Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = cable bending stiffness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2772 KiB  
Article
Cable Force Optimization of Circular Ring Pylon Cable-Stayed Bridges Based on Response Surface Methodology and Multi-Objective Particle Swarm Optimization
by Shengdong Liu, Fei Chen, Qingfu Li and Xiyu Ma
Buildings 2025, 15(15), 2647; https://doi.org/10.3390/buildings15152647 - 27 Jul 2025
Viewed by 178
Abstract
Cable force distribution in cable-stayed bridges critically impacts structural safety and efficiency, yet traditional optimization methods struggle with unconventional designs due to nonlinear mechanics and computational inefficiency. This study proposes a hybrid approach combining Response Surface Methodology (RSM) and Multi-Objective Particle Swarm Optimization [...] Read more.
Cable force distribution in cable-stayed bridges critically impacts structural safety and efficiency, yet traditional optimization methods struggle with unconventional designs due to nonlinear mechanics and computational inefficiency. This study proposes a hybrid approach combining Response Surface Methodology (RSM) and Multi-Objective Particle Swarm Optimization (MOPSO) to overcome these challenges. RSM constructs surrogate models for strain energy and mid-span displacement, reducing reliance on finite element analysis, while MOPSO optimizes Pareto solution sets for rapid cable force adjustment. Validated through an engineering case, the method reduces the main girder’s max bending moment by 8.7%, mid-span displacement by 31.2%, and strain energy by 7.1%, improving stiffness and mitigating stress concentrations. The response surface model demonstrates prediction errors of 0.35% for strain energy and 5.1% for maximum vertical mid-span deflection. By synergizing explicit modeling with intelligent algorithms, this methodology effectively resolves the longstanding efficiency–accuracy trade-off in cable force optimization for cable-stayed bridges. It achieves over 80% reduction in computational costs while enhancing critical structural performance metrics. Engineers are thereby equipped with a rapid and reliable optimization framework for geometrically complex cable-stayed bridges, delivering significant improvements in structural safety and construction feasibility. Ultimately, this approach establishes both theoretical substantiation and practical engineering benchmarks for designing non-conventional cable-stayed bridge configurations. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

19 pages, 3316 KiB  
Article
Optimization Design of Dynamic Cable Configuration Considering Thermo-Mechanical Coupling Effects
by Ying Li, Guanggen Zou, Suchun Yang, Dongsheng Qiao and Bin Wang
J. Mar. Sci. Eng. 2025, 13(7), 1336; https://doi.org/10.3390/jmse13071336 - 13 Jul 2025
Viewed by 317
Abstract
During operation, dynamic cables endure coupled thermo-mechanical loads (mechanical: tension/bending; thermal: power transmission) that degrade stiffness, amplifying extreme responses and impairing configuration optimization. To address this, this study pioneers a multi-objective optimization framework integrating stiffness characteristics from mechanical/thermo-mechanical analyses, with objectives to minimize [...] Read more.
During operation, dynamic cables endure coupled thermo-mechanical loads (mechanical: tension/bending; thermal: power transmission) that degrade stiffness, amplifying extreme responses and impairing configuration optimization. To address this, this study pioneers a multi-objective optimization framework integrating stiffness characteristics from mechanical/thermo-mechanical analyses, with objectives to minimize dynamic extreme tension and curvature under constraints of global configuration variables and safety thresholds. The framework employs a Radial Basis Function (RBF) surrogate model coupled with NSGA-II algorithm, yielding validated Pareto solutions (≤6.15% max error vs. simulations). Results demonstrate universal reduction in extreme responses across optimized configurations, with the thermo-mechanically optimized solution achieving 20.24% fatigue life enhancement. This work establishes the first methodology quantifying thermo-mechanical coupling effects on offshore cable safety and fatigue performance. This configuration design scheme exhibits better safety during actual service conditions. Full article
(This article belongs to the Special Issue Advanced Studies in Marine Structures)
Show Figures

Figure 1

23 pages, 2927 KiB  
Article
Innovative Suspension Structures: The Role of Straight Elements Under Asymmetric Loads
by Algirdas Juozapaitis and Alfonsas Daniūnas
Appl. Sci. 2025, 15(13), 7009; https://doi.org/10.3390/app15137009 - 21 Jun 2025
Cited by 1 | Viewed by 229
Abstract
Suspension structures, known for their excellent properties, have been widely used to cover medium and large spans. Their efficiency lies in their ability to primarily withstand permanent and variable loads through tension. Consequently, suspension roof structures typically adopt a parabolic shape, which remains [...] Read more.
Suspension structures, known for their excellent properties, have been widely used to cover medium and large spans. Their efficiency lies in their ability to primarily withstand permanent and variable loads through tension. Consequently, suspension roof structures typically adopt a parabolic shape, which remains in equilibrium under symmetric loads. However, when subjected to asymmetric loads, such structures experience significant kinematic displacements. To reduce these displacements, suspension systems with bending stiffness, commonly referred to as “rigid” cables, are employed. Such elements increase the sustainability of the suspension system compared with conventional spiral ropes. Although previous studies have analyzed the behavior of such systems under symmetric loads, this article examines the performance of an innovative cable–strut system composed of straight “rigid” elements under asymmetric loads. The behavior of three different types of suspension structures under asymmetric loads is analyzed. A non-linear analysis of forces and displacements is conducted in this system, assessing the impact of bending stiffness on the structural response. The results indicate that the proposed two-level suspension system performs more effectively under asymmetric loads than both conventional parabolic suspension structures and suspension systems comprising two straight “rigid” elements. It was found that the total forces and stresses in the “rigid” upper chord elements of the two-level system are the lowest among all the systems considered. Therefore, this system is particularly suitable for covering medium- and large-span roofs, especially when subjected to relatively large asymmetric loads. Full article
(This article belongs to the Special Issue Recent Advances in Sustainable Construction Materials and Structures)
Show Figures

Figure 1

16 pages, 3666 KiB  
Article
Point Deflection in Topological Interlocking Plates
by Arcady V. Dyskin and Elena Pasternak
Appl. Sci. 2025, 15(12), 6496; https://doi.org/10.3390/app15126496 - 9 Jun 2025
Viewed by 282
Abstract
The bending of topological interlocking (TI) plates under point loading is not smooth; it is accompanied by developing lines of localization commensurate with the symmetry of the interlocking assembly. Furthermore, the developed stage of deflection is characterized by post-peak softening. This paper proposes [...] Read more.
The bending of topological interlocking (TI) plates under point loading is not smooth; it is accompanied by developing lines of localization commensurate with the symmetry of the interlocking assembly. Furthermore, the developed stage of deflection is characterized by post-peak softening. This paper proposes a new concept that explains these experimentally observed phenomena. A new model considers that due to the absence of bonding between the blocks, they assume independent rotational degrees of freedom; this is missed in the traditional modeling of TI structures. The bending resistance of TI beams relies on the elasticity of the peripheral constraint (frame or post-tensioning cables) resisting the additional loading caused by the relative rotation of blocks—a phenomenon called elbowing. This is independent of the particulars of the shape of interlocking blocks, which makes it possible to model the deflection of the TI beams as the deflection of fragmented beams consisting of parallelepiped blocks with restricted out-of-beam relative displacements. The model demonstrates that the bending of TI beams produces the experimentally observed point deflection, which is considerably different from that of conventional beams. This is a consequence of independent block rotation and elbowing. It is shown that the other consequence of block rotation with elbowing is the force–deflection relationship exhibiting a post-peak softening (apparent negative stiffness). Based on the point deflection model, it is demonstrated that oscillations of TI blocks involve a unidirectional damping with discontinuous velocity dependence. This paper develops a model of such damping. The results are important for designing flexible topological interlocking structures with energy absorption. Full article
Show Figures

Figure 1

25 pages, 5991 KiB  
Article
Wind Tunnel Tests and Buffeting Response Analysis of Concrete-Filled Steel Tubular Arch Ribs During Cantilever Construction
by Qing Hu, Xinrong Wu, Shilong Zhang and Dagang Lu
Buildings 2025, 15(11), 1837; https://doi.org/10.3390/buildings15111837 - 27 May 2025
Viewed by 348
Abstract
During the construction of concrete-filled steel tubular (CFST) arch bridges, hollow steel tube arch ribs are typically erected using the cantilever method with cable hoisting. In this construction stage, the arch ribs exhibit low out-of-plane stiffness and are thus highly susceptible to wind-induced [...] Read more.
During the construction of concrete-filled steel tubular (CFST) arch bridges, hollow steel tube arch ribs are typically erected using the cantilever method with cable hoisting. In this construction stage, the arch ribs exhibit low out-of-plane stiffness and are thus highly susceptible to wind-induced vibrations, which may lead to cable failure or even collapse of the structure. Despite these critical risks, research on the aerodynamic performance of CFST arch ribs with different cross-sectional forms during cantilever construction remains limited. Most existing studies focus on individual bridge cases rather than generalized aerodynamic behavior. To obtain generalized aerodynamic parameters and buffeting response characteristics applicable to cantilevered CFST arch ribs, this study investigates two common cross-sectional configurations: four-tube trussed and horizontal dumbbell trussed sections. Sectional model wind tunnel tests were conducted to determine the aerodynamic force coefficients and aerodynamic admittance functions (AAFs) of these arch ribs. Comparisons with commonly used empirical AAF formulations (e.g., the Sears function) indicate that these simplified models, or assumptions equating aerodynamic forces with quasi-steady values, are inaccurate for the studied cross-sections. Considering the influence of the curved arch axis on buffeting behavior, a buffeting analysis computational program was developed, incorporating the experimentally derived aerodynamic characteristics. The program was validated against classical theoretical results and practical measurements from an actual bridge project. Using this program, a parametric analysis was conducted to evaluate the effects of equivalent AAF formulations, coherence functions, first-order mode shapes, and the number of structural modes on the buffeting response. The results show that the buffeting response of cantilevered hollow steel arch ribs is predominantly governed by the first-order mode, which can be effectively approximated using a bending-type mode shape expression. Full article
(This article belongs to the Special Issue Research on Concrete Filled Steel Materials in Building Engineering)
Show Figures

Figure 1

19 pages, 13305 KiB  
Article
Customized Pediatric Hand EXoskeleton for Activities of Daily Living (PHEX): Design, Development, and Characterization of an Innovative Finger Module
by Elisa D’Angelo, Gianmarco Latini, Alessandro Ceccarelli, Ludovica Nini, Nevio Luigi Tagliamonte, Loredana Zollo and Fabrizio Taffoni
Appl. Sci. 2025, 15(10), 5694; https://doi.org/10.3390/app15105694 - 20 May 2025
Viewed by 640
Abstract
Research on pediatric hand exoskeletons remains limited compared to that on devices for adults. This paper presents the design and experimental validation of a customizable pediatric finger module, part of a hand exoskeleton tailored to individual anatomical features. The module aims to assist [...] Read more.
Research on pediatric hand exoskeletons remains limited compared to that on devices for adults. This paper presents the design and experimental validation of a customizable pediatric finger module, part of a hand exoskeleton tailored to individual anatomical features. The module aims to assist finger flexion in children with mild spasticity during activities of daily living. A patient-specific design methodology was applied to the case of a 12-year-old child. The finger module integrates compliant dorsal structures and cable-driven transmission with rigid anchoring elements to balance flexibility and structural stability. Different geometries and thickness values were tested to optimize comfort and quantify mechanical performance. Additive manufacturing was adopted to enable rapid prototyping and easy replacement of parts. Tensile and bending tests were conducted to determine stiffness and cable travel. Results support the feasibility of the proposed finger module, offering empirical data for selection and sizing of the actuation system and paving the way for the advancement of new modular pediatric devices. Full article
(This article belongs to the Special Issue Emerging Technologies for Assistive Robotics)
Show Figures

Figure 1

22 pages, 6734 KiB  
Article
Envelope Morphology of an Elephant Trunk-like Robot Based on Differential Cable–SMA Spring Actuation
by Longfei Sun and Huiying Gu
Actuators 2025, 14(2), 100; https://doi.org/10.3390/act14020100 - 19 Feb 2025
Viewed by 806
Abstract
Most trunk-like robots are designed with distributed actuators to mimic the envelope-grasping behavior of elephant trunks in nature, leading to a complex actuation system. In this paper, a modular underactuated elephant trunk-imitating robot based on the combined drive of the cable and shape [...] Read more.
Most trunk-like robots are designed with distributed actuators to mimic the envelope-grasping behavior of elephant trunks in nature, leading to a complex actuation system. In this paper, a modular underactuated elephant trunk-imitating robot based on the combined drive of the cable and shape memory alloy (SMA) springs is designed. Unlike the traditional underactuated structure that can only passively adapt to the envelope of the object contour, the proposed elephant trunk robot can control the cable tension and the equivalent stiffness of the SMA springs to achieve active control of the envelope morphology for different target objects. The overall structure of the elephant trunk robot is designed and the principle of deformation envelope is elucidated. Based on the static model of the robot under load, the mapping relationship between the tension force and the tension angle between modules is derived. The positive kinematic model of the elephant trunk robot is established based on the Debavit–Hartenberg (D–H) method, the spatial position of the elephant trunk robot is obtained, and the Monte Carlo method is used to derive the robot’s working space. The active bending envelope grasping performance is further verified by building the prototype to perform grasping experiments on objects of various shapes. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

18 pages, 5056 KiB  
Article
Accurate Dynamic Analysis Method of Cable-Damper System Based on Dynamic Stiffness Method
by Hui Jiao, Bin Xu, Zhengkai Jiang, Can Cui and Haoxiang Yang
Buildings 2024, 14(12), 4007; https://doi.org/10.3390/buildings14124007 - 17 Dec 2024
Viewed by 924
Abstract
To suppress large vibrations of the cable in cable-stayed bridges, it is common to install transverse dampers near the end of the cable. This paper focuses on the cable-damper system; based on the dynamic stiffness method, an accurate dynamic analysis method considering cable [...] Read more.
To suppress large vibrations of the cable in cable-stayed bridges, it is common to install transverse dampers near the end of the cable. This paper focuses on the cable-damper system; based on the dynamic stiffness method, an accurate dynamic analysis method considering cable parameters, damper parameters, and cable forces is proposed. First, a mechanical analysis model is established which is closer to the cable with a transverse damper installed in the bridge. The model considers the cable bending stiffness, sag, inclination angle, cable force, damper stiffness, damping coefficient, and damper installation height. Then, the characteristic frequency equation of the cable-damper system is established, and a solution method that combines the initial value method and Newton–Raphson method is proposed. This method is confirmed to provide more accurate frequency analysis for the cable-damper system. Finally, using this method, the effect of the damper parameters on the dynamic characteristics of the system is investigated. Full article
(This article belongs to the Special Issue Advances and Applications in Structural Vibration Control)
Show Figures

Figure 1

24 pages, 28346 KiB  
Article
Parameter Study and Optimization of Static Performance for a Hybrid Cable-Stayed Suspension Bridge
by Zhou Peng, Lijun Jia, Jiawei Xu, Kedian Luo and Huiteng Pei
Buildings 2024, 14(11), 3514; https://doi.org/10.3390/buildings14113514 - 3 Nov 2024
Cited by 1 | Viewed by 1579
Abstract
The hybrid cable-stayed and suspension (HCSS) bridge is known for its stability and cost-effectiveness, with significant application potential. This study examined the static performance of an HCSS bridge with a 1440 m main span. A finite element model (FEM) was developed to assess [...] Read more.
The hybrid cable-stayed and suspension (HCSS) bridge is known for its stability and cost-effectiveness, with significant application potential. This study examined the static performance of an HCSS bridge with a 1440 m main span. A finite element model (FEM) was developed to assess key parameters, such as the span-to-rise ratio, cable-to-hanger ratio, pylon stiffness, steel–concrete interface, and cable stiffness. Through FEM analysis and parameter optimization using the zero-order and first-order optimization methods in an ANSYS module, key design variables were optimized. The results show that an inappropriate span-to-rise ratio negatively impacts mid-span girder forces, while increasing the cable-stayed area enhances the overall stiffness. Main cable stiffness plays a crucial role in load-bearing and deformation control. Significant force differences were observed between stay and hanger cables, with axial force in the main girder increasing from the side span to the pylon under dead load. Bending moments in the transition region varied widely under combined loads. Optimizing parameters, such as the span-to-rise and cable-to-hanger ratios, significantly improved the mechanical performance of HCSS bridges, offering valuable insights for future designs. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

21 pages, 6502 KiB  
Article
Global Responses of Exposed and Suspended Submarine Cables Due to Anchor Dragging
by Xiaowei Huang, Daoyu Jiang, Zhenjin Cen, Haolin Li, Zhenkui Wang and Zhen Guo
J. Mar. Sci. Eng. 2024, 12(9), 1628; https://doi.org/10.3390/jmse12091628 - 12 Sep 2024
Cited by 1 | Viewed by 1598
Abstract
Anchor damage is one of the main risk factors for the safe operation of submarine cables. Additionally, due to a scour effect induced by seabed currents, submarine cables are prone to exposure or even suspension, increasing the risk of being dragged by anchors. [...] Read more.
Anchor damage is one of the main risk factors for the safe operation of submarine cables. Additionally, due to a scour effect induced by seabed currents, submarine cables are prone to exposure or even suspension, increasing the risk of being dragged by anchors. Therefore, it is necessary to study the global response of exposed and suspended submarine cables subjected to anchor dragging. In this study, the tensile and bending stiffnesses of submarine cables are calculated by theoretical methods, and the accuracy of these calculations is verified by establishing a detailed finite element model. Then, the mechanical properties of the submarine cables are equivalently modeled using beam elements, and a large-scale finite element model for exposed and suspended cables under anchor dragging is established. Considering different dragging forces, exposed lengths, spanning lengths, and spanning heights, the overall deformation and mechanical responses of exposed and suspended cables are analyzed separately. The results show that under dragging forces, axial forces are uniformly distributed along exposed and suspended segments, while bending moments concentrate at the central hooking area and the ends of exposed and suspended segments. The influence of dragging force, exposed length, spanning length, and spanning height on the stress and deformation of submarine cables is significant. The results can be used for submarine cable damage assessments caused by anchor dragging. Full article
Show Figures

Figure 1

17 pages, 8500 KiB  
Article
Stiffness Analysis of Cable-Driven Parallel Robot for UAV Aerial Recovery System
by Jun Wu, Honghao Yue, Xueting Pan, Yanbing Wang, Yong Zhao and Fei Yang
Actuators 2024, 13(9), 343; https://doi.org/10.3390/act13090343 - 6 Sep 2024
Viewed by 1242
Abstract
Unmanned Aerial Vehicle (UAV) aerial recovery is a challenging task due to the limited maneuverability of both the transport aircraft and the UAV, making it difficult to establish an effective capture connection in the airflow field. In previous studies, we proposed using a [...] Read more.
Unmanned Aerial Vehicle (UAV) aerial recovery is a challenging task due to the limited maneuverability of both the transport aircraft and the UAV, making it difficult to establish an effective capture connection in the airflow field. In previous studies, we proposed using a Cable-Driven Parallel Robot (CDPR) for active interception and recovery of UAVs. However, during the aerial recovery process, the CDPR is continuously subjected to aerodynamic loads, which significantly affect the stiffness characteristics of the CDPR. This paper conducts a stiffness analysis of a single cable and a CDPR in a flow field environment. Firstly, we derive the stiffness matrix of a single cable based on a model that considers aerodynamic loads. The CDPR is then divided into elements using the finite element method (FEM), and the stiffness matrix for each element is obtained. These element stiffness matrices are assembled to form the stiffness matrix of the CDPR system. Secondly, we analyze the stiffness distribution of a single cable at various equilibrium positions within a flow field environment. Aerodynamic loads were observed to alter the equilibrium position of the cable, thereby impacting its stiffness. The more the cable bends, the greater the reduction in its stiffness. We examine the stiffness distribution characteristics of the CDPR’s end-effector within its workspace and analyze the impact of varying flow velocities and different cable materials on the system’s stiffness. This research offers a methodology for analyzing the stiffness of CDPR systems operating in a flow field environment. Full article
(This article belongs to the Special Issue Soft Robotics: Actuation, Control, and Application)
Show Figures

Figure 1

14 pages, 7776 KiB  
Article
Research on Indirect Influence-Line Identification Methods in the Dynamic Response of Vehicles Crossing Bridges
by Yu Zhou, Yingdi Shi, Shengkui Di, Shuo Han and Jingtang Wang
Appl. Sci. 2024, 14(17), 7821; https://doi.org/10.3390/app14177821 - 3 Sep 2024
Cited by 1 | Viewed by 1277
Abstract
The bridge influence line can effectively reflect its overall structural stiffness, and it has been used in the studies of safety assessment, model updating, and the dynamic weighing of bridges. To accurately obtain the influence line of a bridge, an Empirical and Variational [...] Read more.
The bridge influence line can effectively reflect its overall structural stiffness, and it has been used in the studies of safety assessment, model updating, and the dynamic weighing of bridges. To accurately obtain the influence line of a bridge, an Empirical and Variational Mixed Modal Decomposition (E-VMD) method is used to remove the dynamic component from the vehicle-induced deflection response of a bridge, which requires the preset fundamental frequency of the structure to be used as the cutoff frequency for the intrinsic modal decomposition operation. However, the true fundamental frequency is often obtained from the picker, and the testing process requires the interruption of traffic to carry out the mode decomposition. To realize the rapid testing of the influence lines of bridges, a new method of indirectly identifying the operational modal frequency and deflection influence lines of bridge structures from the axle dynamic response is proposed as an example of cable-stayed bridge structures. Based on the energy method, an analytical solution of the first-order frequency of vertical bending is obtained for a short-tower cable-stayed bridge, which can be used as the initial base frequency to roughly measure the deflection influence line of the cable-stayed bridge. The residual difference between the deflection response and the roughly measured influence line under the excitation of the vehicle is operated by Fast Fourier Transform, from which the operational fundamental frequency identification of the bridge is realized. Using the operational fundamental frequency as the cutoff frequency and comparing the influence-line identification equations, the empirical variational mixed modal decomposition, and the Tikhonov regularization to establish a more accurate identification of the deflection influence line, the deflection influence line is finally identified. The accuracy and practicality of the proposed method are verified by real cable-stayed bridge engineering cases. The results show that the relative error between the recognized bridge fundamental frequency and the measured fundamental frequency is 0.32%, and the relative error of the recognized deflection influence line is 0.83%. The identification value of the deflection influence line has a certain precision. Full article
Show Figures

Figure 1

27 pages, 5824 KiB  
Article
Analytical Framework for Tension Characterization in Submerged Anchor Cables via Nonlinear In-Plane Free Vibrations
by Long Yang, Dahai Wang, Huadong Zheng, Zhengyuan Ma and Yixin Zhang
J. Mar. Sci. Eng. 2024, 12(8), 1286; https://doi.org/10.3390/jmse12081286 - 31 Jul 2024
Cited by 1 | Viewed by 971
Abstract
Submerged tensioned anchor cables (STACs) are pivotal components utilized extensively for anchoring and supporting offshore floating structures. Unlike tensioned cables in air, STACs exhibit distinctive nonlinear damping characteristics. Although existing studies on the free vibration response and tension identification of STACs often employ [...] Read more.
Submerged tensioned anchor cables (STACs) are pivotal components utilized extensively for anchoring and supporting offshore floating structures. Unlike tensioned cables in air, STACs exhibit distinctive nonlinear damping characteristics. Although existing studies on the free vibration response and tension identification of STACs often employ conventional Galerkin and average methods, the effect of the quadratic damping coefficient (QDC) on the vibration frequency remains unquantified. This paper re-examines the effect of bending stiffness on the static equilibrium configuration of STACs, and establishes the in-plane transverse free motion equations considering bending stiffness, sag, and hydrodynamic force. By introducing the bending stiffness influence coefficient and the Irvine parameter, the exact analytical solutions of symmetric and antisymmetric frequencies and modal shapes of STACs are derived. An improved Galerkin method is proposed to discretize the nonlinear free motion equations ensuring the accuracy and applicability of the analytical results. Additionally, this paper presents an analytical solution for the nonlinear free vibration response of the STACs using the improved averaging method, along with improved frequency formulas and tension identification methods considering the QDC. Through a case study, it is demonstrated that the improved methods introduced in this paper offer higher accuracy and wider applicability compared to the conventional approaches. These findings provide theoretical guidance and reference for the precise dynamic analysis, monitoring, and evaluation of marine anchor cable structures. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

14 pages, 1926 KiB  
Article
Study on Dynamic Characteristics of Long-Span Highway-Rail Double-Tower Cable-Stayed Bridge
by Shijie Guo, Yuhang Jiang, Wenli Zhang and Yong Zeng
Buildings 2024, 14(6), 1733; https://doi.org/10.3390/buildings14061733 - 9 Jun 2024
Cited by 5 | Viewed by 1578
Abstract
The long-span dual-purpose highway-rail double-tower cable-stayed bridge has the characteristics of a large span and large load-bearing capacity. Compared with the traditional cable-stayed bridge, its wind resistance and seismic resistance are weaker, and the dynamic characteristics of the bridge are closely related to [...] Read more.
The long-span dual-purpose highway-rail double-tower cable-stayed bridge has the characteristics of a large span and large load-bearing capacity. Compared with the traditional cable-stayed bridge, its wind resistance and seismic resistance are weaker, and the dynamic characteristics of the bridge are closely related to the wind resistance and seismic bearing capacity of the bridge. This study investigated the influence of the variations of bridge member parameters on the dynamic characteristics of the bridge and then improved the dynamic characteristics of the bridge. To provide the necessary experimental theory for the research work of the long-span dual-purpose highway-rail double-tower cable-stayed bridges, this paper takes the world’s longest span of the dual-purpose highway-rail double-tower cable-stayed bridge as the background, using the finite element analysis software Midas Civil 2022 v1.2 to establish a three-dimensional model of the whole bridge by changing the steel truss beam stiffness, cable stiffness, pylon stiffness, and auxiliary pier position, as well as study the influence of parameter changes on the dynamic characteristics of the bridge. The results show that the dynamic characteristics of the bridge can be enhanced by increasing the stiffness of the steel truss beam, the cable, and the tower. The stiffness of the steel truss beam mainly affects the transverse bending stiffness and flexural coupling stiffness of the bridge. The influence of cable stiffness is weak. The tower stiffness can comprehensively affect the flexural stiffness and torsional stiffness of the bridge. The position of auxiliary piers should be determined comprehensively according to the site conditions. In practical engineering, the stiffness of components can be enhanced according to the weak links of bridges to improve the dynamic characteristics of bridges and save costs. Full article
Show Figures

Figure 1

23 pages, 3420 KiB  
Article
Non-Linear Behaviour and Analysis of Innovative Suspension Steel Roof Structures
by Algirdas Juozapaitis, Alfonsas Daniūnas and Leonas Ustinovichius
Buildings 2024, 14(3), 661; https://doi.org/10.3390/buildings14030661 - 1 Mar 2024
Cited by 1 | Viewed by 1630
Abstract
Suspension structures are one of the most effective roof load-bearing structures for medium to long spans. Their shape under symmetric loads is usually a square parabola or a curve close to it. The biggest drawback of such structures is their increased deformability under [...] Read more.
Suspension structures are one of the most effective roof load-bearing structures for medium to long spans. Their shape under symmetric loads is usually a square parabola or a curve close to it. The biggest drawback of such structures is their increased deformability under asymmetric loads. So-called rigid cables are used to solve this problem. However, the production of such rigid cables with a curvilinear shape is complicated, and their maintenance also has drawbacks due to the above-mentioned shape. To avoid these shortcomings, straight-line suspension structures have been used. This paper proposes a new form of combined suspension roof structures consisting of main load-bearing straight suspension elements supported by cable struts. For the main suspension elements, the bending stiffness is accepted, taking into account the operational requirements of the structure. This article analyses the behaviour of such a combined suspension structural system in symmetric conditions with an innovative approach. The arrangements of this system are discussed. The calculation of the forces and displacements of this structure and its elements is presented, taking into account the geometrical nonlinear behaviour. The distribution of the forces in the rigid elements and node displacements of the structure are discussed. The proposed new form of a combined cable-supported roof structure was shown to be more effective in terms of weight than the standard parabolic-shaped suspension structure. Full article
(This article belongs to the Special Issue Non-linear Behavior and Design of Steel Structures)
Show Figures

Figure 1

Back to TopTop