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Abstract: With higher levels of automation in vehicles, the need for robust driver monitoring systems
increases, since it must be ensured that the driver can intervene at any moment. Drowsiness, stress and
alcohol are still the main sources of driver distraction. However, physiological problems such as heart
attacks and strokes also exhibit a significant risk for driver safety, especially with respect to the ageing
population. In this paper, a portable cushion with four sensor units with multiple measurement
modalities is presented. Capacitive electrocardiography, reflective photophlethysmography, magnetic
induction measurement and seismocardiography are performed with the embedded sensors. The
device can monitor the heart and respiratory rates of a vehicle driver. The promising results of the
first proof-of-concept study with twenty participants in a driving simulator not only demonstrate the
accuracy of the heart (above 70% of medical-grade heart rate estimations according to IEC 60601-2-27)
and respiratory rate measurements (around 30% with errors below 2 BPM), but also that the cushion
might be useful to monitor morphological changes in the capacitive electrocardiogram in some cases.
The measurements can potentially be used to detect drowsiness and stress and thus the fitness of the
driver, since heart rate variability and breathing rate variability can be captured. They are also useful
for the early prediction of cardiovascular diseases, one of the main reasons for premature death. The
data are publicly available in the UnoVis dataset.

Keywords: unobtrusive sensing; capacitive ECG; magnetic induction monitoring; reflective PPG;
seismocardiography; private space; automotive

1. Introduction

Many traffic accidents can be traced back to drowsiness, stress and other serious
physiological states, such as heart attacks and strokes [1–3]. In ageing societies, it can be
expected that the number of car accidents related to physiological problems will increase.
In partly autonomous vehicles, driver monitoring systems are crucial to ensure that the
vehicle driver can take over control at any moment [4]. Personal healthcare systems, such
as in-vehicle monitoring, increase the coverage of health data. Not only with respect to
the elderly, they support the early detection of cardiovascular diseases, one of the leading
causes of premature death [5]. For the assessment of health status, important vital signs are
the heart rate (HR) and respiratory rate (RR). Changes with respect to the HR can not only
give insights into (unknown) arrhythmias, such as atrial fibrillation, but also into the state
of the central nervous system via heart rate variability parameters (HRV) [6]. HRV can be
used to assess, for example, drowsiness and stress [7–9]. RR, and especially its variability,
may give further insights into drug abuse [10] and major cardiac events, even before any
changes in HRV are noticeable [11,12].

Various systems for the in-vehicle monitoring of vital signs exist. These include optical
sensors (reflective photoplethysmography, wrist-worn devices [13]), camera systems (RGB
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camera [14], infra-red thermography camera [15]), radar [16] and capacitive electrocardio-
graphy [17]. Using these sensors, the driver’s physiological status can be extracted by
means of their heart rate, respiratory rate, heart rate variability (HRV) and oxygen sat-
uration [18,19]. These values can be analysed to detect stress, drowsiness, heart attacks,
strokes or atrial fibrillation [20–22]. If monitored continuously over time, trends with
respect to the overall health status and the early detection of physiological complications
can be assessed. However, in contrast to conventional contact-based methods, unobtrusive
sensing methods suffer from motion artifacts, since the coupling with the user is not fixed
and is unknown beforehand. RGB camera-based methods may additionally suffer from
changes in illumination.

Existing systems integrating several unobtrusive modalities into a car include the
so-called U-car presented by Baek et al. [23], a system presented by Warnecke et al. [24]
and a system presented by Leicht et al. [25]. The system of Baek et al. [23] consists of a
one-lead capacitive electrocardiography (cECG) sensor in the backrest of the seat, with
ECG, galvanic skin response and reflective photoplethysmography (rPPG) sensors em-
bedded into the steering wheel and a piezoelectric sensor in the seat belt. The system of
Warnecke et al. [24] consists of a ballistocardiography sensor in the backrest of the seat, an
ECG and reflective photoplethysmography sensors in the steering wheel and a camera for
photoplethysmography imaging (often also called remote PPG, imaging PPG or camera-
based PPG). Leicht et al. [25] embedded a six-lead capacitive ECG system into the backrest
of the seat, a sensor consisting of magnetic induction measurement, reflective PPG and
cECG in the seat belt and an RGB and infrared thermography camera in the front panel of
the car. A comprehensive list of monitoring systems used in cars, including systems using
only one modality, can be found in the reviews of Leonhardt et al. [18] and Wang et al. [26].
Monitoring systems embedded into the steering wheel heavily depend on the continuous
contact of the hands at specific locations on the steering wheel. Camera-based systems
are often accompanied by privacy concerns for the vehicle driver and require dedicated
systems to process the video data. Systems embedded into the seat belt and the driver
seat can lead to certification issues [25]. Furthermore, most of the systems in the litera-
ture only provide one channel of each modality, which could lead to a complete loss of
signal if the sensor contact is disturbed. Finally, publicly available datasets for unobtrusive
modalities are sparse [27], especially with respect to driving scenarios. Thus, the compa-
rability of approaches for motion artifact compensation, signal quality assessment and
diagnostic applications (drowsiness detection, stress) is limited. For completeness, it should
be mentioned that multi-modal unobtrusive sensors are also used in other applications
and embedded into other everyday objects, such as armchairs [28], office chairs [29] and
mattresses [30].

In this paper, a portable cushion is presented in which four measuring modalities
for monitoring the most important vital signs, i.e., heart rate and respiratory rate, are
embedded. The four modalities include capacitive electrocardiography (cECG), reflective
photoplethysmography (rPPG), magnetic induction measurement (MIM) and seismocardio-
graphy (SCG). They are integrated into four redundant sensor units, called 4xU sensors,
to increase coverage with respect to different seating positions and statures. Provided
an accordingly high SNR, the cECG may allow an even more comprehensive diagnosis
related to cardiovascular diseases than by merely monitoring the heart rate. By introducing
redundancy, the loss of coverage due to motion artifacts and other changes with respect to
the coupling of the body and sensor may be reduced. Furthermore, redundancy enables
the use of sensor fusion algorithms. Advantages over camera systems and sensors directly
embedded in the driver’s seat include privacy concerns and certification issues. With
respect to systems embedded into the steering wheel, the system does not rely on specific
contact with the driver other than that the driver is seated. Additionally, the cushion can
be placed on other seats, such as armchairs, sofas or office chairs, making it a universal
monitoring tool.
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The system was tested with 20 subjects driving in a driving simulator for around
25 min. The measurements were compared with the gold standard, the conductive ECG and
impedance pneumography. The data recorded from the cushion and the reference monitor
have been made publicly available in the UnoVis dataset to increase the comparability of
the algorithmic approaches of different research groups (https://www.medit.hia.rwth-aac
hen.de/en/publications/unovis (accessed on 27 February 2023)). To the best of the authors’
knowledge, this is the first publicly available dataset of multi-modal unobtrusive sensors
in a driving scenario. The recorded camera data are available upon reasonable request. The
paper’s main contributions are as follows:

• An integrated, portable device with dedicated hardware for measuring HR and RR un-
obtrusively.

• A detailed technological description of the integration with respect to all components.
• A publicly available dataset of the recorded sensor data in a real-world scenario

without constraints on clothes and movement. The data should enable researchers to
verify the presented results, test their own sensor fusion algorithms and contribute to
the training of machine learning models. Furthermore, the data should contribute to
the data-sharing paradigm.

• An analysis of the vital signs showing high coverage and high quality for HR and
fair quality for RR with respect to each modality independently. The analysis should
give new insights into problems and opportunities for each modality with respect to
different driving situations.

The rest of the paper is structured as follows. First, the theoretical background of the
measurement modalities used in the proposed system is presented. Second, the complete
system setup is explained in detail. Third, the preliminary results of the first proof-of-
concept study with 20 participants are analysed. Finally, the results are summarised and
discussed.

2. Materials and Methods

Several approaches exist to measure vital signs unobtrusively. In the following, the
technical principles of the cECG, the reflective PPG, the MIM and the SCG are presented.
The cECG, reflective PPG and SCG can be applied with the aim to extract the heart rate and
HRV. However, the respiratory rate can often be derived in addition. For determining the
respiratory rate, MIM may be employed.

2.1. Capacitive Electrocardiography

Due to the electrical activation of the heart muscle during each heart beat, heart
activity can be measured by means of a differential (biopotential) measurement, called
electrocardiography. The ECG is the gold standard for diagnosis in cardiology [31]. Tradi-
tionally, the ECG is measured using adhesive electrodes, which are attached directly onto
the skin. As early as in 1967, the use of dry electrodes was introduced by Richardson [32],
i.e., conductive plates (e.g., copper or tin) for measuring ECG unobtrusively. This form of
ECG enables a measurement without adhesive electrodes and without direct skin contact
(e.g., through clothes) and thus capacitive measurement in private spaces.

Since there is no direct conductive contact with the skin, there is high coupling
impedance between the skin and sensor surface. Hence, a trans-impedance amplifier
with a very high input impedance is necessary to measure the skin potential leading to an
“active electrode” [18]. A simplified model of the electrode principle is depicted in Figure 1.
The skin potential is modelled by the input voltage source, and the skin–electrode path is
modelled by a high coupling resistor Rc and a coupling capacitor Cc. Cin and Rin describe
the amplifier’s input impedance. On the one hand, Rin has to be very high (gigaohms) to
reduce the high-pass effect due to Cc. On the other hand, triboelectricities on the capacitor
need a long time to discharge due to the high value of Rin. Therefore, the cECG is more
sensitive to noise and more affected by motion artifacts than the conductive one.

https://www.medit.hia.rwth-aachen.de/en/publications/unovis
https://www.medit.hia.rwth-aachen.de/en/publications/unovis
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Finally, the ECG is obtained by measuring the differential signals of two electrodes, the
so-called “leads”. Power-line noise and other common mode disturbances make it necessary
to use differential amplifiers with a high common-mode rejection ratio. Additionally, the
so-called driven right leg (DRL) circuit can be used to further suppress common-mode
noise by means of an additional electrode [33]. For the cECG, this is usually realised using
a conductive plate, on which the subject sits. Similarly to the conductive case, the sum
signal of each active electrode’s output is fed back negatively onto the conductive plate,
which again has capacitive coupling with the skin. In contrast to the active electrodes used
for obtaining the leads, no active electrode is used for the DRL circuit [34].

Uin

Rc

Cc

Cin

Rin

+

Uout

Figure 1. Model of active electrode (altered from [17]).

2.2. Reflective Photoplethysmography

With every heart beat, blood is pumped through the vessels into the body. This change
in blood volume can be measured by means of an optical system, called photoplethysmo-
graphy (PPG). PPG can either be measured transmissively or reflectively. For the reflective
method shown in Figure 2, light is emitted into the body’s tissue by means of an LED.
At the same time, the reflected light is measured with a photodiode (PD) placed close to
the LED. The amount of the reflected light is modulated by the blood volume and thus
changes with the pulse. If the illumination strength and wavelength of the LED are chosen
appropriately (e.g., infrared light), reflective PPG can also be measured through layers of
clothing. This is possible when several LEDs are placed around a photodiode to increase
the illumination of the tissue and thus the diffuse reflection. Here, the clothing can be
assumed to introduce another damping layer [7,35]. Even if the tissue is not reached, the
deformation of the layer of clothes due to the heart’s response (optical ballistocardiography)
can often still be measured [36].

Figure 2. Principle of reflective PPG (inspired by [37]).
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2.3. Magnetic Induction Measurement

Magnetic induction measurement is an unobtrusive method to measure the respiratory
rate. Its principle was first introduced in 1967 by Vas et al. [38]. In the literature, both
gardiometer-based and oscillator-based approaches have been introduced. For the latter,
the idea is to have an electric oscillator (e.g., Colpitts oscillator) in which a planar coil is
the frequency-determining component. Due to the oscillating current through the coil, a
primary magnetic field is generated (Biot–Savart law). The coil is placed in such a way that
its primary field induces an induction voltage and thus an eddy current in the tissue of a
subject (cf. Figure 3). This eddy current again generates a secondary magnetic field that
affects the primary one, modulating the oscillator’s frequency depending on the tissue’s
impedance. If the coil is placed close to the lungs, the eddy current changes with the lung
volume and thus the respiration can be measured by recording the change in frequency of
the oscillator.

Figure 3. Principle of MIM (altered from [19]).

2.4. Seismocardiography

Seismocardiography refers to the measurement of the mechanical vibrations of the
heart beat on the body’s surface by means of an accelerometer [39]. For this, a simple micro-
electrical-mechanical sensor can be placed, for example, on the thorax of a subject. Each
heart beat produces a distinct waveform, where the different peaks coincide with different
phases of the heart cycle (cf. [39] for more information). Additionally, the respiratory
movement can be obtained.

3. System Setup

The system embedded into the cushion relates to the system of Yu et al. [30] and
consists of two elements (cf. Figure 4). First, it consists of four 4xU sensor units that
include a reflective PPG sensing unit, an MIM sensing unit, an accelerometer and one
active electrode for cECG (top right side). Each of the four sensors is indicated by a red
number in Figure 4. The reflective PPG, MIM and SCG sensing units all provide digital
signals, whereas the active electrodes for the cECG provide an analogue signal. Second,
it is composed of the so-called controller box, which reads the measurements of the 4xU
sensors, captures the cECG signals and provides a user interface to access the data.
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Figure 4. System overview. On the left side, a block diagram of the system is depicted. The orange
highlighted block depicts the top side of the PCB (shown on the top right). The blue highlighted
block depicts the bottom side of the PCB. On the right side, the cushion with the controller box is
depicted.

3.1. 4xU Sensors

Each 4xU sensor unit consists of one active electrode (analogue), a unit for reflective
PPG measurements, a unit for SCG measurements and MIM (digital). All digital signals
are processed by an STM32 microcontroller (µC), STM32F303CB6T (STMicroelectronics
N.V., Plan-les-Quates, Switzerland). The sensor’s front side is shown in Figure 4. Each 4xU
sensor’s digital signals are processed by a dedicated µC, firstly to introduce an abstraction
layer with a communication protocol to ease upgradability, secondly to reduce the compu-
tational workload of the µC in the controller box and thirdly to isolate the sensor readings,
since the analogue front ends used on each 4xU sensor have the same addresses on the bus.

The cECG electrode is realised using a shielded high-impedance operational amplifier,
OPA140 (Texas Instruments, Dallas, TX, USA), with an input impedance of 10 TΩ and 10 pF.
The output of the amplifier is led to the controller box using a coaxial cable, where the ECG
leads are obtained. A conductive fibre is sewn onto the seating area and used as the driven
right leg circuit’s electrode.

The reflective PPG measurement is controlled by an analogue front-end, ADPD1080
(Analog Devices, Norwood, MA, USA), which is accessed by the microcontroller via an
I2C bus. For the reflective PPG measurement, three infrared (IR) LEDs, SFH4250 (Osram
Licht AG, Munich, Germany), and one IR-sensitive photodiode, BPW34 (Osram Licht AG,
Munich, Germany), are used. The LEDs have a distance of 2 cm from the photodiode and
are placed at 30, 150 and 270 degrees. The ADPD1080 is programmed in such a way that the
LEDs are pulsed with 3 µs pulse width and six pulses per measurement. Simultaneously,
the photodiode is read such that ambient light is suppressed and the signal-to-noise ratio
(SNR) is improved. Ambient light suppression is achieved by subtracting the measured
voltage when the LED is not active and thus only measuring the ambient light.

The MIM is realised using a Colpitts oscillator with a planar coil that has an inner
diameter of 78 mm and an outer diameter of 88 mm. The coil has five windings. The
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frequency of the Colpitts oscillator is measured by means of a dual inverter, SN74LC2G04
(Texas Instruments, Dallas, TX, USA), whose output’s frequency is measured by the counter
input of the µC. The frequency of the oscillator can be varied since the circuit includes two
varicaps, BBY66 (Infineon Technologies AG, Neubiberg, Germany), which act as voltage-
dependent capacitors in such a way that their value can be adjusted using the analogue
output of the µC. The fine adjustment of the frequency is necessary to suppress crosstalk
between the four sensors [40]. The frequency is around 100 MHz. According to [40], the
sensors are placed more than 10 cm apart from each other to reduce crosstalk.

The seismocardiography measurement is performed by the BMI160 inertial measure-
ment unit (Bosch Sensortec GmbH, Reutlingen, Germany). The BMI160 provides a 16-bit,
three-axis measurement of an accelerometer. Furthermore, it provides a gyroscope, which
is not used in the presented setup. The sensor is placed on the bottom side of the PCB
and connected to the µC using the I2C bus. The z-axis of the BMI points to the inside of
the cushion.

The sensor channels (except cECG) have been enumerated according to the sensor
nodes from the top left to the bottom right, from right to left and top to bottom (cf. Figure 4).
The cECG is enumerated according to the leads obtained (see below).

3.2. Controller Box

The controller box consists of a microcontroller board, STMF303-Nucleo (STMicro-
electronics N.V., Plan-les-Quates, Switzerland), an analogue front end for calculating the
cECG leads, ADS1298 (Texas Instruments, Dallas, TX, USA), and a real-time clock (RTC),
DS3231 (Analog Devices, Norwood, MA, USA). Additional to the USB micro output of the
Nucleo board, an SD card is used to store the raw data. The controller box can be supplied
by either a 12 V battery, Makita 197396-9 (Makita, Anjo, Aichi, Japan), or by any 12 V
medical-grade power adapter. The 12 V supply is converted into ±5 V for the symmetric
supply of the OPA140 on each sensor using a Traco DC-DC converter, TMV 1205 (Traco
Electronic AG, Baar, Switzerland).

The output of each OPA140 is connected to the ADS1298 using a coaxial cable. The
differential signals between the upper left and right (lead one), the upper left and lower
right (lead two), the upper right and lower left (lead three) and the lower left and right
(lead four) are calculated. The first two leads correspond to the Einthoven I and II leads [31].
The ADS1298 provides a high common-mode rejection ratio to suppress power-line noise
and a programmable driven right leg output. Additionally, it provides a 24-bit sigma-delta
analogue-to-digital converter. The digitalised signal is accessed by the Nucleo board via an
SPI bus.

All four sensors are connected with the controller box board using an RS485 interface
and one UART output interface of the microcontroller. The protocol for reading the sensors
is a two-step process. First, a read command for all sensor units is sent. Second, each
sensor unit’s values are read using the sensor’s identifier. By this procedure, a synchronised
reading of the reflective PPG, MIM and SCG is ensured. The sampling frequency for each
modality is 128 Hz. The cECG is sampled at the same time that the read command is sent.

The data of the system can be either accessed via the USB micro port of the Nucleo
board by a virtual COM port or by an SD card on which the data are stored as CSV files.
The real-time clock of the system is used to create time stamps and can be set by a software
program, if the system is connected via USB.

4. Experimental Evaluation

To validate the sensor cushion’s functionality, a study with 20 healthy participants was
conducted in the driving simulator shown in Figure 5. The open-source simulator CARLA
was used for simulating a driving environment [41]. A Logitech driving force GT steering
wheel and gas pedals were used for driving. For the simulation, the environment “Town04”
was chosen and a custom user interface was created showing the speed and both side
mirrors [41]. The participants (2 female, 18 male) were aged between 19 and 60 years old
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(mean: 25.9 years, SD: 8.5280 years) and had a body mass index between 20.23 kg/m2 and
28.7 kg/m2 (mean: 23.46 kg/m2, SD: 2.44 kg/m2). They were mostly wearing one layer of
clothing made from cotton. A complete list of the demographics is shown in Table 1.

Table 1. Table with demographics of participants, including clothes.

Participant Age [Years] Gender Weight [kg] Height [cm] # Layers of
Clothes Material

1 24 male 70 174 1 cotton,
polyester

2 22 male 70 186 1 cotton

3 21 male 92 203 1 cotton

4 20 male 80 181 1 cotton

5 19 male 60 165 2 cotton

6 24 female 61 165 1 cotton

7 25 male 75 184 1 cotton,
polyester

8 22 male 93 187 1 cotton

9 27 male 80 180 1 cotton

10 26 female 66 170 1 cotton

11 23 male 71 187 1 cotton

12 23 male 80 183 1 cotton

13 28 male 82 173 1
cotton,

polyester,
spandex

14 23 male 78 174 1 cotton

15 25 male 93 180 1 cotton

16 29 male 77 189 1 cotton

17 22 male 71 180 1 cotton

18 25 male 65 178 1 cotton,
polyester

19 30 male 80 174 1 cotton

20 60 male 65 172 2 cotton

All participants gave written consent and the study protocol was reviewed by the
ethics committee of RWTH Aachen University Hospital (EK 183/22). After the introduction
and the provision of written consent, a short test drive of 2 min was performed to rule
out any simulator sickness among the participants. Then, the experiment started and was
divided into four stages:

• Driving without talking to simulate a single driver.
• Controlled movements, which could be expected during driving, i.e., head torsion

left/right, body rotation left/right, adjusting the position on the seat, leaning forward.
After each movement, a pause of around 10 s was made.

• Driving while talking to the study staff to simulate a passenger.
• Sitting in the seat without driving or talking to obtain a clean signal for reference.

The complete protocol is visualised in Figure 5.
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(a) Experimental protocol (b) Simulator setup

Figure 5. Simulator and protocol.

Additionally to the signals of the sensor cushion, a video with a bimodal camera
capturing an RGB and infrared frame (Optris PI230, Optris GmbH, Berlin, Germany)
and a conductive reference ECG measurement with a Philips MX700 patient monitor
(Philips, Amsterdam, The Netherlands) were recorded. The patient monitor also provided
a respiratory reference by impedance pneumography. The data of the patient monitor were
accessed using the software iXtrend 2.1. From the simulation software, the steering angle
and the throttle were recorded. The participants were allowed to drive freely without the
necessity to obey traffic rules. After the recording, the data from the sensor cushion (RTC
time stamp) and the data from the other modalities (PC time stamp) were synchronised
manually. The data of the cushion, simulator and patient monitor have been added into
the UnoVis dataset (https://www.medit.hia.rwth-aachen.de/en/publications/unovis
(accessed on 27 February 2023)). The corresponding camera data are available upon
reasonable request.

4.1. Preprocessing

All signal modalities recorded may consist of both cardiac-related and respiration-
related signals. While the cECG, reflective PPG and SCG are considered cardiac signals,
they all exhibit baseline wanders due to the respiration. For the cECG, this is due to changes
in the distance and thus impedance changes between two electrodes for one lead during
each breathing cycle by the movement of the thorax. For reflective PPG, the baseline wander
is due to blood pressure changes due to the respiration and, in the presented setup, also
due to compression of the clothing by the movement of the thorax. The SCG captures the
movement of the thorax due to the change in its acceleration. The MIM signal is considered
mainly breathing-related. However, it was shown to also be able to capture cardiac-related
signals if placed close to the heart [36]. In the presented setup, this is not the case.

https://www.medit.hia.rwth-aachen.de/en/publications/unovis
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Each raw signal was filtered to remove noise when analysing the data. All signals
consisting of a cardiac and respiratory component were filtered separately by two different
digital filters to separate the cardiac signal and the respiration signal (cf. Figure 6).

Raw signal
Band-

pass/Notch
filter

Peak
detection

HR
estimate

Band-pass
filter

Peak
detection

RR
estimate

extraction of cardiac signals

extraction of respiratory signals

Figure 6. Workflow for processing of signals. Please note that the peak detection for the cECG signals
is performed with the Pan–Tompkins algorithm and the algorithm of Brüser et al. is used to extract
the HR of the SCG.

For the cardiac part of the cECG channels, an 8th-order Butterworth band-pass filter
with cut-off frequencies at 0.4 Hz and 45 Hz was used to remove high-frequency noise.
Furthermore, a 50 Hz notch filter was applied to remove power-line noise. To extract the
respiratory component, the unprocessed signal was also filtered by a 2nd-order Butterworth
filter with cut-off frequencies at 0.15 Hz and 0.5 Hz.

The reflective PPG signals were filtered by a 2nd-order Butterworth band-pass filter
with cut-off frequencies at 0.5 Hz and 2 Hz to remove noise and extract the cardiac signal. To
extract the respiratory component, the unprocessed signals were filtered with a 2nd-order
Butterworth filter with cut-off frequencies of 0.1 Hz and 0.4 Hz.

The MIM signals were filtered with a 2nd-order Butterworth band-pass filter with cut-
off frequencies at 0.15 Hz and 0.4 Hz to remove noise. Additionally, a tenth-order median
filter was applied to remove artifacts.

The SCG signals were filtered with an 8th-order Butterworth band-pass filter with cut-
off frequencies at 0.4 Hz and 45 Hz to extract the cardiac signal. To extract the respiratory
signal, the unprocessed signal was filtered with a 2nd-order Butterworth band-pass filter
with cut-off frequencies at 0.1 Hz and 0.4 Hz.

4.2. Extraction of Vital Signs

For the cardiac signals, different standard algorithms for the extraction of the inter-
beat intervals (IBI) were applied. First, the Pan–Tompkins algorithm [42] was employed
for the cECG and reference ECG; second, a simple peak detection (MATLAB’s findpeaks-
function) was used for the reflective PPG with a minimum peak distance of 0.5 s; third, the
interval estimator according to Brüser et al. [43] was applied for the SCG. The algorithm
from Brüser et al. combines a modified autocorrelation, a modified average magnitude
difference function and maximum peak pairs to estimate the most likely inter-beat interval
for a time window that is chosen in such a way that at least two heart beats lie within it [43].
The heart rate can then be computed from the IBIs by

HRi =
1

IBIi+1 − IBIi
. (1)

For the respiratory signals, i.e., the reference respiration, MIM, reflective PPG-derived
respiration, cECG-derived respiration and SCG-derived respiration, simple peak detection
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(MATLAB’s findpeaks-function) algorithms were applied with a minimum peak distance of
2 s. Again, the RR can be computed using the inter-breath interval (IRI):

RRi =
1

IRIi+1 − IRIi
. (2)

It should be noted that no algorithms for the removal or compensation of motion
artifacts were applied. Furthermore, the signals were analysed independently and no
signal fusion was applied to improve estimations of the heart rate or respiratory rate at
this point in the project as the aim was to present the technology and provide a publicly
available dataset.

5. Results

The recorded signals were compared qualitatively and quantitatively. For the quanti-
tative evaluation and comparison with the reference, the so-called success rate described
in [37], the coverage with respect to IEC 60601-2-27 according to [44,45] and the Pearson
correlation coefficient for the covered segments were used. The success rate gives the
percentage of the recording in which the absolute difference between the estimated and
reference heart/respiratory rate are bounded by a limit l. l was varied between 0 BPM and
10 BPM with a step size of 0.1 BPM. Finally, the Area under Curve (AUC) normalised by the
total area was used as an evaluation metric. The coverage with respect to IEC 60601-2-27 is
defined by the ratio of the estimated heart rate signal fulfilling the accuracy defined in IEC
60601-2-27 to the complete signal. IEC 60601-2-27 requires the estimated heart rate to fulfill

|HRest −HRref| ≤ max(5 BPM, 0.1 ·HRre f ) (3)

where HRest and HRre f are the estimated and reference heart rates, respectively [45]. For
the RR, 2 BPM were used instead of 5 BPM. Finally, the Pearson correlation for the seg-
ments fulfilling the coverage criterion was computed [46]. Signals with high correlation
coefficients are assumed to capture heart rate variability (HRV) or breathing rate variability
(BRV) parameters, since the product of the standard deviations of the two tested signals
(which is the variability in HR or RR) should be equal to the covariance. The recordings
were evaluated with respect to the different driving stages as more motion usually distorts
the signals more strongly.

5.1. Qualitative Results

During each recording and between individuals, varying signal qualities with respect
to the waveform could be observed. The quality of each signal was inspected visually by
means of a waveform-related criterion. Manual annotations of the signal quality are avail-
able for each subject and each channel. For the annotations, the software Signalplant [47]
was used. For the cECG, good quality means that characteristic features of the ECG wave-
form, i.e., P-wave, QRS complex and T-wave, were visible. In case of good quality, a
noise floor was allowed that only obscured the P-wave. Fair quality was obtained when
all R-peaks were visible but the signal was distorted by baseline wander and a higher
noise floor. Bad quality was obtained when R-peaks were completely obscured by noise,
motion artifacts were present or the R-peaks were not clearly distinguishable from noise.
For the reflective PPG, good quality means that distinct peaks with each heart beat were
visible. Fair quality was noted when each heart beat was visible but the noise floor was
high. Bad quality was noted in the event that some heart beats were not visible or motion
artifacts were present. For the MIM, good quality means that the change in the frequency
of the coil was in phase with the respiratory movement. Fair quality was noted when
the respiratory movement was visible but spikes distorted the signal. The quality was
assessed as bad if no respiratory signal was visible or the signal was completely distorted
by spikes or motion artifacts. For the SCG, good quality means that distinct peaks with
each heart beat were visible. In contrast, bad quality was the absence of clear signals
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related to the heart or respiratory rate. Examples of good and bad quality are depicted in
Figures 7 and 8.
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Figure 7. Signals with good quality. The reference peaks of the conductive ECG and impedance
pneumography are shown as dashed red or blue lines, respectively.
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Figure 8. Signals with bad quality. The reference peaks of the conductive ECG and impedance
pneumography are shown as dashed red or blue lines, respectively.

The cECGs’ signal quality is not only dependent on the mechanical contact but also on
triboelectricities, which need to be discharged, especially in the beginning of the recording.
During this time (up to 10 min), the power-line noise decreases continuously. Apart from
the typical power-line noise, a noise signal at around 11.7 Hz could be observed. As visible
in the first plots of Figures 7 and 8, the cECG may even have waveforms close to the
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conductive ECG. However, often, only the R-peaks and T-wave were visible. Usually, the
first lead and fourth lead of the cECG signals show the best quality. With respect to the
participants’ gender, it could be observed that the cECG signals were less reliable and
more noisy for females, supposedly because of their longer hair, which introduced more
triboelectricities.

The reflective PPG signals do not describe the usual waveform of a clinical reflective
PPG but are rather sinus-shaped for each heart beat and superimposed with a sinus
coinciding with the respiratory movement. For good-quality reflective PPG (top right plot
of Figure 7), each heart beat is described by a distinct peak. In case of bad-quality reflective
PPGs (top right plot of Figure 8), the respiratory movement was often still visible.

The MIMs describe sinus-shaped waveforms that were disturbed by spikes (cf. bottom
left of Figures 7 and 8). In case of good-quality MIMs, the spikes were sparse and clear
respiratory movement was visible. In case of bad-quality MIMs, the spikes were distorting
the signals irreversibly such that the respiratory movement could not be extracted.

The SCG signals’ quality is only good for segments with barely any motion. A typical
waveform with varying amplitudes superimposed with the respiratory movement is visible
on the bottom right of Figure 7. The signals were usually best in the z and x directions of
the accelerometer, supposedly because the y axis is pointing in the lateral direction, where
the vibration is weakest.

Motion artifacts were present during all stages of the recording. However, especially
in the second stage, it could be observed that motion artifacts did not necessarily occur in
all modalities or all channels during specific movements (e.g., head torsion). Furthermore,
while motion artifacts generated baseline wander with high amplitudes in some cECG
recordings, the R-peaks were still visible.

During visual inspection of the respiratory reference, it was observed that, in some
cases, the reference signal reached saturation or lost the signal (cf. Figure 9). Therefore,
instead of the raw signal of the impedance pneumography, the derived numerical values
(1 min−1) provided by the patient monitor were used for the quantitative analysis.
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5.2. Quantitative Results
5.2.1. cECG

From Figure 10, it can be seen that the cECG signals provide the most accurate
estimation of the heart rate with respect to the AUC for most stages. Only in stage two, the
reflective PPG is more accurate. It can also be seen that the cECG has the highest variance
with respect to the AUC in the first stage. This might be due to the discharging process of
triboelectricites. In the motionless stages, cECG leads one and four were the most accurate.
In the other stages, either lead one (stage three) or lead four (stage two) was the most
accurate. Lead three was always the most inaccurate. A median coverage above 74% could
be achieved for channels one, two and four (cf. Table 2). Channel three only had a median
coverage of 34%. The highest achieved coverage was 95.9% for participant three. With
respect to these segments, Pearson correlation coefficients of above 0.95 (p-value < 0.05)
could be achieved. With respect to the respiratory rate, the cECG was the most inaccurate
in all stages, with AUC between 0.2 and 0.4 (cf. Figure 11). Coverage of only around 10%
over all stages could be achieved. The Pearson correlation coefficients for these segment
were above 0.8 (p-value < 0.05).
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Figure 10. AUC of HR for different stages for cECG and reflective PPG. The bar shows the median
across all participants and the lines show the standard deviation.

5.2.2. Reflective PPG

The reflective PPG estimations of the heart rate with respect to the AUC were best
for stages one and four. The best channel in this case achieved a median AUC of 0.6
and 0.7. For the stages with more motion, the AUC value dropped by around 0.1. In
all cases, either rPPG3 or rPPG4 was the most accurate. In stage two, the reflective PPG
was the least accurate with respect to all stages except for rPPG4. With the reflective PPG,
median coverage of around 70% could be achieved. For these segments, Pearson correlation
coefficients of above 0.75 were achieved (p-value < 0.05). With respect to the respiratory
rate, the reflective PPG achieved median AUCs of around 0.5 for the stages with motion
and around 0.6 for the motionless case. The performance was similar to that of the SCG
for RR. Median coverage of around 25% for the respiratory rate could be achieved. The
Pearson correlation coefficients in these cases were above 0.8 (p-value < 0.05).
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Figure 11. AUC of RR for different stages for cECG, MIM and reflective PPG. The bar shows the
median across all participants and the lines show the standard deviation.

5.2.3. MIM

The MIM performed rather consistently between 0.4 and 0.5 with respect to the median
AUC. All channels performed similarly. Median coverage of around 25% could be achieved
with the MIM with respect to all stages. The Person correlation coefficients for these
segments were above 0.81 (p-value < 0.05). In many cases, the MIM was disturbed by many
spikes, which reduced the quality drastically.

5.2.4. SCG

The SCG performed worst with respect to the AUC of the heart rate. Only in stage
four, median AUCs of above 0.4 could be achieved. In the other stages, the median AUC
was between 0.2 and 0.3. The median coverage was between 30% and 40% with Pearson
correlation coefficients of above 0.76 (p-value < 0.05). For the respiratory rate, the SCG
performed similarly to the reflective PPG in the first three stages, with median AUCs
between 0.4 and 0.6 (cf. Figure 12). For stage four, the SCG outperformed the reflective
PPG slightly, with median AUCs above 0.6. The SCG achieved coverage between 25% and
32%. The Pearson correlation coefficients were above 0.79 (p-value < 0.05).

With respect to the estimation of the RR, it should be noted that the minimum AUC
and coverage across all channels and stages for each participant were at least 0.37 and 20%
with medians of 0.59 and 34%, respectively. The maximum AUC and coverage achieved
were 0.74 and 52%. For stage 4, the motionless case, the values were much higher, with
a median AUC of 0.68 (minimum 0.47 and maximum 0.76) and median coverage of 45%
(minimum 24% and maximum 64%).

In conclusion, it can be seen that cECG was the best modality for achieving low errors
and high coverage with respect to the heart rate while also capturing HRV. The reflective
PPG was second best in estimating HR and best in estimating RR with respect to the
coverage including BRV. MIM and SCG did not achieve high coverage for RR but captured
BRV well if the estimation was accurate enough. To achieve high AUCs and coverage for
RR, the best channel or a fusion of several channels would be necessary. SCG was not well
suited to capturing HR during movement.
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Table 2. Coverage of HR with respect to segments fulfilling the requirements of IEC 60601-2-27 for
each participant and all stages for cECG leads and reflective PPG channels.

Participant cECG1 cECG2 cECG3 cECG4 rPPG1 rPPG2 rPPG3 rPPG4

1 0.852 0.893 0.517 0.883 0.695 0.538 0.614 0.666

2 0.023 0.104 0.025 0.374 0.649 0.383 0.766 0.736

3 0.959 0.954 0.958 0.935 0.597 0.384 0.374 0.395

4 0.754 0.749 0.345 0.724 0.875 0.879 0.92 0.832

5 0.928 0.938 0.826 0.945 0.855 0.721 0.84 0.837

6 0.3 0.135 0.21 0.705 0.186 0.758 0.391 0.712

7 0.793 0.781 0.692 0.83 0.784 0.713 0.538 0.689

8 0.74 0.737 0.71 0.682 0.737 0.711 0.729 0.767

9 0.872 0.789 0.882 0.761 0.853 0.889 0.866 0.954

10 0.037 0.018 0.021 0.061 0.334 0.39 0.821 0.705

11 0.829 0.876 0.733 0.794 0.568 0.608 0.736 0.814

12 0.901 0.858 0.26 0.855 0.741 0.599 0.712 0.739

13 0.048 0.165 0.027 0.248 0.868 0.921 0.779 0.837

14 0.918 0.572 0.339 0.556 0.868 0.868 0.788 0.862

15 0.793 0.805 0.779 0.811 0.573 0.436 0.391 0.59

16 0.852 0.917 0.331 0.878 0.614 0.471 0.707 0.672

17 0.893 0.912 0.69 0.852 0.876 0.8 0.918 0.932

18 0.568 0.741 0.264 0.694 0.173 0.17 0.174 0.17

19 0.821 0.512 0.163 0.382 0.884 0.858 0.876 0.93

20 0.266 0.219 0.148 0.371 0.501 0.269 0.74 0.866

median 0.8072 0.7650 0.3420 0.7424 0.7157 0.6590 0.7382 0.7530
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Figure 12. AUC of RR for different stages for SCG. The bar shows the median across all participants
and the lines show the standard deviation.
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6. Discussion

It was shown that the system could be used to extract the heart rate and respiratory
rate from 20 healthy participants with coverage of at least 70% for the HR (according to
IEC 60601-2-27) and 30% for the RR. However, improvements with respect to the hardware
setup, study design and signal analysis are conceivable.

First, improvements of the hardware setup should be made with respect to the cECG
setup and the MIM setup. We speculate that the cECGs’ signal quality can be further
improved by reducing the cable length of the signal cables from the 4xU sensor to the
controller box. In the current setup, the buffered cECG electrode potentials are connected
to the ADS1298 by cables with a length of around 80 cm, which may introduce common-
mode noise. With respect to the instrumentation, new active electrode setups should be
investigated, which could include textile electrodes and improved electrode interfaces,
which reduce the influence of movement. Specifically, the influence of long hair with
respect to the discharge of triboelectricities needs to be investigated. Finally, the source
of the 11.7 Hz disturbance should be further analysed and hardware changes should be
performed accordingly. The disturbance probably arises from a mixture of two high-
frequency signals, presumably from the voltage regulators. The MIM setup needs to be
improved to reduce the spikes, which disturbed the signal. It was found that the spikes
were generated by interruptions of the microcontroller during the measurement of the coil
frequency due to the RS485 bus. Therefore, a measurement that cannot be interrupted
should be implemented. Finally, a more reliable reference for the respiratory signal should
be used to validate the estimated RR with respect to short-term variability. With respect to
respiratory measurements, a respiratory belt could be helpful since it does not obstruct the
face and is therefore less obtrusive than a mask.

Second, improvements with respect to the study population should be made. The
study population should be more diverse with respect to ethnicity and gender and should
include a larger number of participants. To analyse the effects of gender and hair length,
the population should have a balance in gender and also include male participants with
long hair. In addition, the age and BMI should be more diverse in such a way that also more
older and heavier individuals participate. Since the weather can have an influence on the
cECG signals, a study in varying environmental conditions (i.e., temperature and humidity)
would be advantageous. Finally, the setup should be tested with patients suffering from
cardiovascular diseases and in a real car.

Third, with respect to the signal analysis, sophisticated algorithms for sensor fusion
should be investigated since all modalities and channels introduce redundancy, which
could be used to further improve the results. Since some channels might provide a signal
with higher quality than others, a selection according to a quality index is conceivable
(cf., e.g., [48]). The cECG channels might also provide information beyond HR and HRV
so that specific metrics to evaluate the signal shape for the cECG could be investigated.
Furthermore, physiological parameters between modalities, such as pulse arrival times,
should be investigated, especially since it is speculated that it may be usable as a surrogate
for blood pressure [49]. These analyses could lead to new insights into whether the
presented unobtrusive modalities are feasible for diagnostic applications in uncontrolled
environments, e.g., at home during home care or for personal healthcare application with
respect to the detection of unknown diseases of the cardiorespiratory system or monitoring
of known diseases regarding a change in severity.

Since the cardiac-related SCG signals were mostly inaccurate, it is questionable
whether this modality is useful for real-world driving scenarios, in which road and motor
vibrations might further distort the signals. However, the accelerometer signals could still
be used to detect motion artifacts. With this information, motion artifacts may be detected
or even compensated. Further investigations in a real car are necessary. Since the cushion
was designed as a portable device, it may also be usable in other private spaces, such as an
armchair or even in office chairs (if the backrest provides proper mechanical contact). The
disturbances in different scenarios with respect to movements should be investigated and
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compared since more movement can be expected in a vehicle than on a sofa at home. With
respect to comfort, the cushion was not perceived as uncomfortable. However, a proper
analysis for different private spaces is needed to verify this.

The provided analysis considers each modality independently and should give new
insights into the problems and opportunities of each modality. Furthermore, implications
for fusion algorithms as described above can be derived. The publicly available dataset
may give further insights with respect to the quantification of motion artifacts and SNR
in different driving situations and help to develop artifact detection and compensation
techniques to make unobtrusive measurement feasible.

7. Conclusions

In this paper, a new, portable sensor cushion was introduced, which can be used to
monitor the heart rate and respiratory rate of a vehicle driver. The recorded dataset was
made publicly available in the UnoVis dataset. Furthermore, the cushion could be used
in other private spaces. While the results are promising, improvements with respect to
hardware and algorithms for vital sign extraction should be investigated.
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The following abbreviations are used in this manuscript:

AUC Area under Curve
BRV Breathing rate variability
cECG Capacitive electrocardiography
DRL Driven right leg
ECG Electrocardiography
HR Heart rate
HRV Heart rate variability
IBI Inter-beat interval
IR Infrared
IRI Inter-breath interval
I2C Inter-Integrated Circuit
LED Light-emitting diode
MDPI Multidisciplinary Digital Publishing Institute
MIM Magnetic induction measurement
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PCB Printed circuit board
PD Photodiode
PPG Photoplethysmography
rPPG Reflective photoplethysmography
RR Respiratory rate
RTC Real-time clock
SCG Seismocardiography
SD Standard deviation
SNR Signal-to-noise ratio
SPI Serial Peripheral Interface
µC Microcontroller
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