input common-mode current feedback loop that can limit displacement current from a capacitive coupling between the human body and a power line. The continuous-time input common-mode current feedback loop can clamp an input common-mode voltage to the saturation region of the input transistor of the current-reused CFIA. After the clamping procedure, the clamped input signal is amplified by the current-reused CFIA. The proposed circuit was designed using a 0.18-μm bipolar-complementary metal semiconductor–double-diffused metal oxide semiconductor (BCDMOS) process with an active area of 1.8 mm2. The total power consumption is 18 μW with 1.8 V. The input-referred noise and noise efficiency factor (NEF) of the current-reused CFIA is 2.68 μVRMS and 4.28 with 107 Hz, respectively. Full article
(This article belongs to the Special Issue Selected Papers from IMETI 2020)
Show Figures

Figure 1

Back to TopTop