Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (157)

Search Parameters:
Keywords = calcium calmodulin dependent protein kinases

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1020 KiB  
Review
Molecular Mechanisms of L-Type Calcium Channel Dysregulation in Heart Failure
by Arbab Khalid, Abu-Bakr Ahmed, Randeep Gill, Taha Shaikh, Joshua Khorsandi and Ali Kia
Int. J. Mol. Sci. 2025, 26(12), 5738; https://doi.org/10.3390/ijms26125738 - 15 Jun 2025
Viewed by 773
Abstract
The L-type calcium channels (LTCCs) function as the main entry points that convert myocyte membrane depolarization into calcium transients, which drive every heartbeat. There is increasing evidence to show that maladaptive remodeling of these channels is the cause of heart failure with reduced [...] Read more.
The L-type calcium channels (LTCCs) function as the main entry points that convert myocyte membrane depolarization into calcium transients, which drive every heartbeat. There is increasing evidence to show that maladaptive remodeling of these channels is the cause of heart failure with reduced ejection fraction (HFrEF) and heart failure with preserved ejection fraction (HFpEF). Recent experimental, translational, and clinical studies have improved our understanding of the roles LTCC expression, micro-domain trafficking, and post-translational control have in disrupting excitation–contraction coupling, provoking arrhythmias, and shaping phenotype specific hemodynamic compromise. We performed a systematic search of the PubMed and Google Scholar databases (2015–2025, English) and critically evaluated 17 eligible publications in an effort to organize the expanding body of work. This review combines existing data about LTCC density and T-tubule architecture with β-adrenergic and Ca2⁺/calmodulin-dependent protein kinase II (CaMKII) signaling and downstream sarcoplasmic reticulum crosstalk to explain how HFrEF presents with contractile insufficiency and how HFpEF shows diastolic calcium overload and stiffening. Additionally, we highlight the emerging therapeutic strategies aimed at restoring calcium homeostasis such as CaMKII inhibitors, ryanodine receptor type 2 (RyR2) stabilizers, and selective LTCC modulators without compromising systolic reserve. The review establishes LTCC dysregulation as a single mechanism that causes myocardial dysfunction while remaining specific to each phenotype, thus offering clinicians and researchers a complete reference for current concepts and future precision therapy approaches in heart failure. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms in Cardiomyopathy)
Show Figures

Figure 1

23 pages, 12391 KiB  
Article
Genus-Wide Pan-Genome Analysis of Oryza Calcium-Dependent Protein Kinase Genes and Their Related Kinases Highlights the Complexity of Protein Domain Architectures and Expression Dynamics
by Fu Shi, Li Li, Mingjie Chen, Junli Chang, Min Tu, Guangyuan He, Yin Li and Guangxiao Yang
Plants 2025, 14(10), 1542; https://doi.org/10.3390/plants14101542 - 20 May 2025
Viewed by 567
Abstract
The Oryza genus serves not only as a gene pool for rice improvement but also as a model system for plant evolutionary research. Calcium-dependent protein kinases (CPKs) function as both effectors and sensors in calcium signaling and play versatile roles in plant development [...] Read more.
The Oryza genus serves not only as a gene pool for rice improvement but also as a model system for plant evolutionary research. Calcium-dependent protein kinases (CPKs) function as both effectors and sensors in calcium signaling and play versatile roles in plant development and stress responses. Four kinase families, namely CPK-related kinases (CRKs), phosphoenolpyruvate carboxylase kinases (PPCKs), PPCK-related kinases (PEPRKs), and calcium- and calmodulin-dependent kinases (CCaMKs), are frequently called CPK-related kinases. This study utilized evolutionary genomics approaches and provided the pan-genome repertoires of CPKs and their related kinases in 34 Oryza genomes by leveraging the rich genomics resources of the Orzya genus. Gene duplication analysis revealed that distinct duplication types contributed to expanding CPKs and their related kinases in wild rice. We depicted the protein domain architectures of CPKs and their related kinases, highlighting the complexity of EF-hand motifs in CPKs and CCaMKs. Transcriptome analysis determined that alternative splicing was a mechanism contributing to the diversity in the domain architectures of CPKs and CCaMKs. We also generated the expression atlas of CPKs and their related kinases in multiple species of Oryza genus, emphasizing divergent homoeolog expression patterns across tissues and species in allotetraploid wild rice. Collectively, our Oryza-wide analysis of CPKs and their related kinases revealed their evolutionary trajectories and highlighted their diversified domain architectures and expression dynamics, providing gene resources of wild relatives for rice improvement. Full article
Show Figures

Figure 1

19 pages, 33190 KiB  
Article
Jun N-Terminal Kinase Inhibitor Suppresses CASK Deficiency-Induced Cerebellar Granular Cell Death in MICPCH Syndrome Model Mice
by Qi Guo, Emi Kouyama-Suzuki, Yoshinori Shirai and Katsuhiko Tabuchi
Cells 2025, 14(10), 750; https://doi.org/10.3390/cells14100750 - 20 May 2025
Viewed by 845
Abstract
Microcephaly with pontine and cerebellar hypoplasia (MICPCH) syndrome is a severe neurodevelopmental disorder caused by a deficiency in the X-linked gene calcium/calmodulin-dependent serine protein kinase (CASK). A better understanding of the role of CASK in the pathophysiology of neurodevelopmental disorders may provide insights [...] Read more.
Microcephaly with pontine and cerebellar hypoplasia (MICPCH) syndrome is a severe neurodevelopmental disorder caused by a deficiency in the X-linked gene calcium/calmodulin-dependent serine protein kinase (CASK). A better understanding of the role of CASK in the pathophysiology of neurodevelopmental disorders may provide insights into novel therapeutic and diagnostic strategies for MICPCH syndrome and other neurodegenerative diseases. To investigate this, we generated CASK knockout (KO) cerebellar granule (CG) cell culture from CASK floxed (CASKflox/flox) mice by infecting lentiviruses expressing codon-improved Cre recombinase (iCre). We performed RNA-sequencing (RNA-seq) on these cells and found that CASK-KO CG cells underwent apoptosis by activating intracellular Jun N-terminal kinase (JNK) signaling and upregulating reactive oxygen species (ROS)-related gene expression. We also performed mouse gait analysis and limb clasping behavior experiments on trans-heterozygous CASK-KO and Hprt-eGFP (CASK+/- HprteGFP/+) mice. The CASK+/- HprteGFP/+ mice exhibited cerebellar ataxic phenotypes as judged by the scores of these experiments compared to the CASK wild-type control (CASK+/+ HprteGFP/+) mice. Interestingly, the administration of the JNK inhibitor, JNK-IN-8, in CASK-KO CG cell cultures increased CG cell survival by reducing ROS generation. Moreover, injection of JNK-IN-8 into the cerebellum of CASK+/- HprteGFP/+ mice suppressed CG cell death and alleviated cerebellar ataxic phenotypes in vivo. In conclusion, JNK-IN-8 suppresses the cell death and activation of the ROS pathway in CASK-KO CG cells in both in vitro and in vivo models, suggesting its potential as a therapeutic strategy for cerebellar neurodegeneration in MICPCH syndrome. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Graphical abstract

18 pages, 3604 KiB  
Article
The Effects of Neuronal Fyn Knockdown in the Hippocampus in the Rat Kainate Model of Temporal Lobe Epilepsy
by Nikhil S. Rao, Marson Putra, Christina Meyer, Sirisha Parameswaran and Thimmasettappa Thippeswamy
Cells 2025, 14(10), 743; https://doi.org/10.3390/cells14100743 - 19 May 2025
Viewed by 656
Abstract
Previous studies have demonstrated neuronal and microglial Fyn, a Src family kinase (SFK), and how its interactions with tau contribute to epileptogenesis. Saracatinib, a Fyn/SFK inhibitor, modifies disease progression in rat kainate (KA) epilepsy models. In this study, we investigated neuronal-specific fyn knockdown [...] Read more.
Previous studies have demonstrated neuronal and microglial Fyn, a Src family kinase (SFK), and how its interactions with tau contribute to epileptogenesis. Saracatinib, a Fyn/SFK inhibitor, modifies disease progression in rat kainate (KA) epilepsy models. In this study, we investigated neuronal-specific fyn knockdown effects on Fyn–tau signaling, neurodegeneration, and gliosis using a calcium/calmodulin-dependent protein kinase II (CaMKII)-promoter-driven adeno-associated viral vector (AAV9)-mediated fyn-shRNA injection in the rat hippocampus. Eight days following AAV administration, rats received repeated low-dose KA injections intraperitoneally to induce status epilepticus (SE). Both fyn-shRNA and control groups showed comparable SE severity, indicating inadequate neuronal fyn knockdown at this timepoint. Two weeks post fyn-shRNA injection, hippocampal Fyn significantly decreased, alongside reductions in NR2B, pNR2BY1472, PSD95, and total tau. There was also a compensatory activation of SFK (pSFKY416:Fyn) and tau hyperphosphorylation (AT8:total tau), negatively correlating with NeuN expression. Proximity ligation assay indicated unchanged Fyn–tau interactions, suggesting tau interactions with alternative SH3 domain proteins. Persistent neuronal loss, astrogliosis, and microgliosis suggested limited effectiveness of neuronal-specific fyn knockdown at this timepoint. An extended-duration fyn knockdown study, or using broad SFK inhibitors such as saracatinib or tau-SH3 blocking peptides, may effectively prevent SE-induced epileptogenesis. Full article
Show Figures

Graphical abstract

18 pages, 4186 KiB  
Article
Interplay of PAK1 and CAMKII in Pancreatic Beta Cell Insulin Secretion
by Nely Gisela López-Desiderio, Genaro Patiño-López, Citlaltépetl Salinas-Lara, Carlos Sánchez-Garibay, Olga Villamar-Cruz, Alonso Vilches-Flores, José de Jesús Peralta-Romero, Leonel Armas-López, Jazmín García-Machorro, Luis Enrique Arias-Romero and Héctor Iván Saldívar-Cerón
Diabetology 2025, 6(5), 39; https://doi.org/10.3390/diabetology6050039 - 7 May 2025
Viewed by 2962
Abstract
Background/Objectives: Type 2 diabetes mellitus (T2DM) is a major global health challenge, primarily driven by insulin resistance and beta-cell dysfunction. This study investigated the roles of p21-activated kinase 1 (PAK1) and calcium/calmodulin-dependent protein kinase II (CAMKII) in insulin secretion, aiming to elucidate their [...] Read more.
Background/Objectives: Type 2 diabetes mellitus (T2DM) is a major global health challenge, primarily driven by insulin resistance and beta-cell dysfunction. This study investigated the roles of p21-activated kinase 1 (PAK1) and calcium/calmodulin-dependent protein kinase II (CAMKII) in insulin secretion, aiming to elucidate their involvement in this process and their implications in T2DM pathophysiology. Methods: Using the Beta-TC-6 insulinoma cell line, we assessed colocalization and interaction of PAK1 and CAMKII under glucose stimulation through indirect immuno-fluorescence (IFI) and proximity ligation assays (PLA). To examine their expression dynamics in a physiological context, we performed immunohistochemistry (IHC) on pancreatic sections from wild-type (WT), prediabetic, and T2DM murine models. Additionally, bioinformatic analysis of publicly available RNA sequencing (RNA-Seq) data from human islets of healthy donors, prediabetic individuals, and T2DM patients provided translational validation. Results: High glucose conditions significantly increased PAK1-CAMKII colocalization, correlating with enhanced insulin secretion. Pharmacological inhibition of these kinases reduced insulin release, confirming their regulatory roles. Murine and human islet analyses showed a progressive increase in kinase expression from prediabetes to T2DM, highlighting their relevance in disease progression. Conclusions: The coordinated function of PAK1 and CaMKII in insulin secretion suggests their potential as biomarkers and therapeutic targets in T2DM. Further studies are warranted to explore their mechanistic roles and therapeutic applications in preserving beta-cell function. Full article
Show Figures

Figure 1

19 pages, 14572 KiB  
Article
Genome-Wide Investigation of CPK-Related Kinase (CRK) Gene Family in Arabidopsis thaliana
by Shiquan Yang, Yuan Fang, Xianming Fang, Jingwen He and Kai He
Int. J. Mol. Sci. 2025, 26(7), 3297; https://doi.org/10.3390/ijms26073297 - 2 Apr 2025
Viewed by 689
Abstract
Calcium-dependent protein kinase (CPK), representing a group of typical Ca2+ sensors in plants, has been well characterized in plants. CPK is capable of binding to Ca2+, which sequentially activates CPK. CPK-related kinase (CRK) shows protein structures similar to CPK but [...] Read more.
Calcium-dependent protein kinase (CPK), representing a group of typical Ca2+ sensors in plants, has been well characterized in plants. CPK is capable of binding to Ca2+, which sequentially activates CPK. CPK-related kinase (CRK) shows protein structures similar to CPK but only contains degenerative EF-hands, which likely makes the activation of CRK Ca2+ independent. Compared with CPK, CRK is barely functionally analyzed. In this study, we systematically investigated CRK genes in the Arabidopsis genome. We found that CRK appeared to emerge in land plants, suggesting CPK and CRK are divided at very early stages during plant evolution. In Arabidopsis, the detailed analysis of the calmodulin-like domain of CRK indicated the substitutions of key amino acid residues in its EF-hands result in disrupted Ca2+ association. Next, by using a YFP tag, we found that all Arabidopsis CRK proteins were localized at the plasma membrane. After cloning the promoters of all eight CRK genes, we found that CRKs were widely expressed at all stages of Arabidopsis by using GUS staining. Furthermore, the kinase activity of CRK was examined by using phospho-antibody and Pro-Q staining. CRK was shown to possess high autophosphorylation, which was not affected by the presence of Ca2+. Moreover, we analyzed the cis-elements of CRK promoters and discovered that stress signals potentially regulate the expression of CRK genes. Consistently, by using quantitative real-time PCR (qPCR), we found a number of CRK genes were regulated by a variety of biotic and abiotic treatments such as flg22, ABA, drought, salt, and high and low temperatures. Furthermore, by utilizing proteomic approaches, we identified more than 100 proteins that interacted with CRK5 in planta. Notably, RLK and channels/transporters were found in CRK5-containing complexes, suggesting they function upstream and downstream of CRK, respectively. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

20 pages, 1691 KiB  
Article
Identification of Novel Genetic Variants and Food Intake Factors Associated with Type 2 Diabetes in South Korean Adults, Using an Illness–Death Model
by Jeongmin Oh, Junho Cha and Sungkyoung Choi
Int. J. Mol. Sci. 2025, 26(6), 2597; https://doi.org/10.3390/ijms26062597 - 13 Mar 2025
Cited by 1 | Viewed by 1000
Abstract
Type 2 diabetes (T2D) is a prevalent chronic disease in the Korean population, influenced by lifestyle, dietary habits, and genetics. This study aimed to identify the effects of food intake and genetic factors on T2D progression in Korean adults using a multi-state illness-death [...] Read more.
Type 2 diabetes (T2D) is a prevalent chronic disease in the Korean population, influenced by lifestyle, dietary habits, and genetics. This study aimed to identify the effects of food intake and genetic factors on T2D progression in Korean adults using a multi-state illness-death model. We analyzed three transition models: normal glucose tolerance (NGT) to prediabetes (PD), NGT to T2D, and PD to T2D. We first identified dietary patterns significantly associated with each transition, using multivariate Cox proportional hazards models. Then, we assessed the impact of single-nucleotide polymorphisms (SNPs) on each transition, incorporating these dietary patterns as covariates. Our analysis revealed significant associations between the identified dietary patterns and the risk of PD and T2D incidence among individuals with NGT. We also identified novel genetic variants associated with disease progression: two SNPs (rs4607517 in Glucokinase [GCK] and rs758982 in Calcium/Calmodulin-Dependent Protein Kinase II Beta [CAMK2B]) in the NGT to PD model, and eight SNPs in the NGT to T2D model, including variants in the Zinc Finger Protein 106 (ZNF106), PTOV1 Extended AT-Hook Containing Adaptor Protein (PTOV1), Proprotein Convertase Subtilisin/Kexin Type 2 (PCSK2), Forkhead Box D2 (FOXD2), Solute Carrier Family 38 Member 7 (SLC38A7), and Neuronal Growth Regulator 1 (NEGR1) genes. Functional annotation analysis using ANNOVAR revealed that rs4607517 (GCK) and rs59595912 (PTOV1) exhibited high Combined Annotation-Dependent Depletion (CADD) and Deleterious Annotation of Genetic Variants using Neural Networks (DANN) scores, suggesting potential pathogenicity and providing a functional basis for their association with T2D progression. Integrating dietary and genetic factors with a multi-state model, this comprehensive approach offers valuable insights into T2D development and highlights potential targets for prevention and personalized interventions. Full article
(This article belongs to the Special Issue Genes and Human Diseases 2.0)
Show Figures

Figure 1

12 pages, 1046 KiB  
Article
CamKIIα and VPAC1 Expressions in the Caudal Trigeminal Nucleus of Rats After Systemic Nitroglycerin Treatment: Interaction with Anandamide
by Gábor Nagy-Grócz, Eleonóra Spekker, Tamás Körtési, Klaudia Flóra Laborc, Zsuzsanna Bohár, Annamária Fejes-Szabó, László Vécsei and Árpád Párdutz
Life 2025, 15(2), 155; https://doi.org/10.3390/life15020155 - 22 Jan 2025
Viewed by 1058
Abstract
Migraines are a frequently occurring neurological condition that affects up to 16% of the global population. The precise pathomechanism of the disease remains unknown, but from animal and human observations, it appears that calcium/calmodulin-dependent protein kinase II alpha (CamKIIα), pituitary adenylate cyclase-activating polypeptide [...] Read more.
Migraines are a frequently occurring neurological condition that affects up to 16% of the global population. The precise pathomechanism of the disease remains unknown, but from animal and human observations, it appears that calcium/calmodulin-dependent protein kinase II alpha (CamKIIα), pituitary adenylate cyclase-activating polypeptide (PACAP), and vasoactive intestinal polypeptide (VIP) are involved in its pathogenesis. One of the animal models of migraines uses the systemic administration of nitroglycerin (NTG), which, as a nitric oxide (NO) donor, initiates a self-amplifying process in the trigeminal system, leading to central sensitization. Endocannabinoids, such as anandamide (AEA), are thought to play a modulatory role in trigeminal activation and sensitization phenomena. In the present experiment, we aimed to investigate the effect of NTG and AEA on CamKIIα, PACAP/VIP, and vasoactive intestinal polypeptide type 1 receptor (VPAC1) expression levels in the upper cervical spinal cord (C1-C2) of rats, where trigeminal nociceptive afferents are clustered. Four groups of animals were formed: in the first group, the rats received only the vehicle; in the second group, they were treated with an intraperitoneal injection of NTG (10 mg/kg); animals in the third and fourth groups received AEA (2 × 5 mg/kg) half an hour before and one hour after the placebo or treatment with NTG. Four hours after the placebo/NTG injection, the animals were transcardially perfused, and the cervical spinal cords were removed for Western blot. Our results show that both NTG and AEA alone can increase the expression of CamKIIα and VPAC1 in the C1-C2 segments. Interestingly, the combination of NTG and AEA had no such effect on these markers, possibly due to various negative feedback mechanisms. Full article
(This article belongs to the Special Issue Migraine and Headache: From Pathophysiological Aspects)
Show Figures

Figure 1

15 pages, 2242 KiB  
Article
Curcumin Mitigates Muscle Atrophy Potentially by Attenuating Calcium Signaling and Inflammation in a Spinal Nerve Ligation Model
by Casey Appell, Nigel C. Jiwan, Chwan-Li Shen and Hui-Ying Luk
Curr. Issues Mol. Biol. 2024, 46(11), 12497-12511; https://doi.org/10.3390/cimb46110742 - 5 Nov 2024
Viewed by 2061
Abstract
Denervation-induced calcium/calmodulin-dependent protein kinase II (CaMKII) activation and inflammation can result in muscle atrophy. Curcumin and bisdemethoxycurcumin are well known to exhibit an anti-inflammatory effect. In addition, curcumin has been shown to attenuate CaMKII activation in neuronal cells. This study aimed to examine [...] Read more.
Denervation-induced calcium/calmodulin-dependent protein kinase II (CaMKII) activation and inflammation can result in muscle atrophy. Curcumin and bisdemethoxycurcumin are well known to exhibit an anti-inflammatory effect. In addition, curcumin has been shown to attenuate CaMKII activation in neuronal cells. This study aimed to examine the effect of curcumin or bisdemethoxycurcumin on CaMKII activation, inflammation, and muscle cross-sectional area (CSA) in spinal nerve ligated rats. Sixteen female rats were assigned to sham (CON), spinal nerve ligation (SNL), SNL+ curcumin 100 mg/kg BW (100CUR), and SNL+ bisdemethoxycurcumin 50 mg/kg BW (50CMO) for 4 weeks. Ipsilateral (surgical) soleus and tibialis anterior (TA) muscles was stained for dystrophin to measure CSA. Ipsilateral and contralateral (non-surgical) plantaris muscles were analyzed for protein content for acetylcholine receptor (AChR), CaMKII, CaMKIIThr286, nuclear factor-κB (NF-κB), NF-κBSer536, and interleukin-1β (IL-1β) and normalized to α-tubulin and then CON. A significant (p < 0.050) group effect was observed for TA CSA where CON (11,082.25 ± 1617.68 μm2; p < 0.001) and 100CUR (9931.04 ± 2060.87 μm2; p = 0.018) were larger than SNL (4062.25 ± 151.86 μm2). In the ipsilateral plantaris, the SNL (4.49 ± 0.69) group had greater CaMKII activation compared to CON (1.00 ± 0.25; p = 0.010), 100CUR (1.12 ± 0.45; p = 0.017), and 50CMO (0.78 ± 0.19; p = 0.009). The ipsilateral plantaris (2.11 ± 0.66) had greater IL-1β protein content than the contralateral leg (0.65 ± 0.14; p = 0.041) in the SNL group. In plantaris, the SNL (1.65 ± 0.51) group had greater NF-κB activation compared to CON (1.00 ± 0.29; p = 0.021), 100CUR (0.61 ± 0.10; p = 0.003), 50CMO (0.77 ± 0.25; p = 0.009) groups. The observed reduction in Ca2+ signaling and inflammation in type II plantaris muscle fibers might reflect the changes within the type II TA muscle fibers which may contribute to the mitigation of TA mass loss with curcumin supplementation. Full article
Show Figures

Graphical abstract

14 pages, 2475 KiB  
Article
Beta-Adrenergic Activation of the Inward Rectifier K+ Current Is Mediated by the CaMKII Pathway in Canine Ventricular Cardiomyocytes
by Zsigmond Máté Kovács, Balázs Horváth, Csaba Dienes, József Óvári, Dénes Kiss, Tamás Hézső, Norbert Szentandrássy, János Magyar, Tamás Bányász and Péter Pál Nánási
Int. J. Mol. Sci. 2024, 25(21), 11609; https://doi.org/10.3390/ijms252111609 - 29 Oct 2024
Viewed by 1160
Abstract
Several ion currents in the mammalian ventricular myocardium are substantially regulated by the sympathetic nervous system via β-adrenergic receptor activation, including the slow delayed rectifier K+ current and the L-type calcium current. This study investigated the downstream mechanisms of β-adrenergic receptor stimulation [...] Read more.
Several ion currents in the mammalian ventricular myocardium are substantially regulated by the sympathetic nervous system via β-adrenergic receptor activation, including the slow delayed rectifier K+ current and the L-type calcium current. This study investigated the downstream mechanisms of β-adrenergic receptor stimulation by isoproterenol (ISO) on the inward rectifier (IK1) and the rapid delayed rectifier (IKr) K+ currents using action potential voltage clamp (APVC) and conventional voltage clamp techniques in isolated canine left ventricular cardiomyocytes. IK1 and IKr were dissected by 50 µM BaCl2 and 1 µM E-4031, respectively. Acute application of 10 nM ISO significantly increased IK1 under the plateau phase of the action potential (0–+20 mV) using APVC, and similar results were obtained with conventional voltage clamp. However, β-adrenergic receptor stimulation did not affect the peak current density flowing during terminal repolarization or the overall IK1 integral. The ISO-induced enhancement of IK1 was blocked by the calcium/calmodulin kinase II (CaMKII) inhibitor KN-93 (1 µM) but not by the protein kinase A inhibitor H-89 (3 µM). Neither KN-93 nor H-89 affected the IK1 density under baseline conditions (in the absence of ISO). In contrast, parameters of the IKr current were not affected by β-adrenergic receptor stimulation with ISO. These findings suggest that sympathetic activation enhances IK1 in canine left ventricular cells through the CaMKII pathway, while IKr remains unaffected under the experimental conditions used. Full article
(This article belongs to the Special Issue New Insights into Cardiac Ion Channel Regulation 3.0)
Show Figures

Figure 1

19 pages, 3873 KiB  
Article
Inhibitory Effect of Luteolin on Spike S1 Glycoprotein-Induced Inflammation in THP-1 Cells via the ER Stress-Inducing Calcium/CHOP/MAPK Pathway
by Sonthaya Umsumarng, Sivamoke Dissook, Punnida Arjsri, Kamonwan Srisawad, Pilaiporn Thippraphan, Apiwat Sangphukieo, Patcharawadee Thongkumkoon and Pornngarm Dejkriengkraikul
Pharmaceuticals 2024, 17(10), 1402; https://doi.org/10.3390/ph17101402 - 20 Oct 2024
Cited by 2 | Viewed by 3207
Abstract
Background/Objectives: The global SARS-CoV-2 outbreak has escalated into a critical public health emergency, with the spike glycoprotein S1 subunit of SARS-CoV-2 (spike-S1) linked to inflammation in lung tissue and immune cells. Luteolin, a flavone with anti-inflammatory properties, shows promise, but research on its [...] Read more.
Background/Objectives: The global SARS-CoV-2 outbreak has escalated into a critical public health emergency, with the spike glycoprotein S1 subunit of SARS-CoV-2 (spike-S1) linked to inflammation in lung tissue and immune cells. Luteolin, a flavone with anti-inflammatory properties, shows promise, but research on its effectiveness against long-COVID-related inflammation and spike protein-induced responses remains limited. This study aims to elucidate the underlying mechanisms of inflammation in THP-1 cells induced by the spike-S1. Additionally, it seeks to assess the potential of luteolin in mitigating inflammatory responses induced by the spike-S1 in a THP-1 macrophage model. Methods: The gene expression profiles of spike-S1 in THP-1 cells were analyzed by transcriptome sequencing. The inhibitory effect of luteolin on ER stress and inflammation in spike-S1-induced THP-1 cells was investigated using Western blotting, RT-PCR, and ELISA. Results: The candidate genes (CAMK2A, SIGLEC7, PPARGC1B, SEC22B, USP28, IER2, and TIRAP) were upregulated in the spike-S1-induced THP-1 group compared to the control group. Among these, calcium/calmodulin-dependent protein kinase II alpha (CAMK2A) was identified as the most promising molecule in spike-S1-induced THP-1 cells. Our results indicate that the spike S1 significantly increased the expression of ER-stress markers at both gene and protein levels. Luteolin significantly reduced ER stress by decreasing the expression of ER-stress marker genes and ER-stress marker proteins (p < 0.01). Additionally, luteolin exhibited anti-inflammatory properties upon spike S1-induction in THP-1 cells by significantly suppressing IL-6, IL-8, and IL-1β cytokine secretion in a dose-dependent manner (p < 0.05). Furthermore, our results revealed that luteolin exhibited the downregulation of the MAPK pathway, as evidenced by modulating the phosphorylation of p-ERK1/2, p-JNK and p-p38 proteins (p < 0.05). Conclusions: The results from this study elucidate the mechanisms by which the spike S1 induces inflammation in THP-1 cells and supports the use of naturally occurring bioactive compounds, like luteolin, against inflammation-related SARS-CoV-2 infection. Full article
(This article belongs to the Special Issue Bioactive Substances, Oxidative Stress, and Inflammation)
Show Figures

Graphical abstract

18 pages, 4432 KiB  
Article
The CAMKK/AMPK Pathway Contributes to Besnoitia besnoiti-Induced NETosis in Bovine Polymorphonuclear Neutrophils
by Iván Conejeros, Zahady D. Velásquez, Lisbeth Rojas-Barón, Gabriel Espinosa, Carlos Hermosilla and Anja Taubert
Int. J. Mol. Sci. 2024, 25(15), 8442; https://doi.org/10.3390/ijms25158442 - 2 Aug 2024
Cited by 4 | Viewed by 1642
Abstract
Besnoitia besnoiti is an obligate intracellular apicomplexan parasite and the causal agent of bovine besnoitiosis. Bovine besnoitiosis has a considerable economic impact in Africa and Asia due to reduced milk production, abortions, and bull infertility. In Europe, bovine besnoitiosis is classified as an [...] Read more.
Besnoitia besnoiti is an obligate intracellular apicomplexan parasite and the causal agent of bovine besnoitiosis. Bovine besnoitiosis has a considerable economic impact in Africa and Asia due to reduced milk production, abortions, and bull infertility. In Europe, bovine besnoitiosis is classified as an emerging disease. Polymorphonuclear neutrophils (PMN) are one of the most abundant leukocytes in cattle blood and amongst the first immunological responders toward invading pathogens. In the case of B. besnoiti, bovine PMN produce reactive oxygen species (ROS), release neutrophil extracellular traps (NETs), and show increased autophagic activities upon exposure to tachyzoite stages. In that context, the general processes of NETosis and autophagy were previously reported as associated with AMP-activated protein kinase (AMPK) activation. Here, we study the role of AMPK in B. besnoiti tachyzoite-induced NET formation, thereby expanding the analysis to both upstream proteins, such as the calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK), and downstream signaling and effector molecules, such as the autophagy-related proteins ULK-1 and Beclin-1. Current data revealed early AMPK activation (<30 min) in both B. besnoiti-exposed and AMPK activator (AICAR)-treated bovine PMN. This finding correlated with upstream responses on the level of CAMKK activation. Moreover, these reactions were accompanied by an augmented autophagic activity, as represented by enhanced expression of ULK-1 but not of Beclin-1. Referring to neutrophil effector functions, AICAR treatments induced both AMPK phosphorylation and NET formation, without affecting cell viability. In B. besnoiti tachyzoite-exposed PMN, AICAR treatments failed to affect oxidative responses, but led to enhanced NET formation, thereby indicating that AMPK and autophagic activation synergize with B. besnoiti-driven NETosis. Full article
Show Figures

Figure 1

14 pages, 1948 KiB  
Article
The Role of Sodium Fluoride Mouthwash in Regulating FGF-2 and TGF-β Expression in Human Gingival Fibroblasts
by Nobue Kato, Kumiko Nakai, Hideki Tanaka, Kyoko Fukuzawa, Minii Hayashi, Mikio Aoki and Takayuki Kawato
Biomedicines 2024, 12(8), 1727; https://doi.org/10.3390/biomedicines12081727 - 1 Aug 2024
Viewed by 1911
Abstract
Sodium fluoride (NaF) is a fluoride application recommended by the World Health Organization for its efficacy and safety in preventing dental caries. Gingival fibroblasts that constitute the majority of connective tissue cells play a major role in wound healing via the expression of [...] Read more.
Sodium fluoride (NaF) is a fluoride application recommended by the World Health Organization for its efficacy and safety in preventing dental caries. Gingival fibroblasts that constitute the majority of connective tissue cells play a major role in wound healing via the expression of growth factors, including fibroblast growth factor-2 (FGF-2) and transforming growth factor-beta (TGF-β). This study examined the effect of NaF mouthwash on FGF-2 and TGF-β expression in human gingival fibroblasts (HGnFs). Fibroblasts were exposed to a medium with 225 ppmF NaF for 1 min, then switched to either 15 ppmF NaF for continuous stimulation or no NaF for transient stimulation. Continuous NaF stimulation significantly increased the gene and protein expression of FGF-2 and TGF-β in HGnFs compared to controls, suggesting NaF’s potential role in modulating periodontal tissue wound healing. Signaling pathway investigations showed the involvement of heterotrimeric GTP-binding proteins, calcium/calmodulin-dependent kinase II (CaMKII), and extracellular signal-regulated kinase (ERK) phosphorylation. Inhibiting CaMKII reduced NaF-induced FGF-2 and TGF-β expression, while ERK phosphorylation increased after NaF stimulation. These results highlight NaF mouthwash’s potential in promoting wound healing in extraction sockets, particularly during the mixed dentition period. Understanding NaF’s effects is clinically relevant due to the common use of fluoride products. Full article
(This article belongs to the Special Issue Fibroblasts: Insights from Molecular and Pathophysiology Perspectives)
Show Figures

Figure 1

15 pages, 9466 KiB  
Article
Xylem Sap Proteome Analysis Provides Insight into Root–Shoot Communication in Response to flg22
by Romana Kopecká and Martin Černý
Plants 2024, 13(14), 1983; https://doi.org/10.3390/plants13141983 - 20 Jul 2024
Cited by 3 | Viewed by 1349
Abstract
Xylem sap proteomics provides crucial insights into plant defense and root-to-shoot communication. This study highlights the sensitivity and reproducibility of xylem sap proteome analyses, using a single plant per sample to track over 3000 proteins in two model crop plants, Solanum tuberosum and [...] Read more.
Xylem sap proteomics provides crucial insights into plant defense and root-to-shoot communication. This study highlights the sensitivity and reproducibility of xylem sap proteome analyses, using a single plant per sample to track over 3000 proteins in two model crop plants, Solanum tuberosum and Hordeum vulgare. By analyzing the flg22 response, we identified immune response components not detectable through root or shoot analyses. Notably, we discovered previously unknown elements of the plant immune system, including calcium/calmodulin-dependent kinases and G-type lectin receptor kinases. Despite similarities in the metabolic pathways identified in the xylem sap of both plants, the flg22 response differed significantly: S. tuberosum exhibited 78 differentially abundant proteins, whereas H. vulgare had over 450. However, an evolutionarily conserved overlap in the flg22 response proteins was evident, particularly in the CAZymes and lipid metabolism pathways, where lipid transfer proteins and lipases showed a similar response to flg22. Additionally, many proteins without conserved signal sequences for extracellular targeting were found, such as members of the HSP70 family. Interestingly, the HSP70 response to flg22 was specific to the xylem sap proteome, suggesting a unique regulatory role in the extracellular space similar to that reported in mammalians. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

15 pages, 1438 KiB  
Article
Effects of Prenatal Dexamethasone Treatment and Post-Weaning Moderate Fructose Intake on Synaptic Plasticity and Behavior in Adult Male Wistar Rat Offspring
by Đurđica Ignjatović, Nataša Nestorović, Mirko Tomić, Nataša Ristić, Nataša Veličković, Milka Perović and Milica Manojlović-Stojanoski
Biology 2024, 13(7), 547; https://doi.org/10.3390/biology13070547 - 19 Jul 2024
Viewed by 1421
Abstract
Early-life glucocorticoid overexposure induces diverse neurodevelopmental outcomes regarding stress reactivity and cognition. Increased fructose consumption has also been associated with alterations in cognitive capacity and behavior. The present study investigated the effects of prenatal dexamethasone exposure on synaptic plasticity, locomotion, anxiety, and recognition [...] Read more.
Early-life glucocorticoid overexposure induces diverse neurodevelopmental outcomes regarding stress reactivity and cognition. Increased fructose consumption has also been associated with alterations in cognitive capacity and behavior. The present study investigated the effects of prenatal dexamethasone exposure on synaptic plasticity, locomotion, anxiety, and recognition memory in adult male Wistar rat offspring, and whether these effects are potentiated by postnatal fructose consumption. Pregnant female rats were treated with dexamethasone during late gestation and male offspring were supplemented with a moderate dose of fructose. Recognition memory, locomotion, and anxiety-like behavior were assessed using a novel object recognition test, open-field test, and elevated plus maze, respectively. Hippocampal synaptic plasticity was estimated by the levels of growth-associated protein 43 (GAP-43), synaptophysin, postsynaptic density protein 95, calcium/calmodulin-dependent kinase IIα, and their activating phosphorylations. Additionally, protein levels of the glucocorticoid receptor (GR) and its transcriptionally active phosphorylated form were evaluated. Prenatal dexamethasone treatment induced an anxiolytic-like effect, stimulation of exploratory behavior, and novelty preference associated with an increase in GR and GAP-43 protein levels in the hippocampus. Fructose overconsumption after weaning did not modify the effects of prenatal glucocorticoid exposure. Applied prenatal dexamethasone treatment may induce changes in reactions to novel situations in male Wistar rats. Full article
Show Figures

Graphical abstract

Back to TopTop