Effects of Prenatal Dexamethasone Treatment and Post-Weaning Moderate Fructose Intake on Synaptic Plasticity and Behavior in Adult Male Wistar Rat Offspring
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Treatment
2.2. Behavioral Tests
2.3. Open-Field Test
2.4. Novel Object Recognition Test
2.5. Elevated Plus Maze
2.6. Serum Corticosterone Determination
2.7. Preparation of Whole Cell Extract
2.8. Western Blot Analysis
2.9. Statistical Analyses
3. Results
3.1. Physiological Parameters
3.2. Behavioral Testing
3.3. Synaptic Plasticity Markers in the Hippocampus
3.4. Glucocorticoid Receptor in the Hippocampus
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GAP-43 | growth-associated protein 43 |
PSD95 | postsynaptic density protein 95 |
CAMKIIα | calcium/calmodulin-dependent kinase IIα |
GR | glucocorticoid receptor |
GCs | glucocorticoids |
Dx | dexamethasone |
C | control male offspring |
F | male offspring supplemented with fructose in drinking water |
Dx-F | male offspring from Dx-treated dams supplemented with fructose in drinking water |
OFT | open-field test |
EPM | elevated plus maze |
NOR | novel object recognition test |
SAP | stretched attend posture |
BSA | bovine serum albumin |
SEM | standard error of the mean |
References
- Fitzgerald, E.; Hor, K.; Drake, A.J. Maternal influences on fetal brain development: The role of nutrition, infection and stress, and the potential for intergenerational consequences. Early Hum. Dev. 2020, 150, 105190. [Google Scholar] [CrossRef] [PubMed]
- Flagel, S.B.; Vazquez, D.M.; Watson, S.J., Jr.; Neal, C.R., Jr. Effects of tapering neonatal dexamethasone on rat growth, neurodevelopment, and stress response. Am. J. Physiol. Regul. Integr. Comp Physiol. 2002, 282, R55–R63. [Google Scholar] [CrossRef] [PubMed]
- Sandman, C.A.; Glynn, L.; Schetter, C.D.; Wadhwa, P.; Garite, T.; Chicz-DeMet, A.; Hobel, C. Elevated maternal cortisol early in pregnancy predicts third trimester levels of placental corticotropin releasing hormone (CRH): Priming the placental clock. Peptides 2006, 27, 1457–1463. [Google Scholar] [CrossRef] [PubMed]
- Hacking, D.; Watkins, A.; Fraser, S.; Wolfe, R.; Nolan, T. Respiratory distress syndrome and antenatal corticosteroid treatment in premature twins. Arch. Dis. Child. Fetal Neonatal Ed. 2001, 85, F77–F78. [Google Scholar] [CrossRef]
- Fowden, A.L.; Vaughan, O.R.; Murray, A.J.; Forhead, A.J. Metabolic Consequences of Glucocorticoid Exposure before Birth. Nutrients 2022, 14, 2304. [Google Scholar] [CrossRef]
- Lewis, A.J.; Galbally, M.; Gannon, T.; Symeonides, C. Early life programming as a target for prevention of child and adolescent mental disorders. BMC Med. 2014, 12, 33. [Google Scholar] [CrossRef] [PubMed]
- Roberts, D.; Dalziel, S. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst. Rev. 2017, 3, CD004454. [Google Scholar] [CrossRef] [PubMed]
- Bloom, S.L.; Sheffield, J.S.; McIntire, D.D.; Leveno, K.J. Antenatal dexamethasone and decreased birth weight. Obstet. Gynecol. 2001, 97, 485–490. [Google Scholar] [CrossRef]
- French, N.P.; Hagan, R.; Evans, S.F.; Mullan, A.; Newnham, J.P. Repeated antenatal corticosteroids: Effects on cerebral palsy and childhood behavior. Am. J. Obstet. Gynecol. 2004, 190, 588–595. [Google Scholar] [CrossRef]
- Asztalos, E.; Willan, A.; Murphy, K.; Matthews, S.; Ohlsson, A.; Saigal, S.; Armson, A.; Kelly, E.; Delisle, M.F.; Gafni, A.; et al. Association between gestational age at birth, antenatal corticosteroids, and outcomes at 5 years: Multiple courses of antenatal corticosteroids for preterm birth study at 5 years of age (MACS-5). BMC Pregnancy Childbirth 2014, 14, 272. [Google Scholar] [CrossRef]
- French, N.P.; Hagan, R.; Evans, S.; Godfrey, M.; Newnham, J.P. Repeated Antenatal Corticosteroids (CS): Behaviour Outcomes in a Regional Population of Very Preterm (VP,<33w) Infants • 1252. Pediatr. Res. 1998, 43, 214. [Google Scholar] [CrossRef]
- Trautman, P.D.; Meyer-Bahlburg, H.F.; Postelnek, J.; New, M.I. Effects of early prenatal dexamethasone on the cognitive and behavioral development of young children: Results of a pilot study. Psychoneuroendocrinology 1995, 20, 439–449. [Google Scholar] [CrossRef] [PubMed]
- Hauser, J.; Feldon, J.; Pryce, C.R. Direct and dam-mediated effects of prenatal dexamethasone on emotionality, cognition and HPA axis in adult Wistar rats. Horm. Behav. 2009, 56, 364–375. [Google Scholar] [CrossRef]
- Luo, M.; Yi, Y.; Huang, S.; Dai, S.; Xie, L.; Liu, K.; Zhang, S.; Jiang, T.; Wang, T.; Yao, B.; et al. Gestational dexamethasone exposure impacts hippocampal excitatory synaptic transmission and learning and memory function with transgenerational effects. Acta Pharm. Sin. B 2023, 13, 3708–3727. [Google Scholar] [CrossRef]
- Noorlander, C.W.; Tijsseling, D.; Hessel, E.V.; de Vries, W.B.; Derks, J.B.; Visser, G.H.; de Graan, P.N. Antenatal glucocorticoid treatment affects hippocampal development in mice. PLoS ONE 2014, 9, e85671. [Google Scholar] [CrossRef] [PubMed]
- Tappy, L.; Le, K.A. Metabolic effects of fructose and the worldwide increase in obesity. Physiol. Rev. 2010, 90, 23–46. [Google Scholar] [CrossRef] [PubMed]
- Harrell, C.S.; Burgado, J.; Kelly, S.D.; Johnson, Z.P.; Neigh, G.N. High-fructose diet during periadolescent development increases depressive-like behavior and remodels the hypothalamic transcriptome in male rats. Psychoneuroendocrinology 2015, 62, 252–264. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, A.L.B.; Wilkening, G.; Aalborg, J.; Ringham, B.M.; Glueck, D.H.; Tregellas, J.R.; Dabelea, D. Childhood Metabolic Biomarkers Are Associated with Performance on Cognitive Tasks in Young Children. J. Pediatr. 2019, 211, 92–97. [Google Scholar] [CrossRef]
- Hsu, T.M.; Konanur, V.R.; Taing, L.; Usui, R.; Kayser, B.D.; Goran, M.I.; Kanoski, S.E. Effects of sucrose and high fructose corn syrup consumption on spatial memory function and hippocampal neuroinflammation in adolescent rats. Hippocampus 2015, 25, 227–239. [Google Scholar] [CrossRef]
- Barrett, C.E.; Jiang, M.; O’Flaherty, B.G.; Dias, B.G.; Rainnie, D.G.; Young, L.J.; Menigoz, A. Early life exposure to high fructose diet induces metabolic dysregulation associated with sex-specific cognitive impairment in adolescent rats. J. Nutr. Biochem. 2023, 114, 109220. [Google Scholar] [CrossRef]
- Glover, V.; Hill, J. Sex differences in the programming effects of prenatal stress on psychopathology and stress responses: An evolutionary perspective. Physiol. Behav. 2012, 106, 736–740. [Google Scholar] [CrossRef]
- Bronson, S.L.; Bale, T.L. Prenatal stress-induced increases in placental inflammation and offspring hyperactivity are male-specific and ameliorated by maternal antiinflammatory treatment. Endocrinology 2014, 155, 2635–2646. [Google Scholar] [CrossRef] [PubMed]
- Van den Bergh, B.R.; Van Calster, B.; Smits, T.; Van Huffel, S.; Lagae, L. Antenatal maternal anxiety is related to HPA-axis dysregulation and self-reported depressive symptoms in adolescence: A prospective study on the fetal origins of depressed mood. Neuropsychopharmacology 2008, 33, 536–545. [Google Scholar] [CrossRef]
- Alexander, N.; Rosenlocher, F.; Stalder, T.; Linke, J.; Distler, W.; Morgner, J.; Kirschbaum, C. Impact of antenatal synthetic glucocorticoid exposure on endocrine stress reactivity in term-born children. J. Clin. Endocrinol. Metab. 2012, 97, 3538–3544. [Google Scholar] [CrossRef]
- Li, J.; Olsen, J.; Vestergaard, M.; Obel, C. Attention-deficit/hyperactivity disorder in the offspring following prenatal maternal bereavement: A nationwide follow-up study in Denmark. Eur. Child. Adolesc. Psychiatry 2010, 19, 747–753. [Google Scholar] [CrossRef]
- Manojlović-Stojanoski, M.; Nestorović, N.; Petković, B.; Balind, S.R.; Ristić, N.; Trifunović, S.; Ajdžanović, V.; Filipović, B.; Šošić-Jurjević, B.; Milošević, V. The effects of prenatal dexamethasone exposure and fructose challenge on pituitary-adrenocortical activity and anxiety-like behavior in female offspring. Tissue Cell 2020, 62, 101309. [Google Scholar] [CrossRef] [PubMed]
- Broadbent, N.J.; Squire, L.R.; Clark, R.E. Spatial memory, recognition memory, and the hippocampus. Proc. Natl. Acad. Sci. USA 2004, 101, 14515–14520. [Google Scholar] [CrossRef]
- Wang, Z.; Frederick, J.; Garabedian, M.J. Deciphering the phosphorylation “code” of the glucocorticoid receptor in vivo. J. Biol. Chem. 2002, 277, 26573–26580. [Google Scholar] [CrossRef]
- Carbone, D.L.; Zuloaga, D.G.; Hiroi, R.; Foradori, C.D.; Legare, M.E.; Handa, R.J. Prenatal dexamethasone exposure potentiates diet-induced hepatosteatosis and decreases plasma IGF-I in a sex-specific fashion. Endocrinology 2012, 153, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Ristić, N.; Nestorović, N.; Manojlovi-Stojanoski, M.; Trifunović, S.; Ajdžanović, V.; Filipović, B.; Pendovski, L.; Milošević, V. Prenatal dexamethasone exposure and developmental programming of the ovary of the offspring: A structural study in the rat. Reprod. Fertil. Dev. 2021, 33, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Hetzel, A.; Shah, B.; Atchley, D.; Blume, S.R.; Padival, M.A.; Rosenkranz, J.A. Greater physiological and behavioral effects of interrupted stress pattern compared to daily restraint stress in rats. PLoS ONE 2014, 9, e102247. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, R.J.; Blanchard, D.C. Attack and defense in rodents as ethoexperimental models for the study of emotion. Prog. Neuropsychopharmacol. Biol. Psychiatry 1989, 13 (Suppl. S1), S3–S14. [Google Scholar] [CrossRef] [PubMed]
- Antunes, M.; Biala, G. The novel object recognition memory: Neurobiology, test procedure, and its modifications. Cogn. Process. 2012, 13, 93–110. [Google Scholar] [CrossRef] [PubMed]
- Hammond, R.S.; Tull, L.E.; Stackman, R.W. On the delay-dependent involvement of the hippocampus in object recognition memory. Neurobiol. Learn. Mem. 2004, 82, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, R.J.; Cao, B.J.; Dalvi, A.; Holmes, A. Animal models of anxiety: An ethological perspective. Braz. J. Med. Biol. Res. = Rev. Bras. Pesqui. Medicas Biol. 1997, 30, 289–304. [Google Scholar] [CrossRef]
- Aghajafari, F.; Murphy, K.; Matthews, S.; Ohlsson, A.; Amankwah, K.; Hannah, M. Repeated doses of antenatal corticosteroids in animals: A systematic review. Am. J. Obstet. Gynecol. 2002, 186, 843–849. [Google Scholar] [CrossRef]
- Fee, E.L.; Stock, S.J.; Kemp, M.W. Antenatal steroids: Benefits, risks, and new insights. J. Endocrinol. 2023, 258, e220306. [Google Scholar] [CrossRef]
- Clark, K.A.; Alves, J.M.; Jones, S.; Yunker, A.G.; Luo, S.; Cabeen, R.P.; Angelo, B.; Xiang, A.H.; Page, K.A. Dietary Fructose Intake and Hippocampal Structure and Connectivity during Childhood. Nutrients 2020, 12, 909. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Brydges, N.M.; Wood, E.R.; Drake, A.J.; Hall, J. Prenatal glucocorticoid exposure in rats: Programming effects on stress reactivity and cognition in adult offspring. Stress 2015, 18, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Holahan, M.R. A Shift from a Pivotal to Supporting Role for the Growth-Associated Protein (GAP-43) in the Coordination of Axonal Structural and Functional Plasticity. Front. Cell. Neurosci. 2017, 11, 266. [Google Scholar] [CrossRef]
- Holahan, M.R.; Honegger, K.S.; Tabatadze, N.; Routtenberg, A. GAP-43 gene expression regulates information storage. Learn. Mem. 2007, 14, 407–415. [Google Scholar] [CrossRef]
- Routtenberg, A.; Cantallops, I.; Zaffuto, S.; Serrano, P.; Namgung, U. Enhanced learning after genetic overexpression of a brain growth protein. Proc. Natl. Acad. Sci. USA 2000, 97, 7657–7662. [Google Scholar] [CrossRef] [PubMed]
- Tesic, V.; Perovic, M.; Zaletel, I.; Jovanovic, M.; Puskas, N.; Ruzdijic, S.; Kanazir, S. A single high dose of dexamethasone increases GAP-43 and synaptophysin in the hippocampus of aged rats. Exp. Gerontol. 2017, 98, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Yao, G.L.; Kiyama, H. Dexamethasone enhances level of GAP-43 mRNA after nerve injury and facilitates re-projection of the hypoglossal nerve. Brain Res. Mol. Brain Res. 1995, 32, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Levitt, N.S.; Lindsay, R.S.; Holmes, M.C.; Seckl, J.R. Dexamethasone in the last week of pregnancy attenuates hippocampal glucocorticoid receptor gene expression and elevates blood pressure in the adult offspring in the rat. Neuroendocrinology 1996, 64, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Korte, S.M. Corticosteroids in relation to fear, anxiety and psychopathology. Neurosci. Biobehav. Rev. 2001, 25, 117–142. [Google Scholar] [CrossRef] [PubMed]
- Sandi, C. The role and mechanisms of action of glucocorticoid involvement in memory storage. Neural Plast. 1998, 6, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Andreano, J.M.; Cahill, L. Glucocorticoid release and memory consolidation in men and women. Psychol. Sci. 2006, 17, 466–470. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, H.; He, L.; Ma, S.; Chen, X.; Wang, K.; Zhao, F.; Qi, F.; Guan, S.; Liu, Z. Prenatal chronic stress impairs the learning and memory ability via inhibition of the NO/cGMP/PKG pathway in the Hippocampus of offspring. Behav. Brain Res. 2022, 433, 114009. [Google Scholar] [CrossRef]
- Wu, Y.; Espinosa, K.M.; Barnett, S.D.; Kapse, A.; Quistorff, J.L.; Lopez, C.; Andescavage, N.; Pradhan, S.; Lu, Y.C.; Kapse, K.; et al. Association of Elevated Maternal Psychological Distress, Altered Fetal Brain, and Offspring Cognitive and Social-Emotional Outcomes at 18 Months. JAMA Netw. Open 2022, 5, e229244. [Google Scholar] [CrossRef]
- Fujioka, T.; Fujioka, A.; Tan, N.; Chowdhury, G.M.; Mouri, H.; Sakata, Y.; Nakamura, S. Mild prenatal stress enhances learning performance in the non-adopted rat offspring. Neuroscience 2001, 103, 301–307. [Google Scholar] [CrossRef]
- Davis, E.P.; Sandman, C.A. The timing of prenatal exposure to maternal cortisol and psychosocial stress is associated with human infant cognitive development. Child. Dev. 2010, 81, 131–148. [Google Scholar] [CrossRef]
- Lalonde, C.; Grandbois, J.; Khurana, S.; Murray, A.; Tharmalingam, S.; Tai, T.C. Late gestational exposure to dexamethasone and fetal programming of abnormal behavior in Wistar Kyoto rats. Brain Behav. 2021, 11, e02049. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, K.; Uga, D.A.; de Paula, H.M. The compulsive-like aspect of the head dipping emission in rats with chronic electrolytic lesion in the area of the median raphe nucleus. Braz. J. Med. Biol. Res. = Rev. Bras. Pesqui. Medicas Biol. 2004, 37, 245–250. [Google Scholar] [CrossRef]
- Hiroi, R.; Carbone, D.L.; Zuloaga, D.G.; Bimonte-Nelson, H.A.; Handa, R.J. Sex-dependent programming effects of prenatal glucocorticoid treatment on the developing serotonin system and stress-related behaviors in adulthood. Neuroscience 2016, 320, 43–56. [Google Scholar] [CrossRef]
- Kamphuis, P.J.; Bakker, J.M.; Broekhoven, M.H.; Kunne, C.; Croiset, G.; Lentjes, E.G.; Tilders, F.J.; van Bel, F.; Wiegant, V.M. Enhanced glucocorticoid feedback inhibition of hypothalamo-pituitary-adrenal responses to stress in adult rats neonatally treated with dexamethasone. Neuroendocrinology 2002, 76, 158–169. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Zhang, Y.M.; Tang, Z.S.; Du, J.K.; Guo, D.W.; Xu, Y.J.; Sheng, H.; Lu, J.Q.; Ni, X. Spatial learning and memory deficits induced by prenatal glucocorticoid exposure depend on hippocampal CRHR1 and CXCL5 signaling in rats. J. Neuroinflamm. 2021, 18, 85. [Google Scholar] [CrossRef] [PubMed]
- Nagano, M.; Ozawa, H.; Suzuki, H. Prenatal dexamethasone exposure affects anxiety-like behaviour and neuroendocrine systems in an age-dependent manner. Neurosci. Res. 2008, 60, 364–371. [Google Scholar] [CrossRef]
- Yates, N.J.; Robertson, D.; Rodger, J.; Martin-Iverson, M.T. Effects of Neonatal Dexamethasone Exposure on Adult Neuropsychiatric Traits in Rats. PLoS ONE 2016, 11, e0167220. [Google Scholar] [CrossRef]
- Wang, Y.C.; Huang, C.C.; Hsu, K.S. The role of growth retardation in lasting effects of neonatal dexamethasone treatment on hippocampal synaptic function. PLoS ONE 2010, 5, e12806. [Google Scholar] [CrossRef]
- Tsai, K.J.; Sze, C.I.; Lin, Y.C.; Lin, Y.J.; Hsieh, T.H.; Lin, C.H. A Single Postnatal Dose of Dexamethasone Enhances Memory of Rat Pups Later in Life. PLoS ONE 2016, 11, e0165752. [Google Scholar] [CrossRef] [PubMed]
- Kreider, M.L.; Levin, E.D.; Seidler, F.J.; Slotkin, T.A. Gestational dexamethasone treatment elicits sex-dependent alterations in locomotor activity, reward-based memory and hippocampal cholinergic function in adolescent and adult rats. Neuropsychopharmacology 2005, 30, 1617–1623. [Google Scholar] [CrossRef] [PubMed]
- Tsiarli, M.A.; Rudine, A.; Kendall, N.; Pratt, M.O.; Krall, R.; Thiels, E.; DeFranco, D.B.; Monaghan, A.P. Antenatal dexamethasone exposure differentially affects distinct cortical neural progenitor cells and triggers long-term changes in murine cerebral architecture and behavior. Transl. Psychiatry 2017, 7, e1153. [Google Scholar] [CrossRef]
- Kovacevic, S.; Nestorov, J.; Matic, G.; Elakovic, I. Dietary fructose-related adiposity and glucocorticoid receptor function in visceral adipose tissue of female rats. Eur. J. Nutr. 2014, 53, 1409–1420. [Google Scholar] [CrossRef]
- Toop, C.R.; Gentili, S. Fructose Beverage Consumption Induces a Metabolic Syndrome Phenotype in the Rat: A Systematic Review and Meta-Analysis. Nutrients 2016, 8, 577. [Google Scholar] [CrossRef] [PubMed]
- Franco-Perez, J.; Manjarrez-Marmolejo, J.; Ballesteros-Zebadua, P.; Neri-Santos, A.; Montes, S.; Suarez-Rivera, N.; Hernandez-Ceron, M.; Perez-Koldenkova, V. Chronic Consumption of Fructose Induces Behavioral Alterations by Increasing Orexin and Dopamine Levels in the Rat Brain. Nutrients 2018, 10, 1722. [Google Scholar] [CrossRef]
- Fierros-Campuzano, J.; Ballesteros-Zebadua, P.; Manjarrez-Marmolejo, J.; Aguilera, P.; Mendez-Diaz, M.; Prospero-Garcia, O.; Franco-Perez, J. Irreversible hippocampal changes induced by high fructose diet in rats. Nutr. Neurosci. 2022, 25, 1325–1337. [Google Scholar] [CrossRef]
Physiological Parameters | C | Dx | F | Dx-F |
---|---|---|---|---|
Body mass of one-day-old offspring (g) | 6.58 ± 0.26 | 5.94 ± 0.29 * | / | / |
Body mass of three-month-old offspring (g) | 322.33 ± 22.18 | 318.33 ± 12.69 | 343.17 ± 14.97 | 351.00 ± 6.96 |
Corticosterone of three-month-old offspring (ng/mL) | 44.56 ± 9.60 | 34.12 ± 7.32 | 46.94 ± 7.65 | 28.26 ± 3.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ignjatović, Đ.; Nestorović, N.; Tomić, M.; Ristić, N.; Veličković, N.; Perović, M.; Manojlović-Stojanoski, M. Effects of Prenatal Dexamethasone Treatment and Post-Weaning Moderate Fructose Intake on Synaptic Plasticity and Behavior in Adult Male Wistar Rat Offspring. Biology 2024, 13, 547. https://doi.org/10.3390/biology13070547
Ignjatović Đ, Nestorović N, Tomić M, Ristić N, Veličković N, Perović M, Manojlović-Stojanoski M. Effects of Prenatal Dexamethasone Treatment and Post-Weaning Moderate Fructose Intake on Synaptic Plasticity and Behavior in Adult Male Wistar Rat Offspring. Biology. 2024; 13(7):547. https://doi.org/10.3390/biology13070547
Chicago/Turabian StyleIgnjatović, Đurđica, Nataša Nestorović, Mirko Tomić, Nataša Ristić, Nataša Veličković, Milka Perović, and Milica Manojlović-Stojanoski. 2024. "Effects of Prenatal Dexamethasone Treatment and Post-Weaning Moderate Fructose Intake on Synaptic Plasticity and Behavior in Adult Male Wistar Rat Offspring" Biology 13, no. 7: 547. https://doi.org/10.3390/biology13070547
APA StyleIgnjatović, Đ., Nestorović, N., Tomić, M., Ristić, N., Veličković, N., Perović, M., & Manojlović-Stojanoski, M. (2024). Effects of Prenatal Dexamethasone Treatment and Post-Weaning Moderate Fructose Intake on Synaptic Plasticity and Behavior in Adult Male Wistar Rat Offspring. Biology, 13(7), 547. https://doi.org/10.3390/biology13070547