Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (161)

Search Parameters:
Keywords = burst construction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3995 KiB  
Article
Nonlinear Vibration and Post-Buckling Behaviors of Metal and FGM Pipes Transporting Heavy Crude Oil
by Kamran Foroutan, Farshid Torabi and Arth Pradeep Patel
Appl. Sci. 2025, 15(15), 8515; https://doi.org/10.3390/app15158515 (registering DOI) - 31 Jul 2025
Viewed by 90
Abstract
Functionally graded materials (FGMs) have the potential to revolutionize the oil and gas transportation sector, due to their increased strengths and efficiencies as pipelines. Conventional pipelines frequently face serious problems such as extreme weather, pressure changes, corrosion, and stress-induced pipe bursts. By analyzing [...] Read more.
Functionally graded materials (FGMs) have the potential to revolutionize the oil and gas transportation sector, due to their increased strengths and efficiencies as pipelines. Conventional pipelines frequently face serious problems such as extreme weather, pressure changes, corrosion, and stress-induced pipe bursts. By analyzing the mechanical and thermal performance of FGM-based pipes under various operating conditions, this study investigates the possibility of using them as a more reliable substitute. In the current study, the post-buckling and nonlinear vibration behaviors of pipes composed of FGMs transporting heavy crude oil were examined using a Timoshenko beam framework. The material properties of the FGM pipe were observed to change gradually across the thickness, following a power-law distribution, and were influenced by temperature variations. In this regard, two types of FGM pipes are considered: one with a metal-rich inner surface and ceramic-rich outer surface, and the other with a reverse configuration featuring metal on the outside and ceramic on the inside. The nonlinear governing equations (NGEs) describing the system’s nonlinear dynamic response were formulated by considering nonlinear strain terms through the von Kármán assumptions and employing Hamilton’s principle. These equations were then discretized using Galerkin’s method to facilitate the analytical investigation. The Runge–Kutta method was employed to address the nonlinear vibration problem. It is concluded that, compared with pipelines made from conventional materials, those constructed with FGMs exhibit enhanced thermal resistance and improved mechanical strength. Full article
Show Figures

Figure 1

10 pages, 1357 KiB  
Article
Design of Balanced Wide Gap No-Hit Zone Sequences with Optimal Auto-Correlation
by Duehee Lee, Seho Lee and Jin-Ho Chung
Mathematics 2025, 13(15), 2454; https://doi.org/10.3390/math13152454 - 30 Jul 2025
Viewed by 169
Abstract
Frequency-hopping multiple access is widely adopted to blunt narrow-band jamming and limit spectral disclosure in cyber–physical systems, yet its practical resilience depends on three sequence-level properties. First, balancedness guarantees that every carrier is occupied equally often, removing spectral peaks that a jammer or [...] Read more.
Frequency-hopping multiple access is widely adopted to blunt narrow-band jamming and limit spectral disclosure in cyber–physical systems, yet its practical resilience depends on three sequence-level properties. First, balancedness guarantees that every carrier is occupied equally often, removing spectral peaks that a jammer or energy detector could exploit. Second, a wide gap between successive hops forces any interferer to re-tune after corrupting at most one symbol, thereby containing error bursts. Third, a no-hit zone (NHZ) window with a zero pairwise Hamming correlation eliminates user collisions and self-interference when chip-level timing offsets fall inside the window. This work introduces an algebraic construction that meets the full set of requirements in a single framework. By threading a permutation over an integer ring and partitioning the period into congruent sub-blocks tied to the desired NHZ width, we generate balanced wide gap no-hit zone frequency-hopping (WG-NHZ FH) sequence sets. Analytical proofs show that (i) each sequence achieves the Lempel–Greenberger bound for auto-correlation, (ii) the family and zone sizes satisfy the Ye–Fan bound with equality, (iii) the hop-to-hop distance satisfies a provable WG condition, and (iv) balancedness holds exactly for every carrier frequency. Full article
Show Figures

Figure 1

30 pages, 9606 KiB  
Article
A Visualized Analysis of Research Hotspots and Trends on the Ecological Impact of Volatile Organic Compounds
by Xuxu Guo, Qiurong Lei, Xingzhou Li, Jing Chen and Chuanjian Yi
Atmosphere 2025, 16(8), 900; https://doi.org/10.3390/atmos16080900 - 24 Jul 2025
Viewed by 383
Abstract
With the ongoing advancement of industrialization and rapid urbanization, the emission of volatile organic compounds (VOCs) has increased significantly. As key precursors of PM2.5 and ozone formation, VOCs pose a growing threat to the health of ecosystems. Due to their complex and [...] Read more.
With the ongoing advancement of industrialization and rapid urbanization, the emission of volatile organic compounds (VOCs) has increased significantly. As key precursors of PM2.5 and ozone formation, VOCs pose a growing threat to the health of ecosystems. Due to their complex and dynamic transformation processes across air, water, and soil media, the ecological risks associated with VOCs have attracted increasing attention from both the scientific community and policy-makers. This study systematically reviews the core literature on the ecological impacts of VOCs published between 2005 and 2024, based on data from the Web of Science and Google Scholar databases. Utilizing three bibliometric tools (CiteSpace, VOSviewer, and Bibliometrix), we conducted a comprehensive visual analysis, constructing knowledge maps from multiple perspectives, including research trends, international collaboration, keyword evolution, and author–institution co-occurrence networks. The results reveal a rapid growth in the ecological impact of VOCs (EIVOCs), with an average annual increase exceeding 11% since 2013. Key research themes include source apportionment of air pollutants, ecotoxicological effects, biological response mechanisms, and health risk assessment. China, the United States, and Germany have emerged as leading contributors in this field, with China showing a remarkable surge in research activity in recent years. Keyword co-occurrence and burst analyses highlight “air pollution”, “exposure”, “health”, and “source apportionment” as major research hotspots. However, challenges remain in areas such as ecosystem functional responses, the integration of multimedia pollution pathways, and interdisciplinary coordination mechanisms. There is an urgent need to enhance monitoring technology integration, develop robust ecological risk assessment frameworks, and improve predictive modeling capabilities under climate change scenarios. This study provides scientific insights and theoretical support for the development of future environmental protection policies and comprehensive VOCs management strategies. Full article
Show Figures

Figure 1

13 pages, 793 KiB  
Communication
Gamma-Ray Bursts Calibrated by Using Artificial Neural Networks from the Pantheon+ Sample
by Zhen Huang, Xin Luo, Bin Zhang, Jianchao Feng, Puxun Wu, Yu Liu and Nan Liang
Universe 2025, 11(8), 241; https://doi.org/10.3390/universe11080241 - 23 Jul 2025
Viewed by 137
Abstract
In this paper, we calibrate the luminosity relation of gamma−ray bursts (GRBs) by employing artificial neural networks (ANNs) to analyze the Pantheon+ sample of type Ia supernovae (SNe Ia) in a manner independent of cosmological assumptions. The A219 GRB dataset is used to [...] Read more.
In this paper, we calibrate the luminosity relation of gamma−ray bursts (GRBs) by employing artificial neural networks (ANNs) to analyze the Pantheon+ sample of type Ia supernovae (SNe Ia) in a manner independent of cosmological assumptions. The A219 GRB dataset is used to calibrate the Amati relation (Ep-Eiso) at low redshift with the ANN framework, facilitating the construction of the Hubble diagram at higher redshifts. Cosmological models are constrained with GRBs at high redshift and the latest observational Hubble data (OHD) via the Markov chain Monte Carlo numerical approach. For the Chevallier−Polarski−Linder (CPL) model within a flat universe, we obtain Ωm=0.3210.069+0.078h=0.6540.071+0.053w0=1.020.50+0.67, and wa=0.980.58+0.58 at the 1 −σ confidence level, which indicates a preference for dark energy with potential redshift evolution (wa0). These findings using ANNs align closely with those derived from GRBs calibrated using Gaussian processes (GPs). Full article
Show Figures

Figure 1

23 pages, 2203 KiB  
Review
Digital Academic Leadership in Higher Education Institutions: A Bibliometric Review Based on CiteSpace
by Olaniyi Joshua Olabiyi, Carl Jansen van Vuuren, Marieta Du Plessis, Yujie Xue and Chang Zhu
Educ. Sci. 2025, 15(7), 846; https://doi.org/10.3390/educsci15070846 - 2 Jul 2025
Cited by 1 | Viewed by 792
Abstract
The continuous evolution of technology compels higher education leaders to adapt to VUCA (volatile, uncertain, complex, and ambiguous) and BANI (brittle, anxious, non-linear, and incomprehensible) environments through innovative strategies that ensure institutional relevance. While VUCA emphasizes the challenges posed by rapid change and [...] Read more.
The continuous evolution of technology compels higher education leaders to adapt to VUCA (volatile, uncertain, complex, and ambiguous) and BANI (brittle, anxious, non-linear, and incomprehensible) environments through innovative strategies that ensure institutional relevance. While VUCA emphasizes the challenges posed by rapid change and uncertain decision-making, BANI underscores the fragility of systems, heightened anxiety, unpredictable causality, and the collapse of established patterns. Navigating these complexities requires agility, resilience, and visionary leadership to ensure that institutions remain adaptable and future ready. This study presents a bibliometric analysis of digital academic leadership in higher education transformation, examining empirical studies, reviews, book chapters, and proceeding papers published from 2014 to 2024 (11-year period) in the Web of Science—Science Citation Index Expanded (SCIE) and Social Science Citation Index (SSCI). Using CiteSpace software (version 6.3. R1-64 bit), we analyzed 5837 documents, identifying 24 key publications that formed a network of 90 nodes and 256 links. The reduction to 24 publications occurred as part of a structured bibliometric analysis using CiteSpace, which employs algorithmic thresholds to identify the most influential and structurally significant publications within a large corpus. These 24 documents form the core co-citation network, which serves as a conceptual backbone for further thematic interpretation. This was the result of a multi-step refinement process using CiteSpace’s default thresholds and clustering algorithms to detect the most influential nodes based on centrality, citation burst, and network clustering. Our findings reveal six primary research clusters: “Enhancing Academic Performance”, “Digital Leadership Scale Adaptation”, “Construction Industry”, “Innovative Work Behavior”, “Development Business Strategy”, and “Education.” The analysis demonstrates a significant increase in publications over the decade, with the highest concentration in 2024, reflecting growing scholarly interest in this field. Keywords analysis shows “digital leadership”, “digital transformation”, “performance”, and “innovation” as dominant terms, highlighting the field’s evolution from technology-focused approaches to holistic leadership frameworks. Geographical analysis reveals significant contributions from Pakistan, Ireland, and India, indicating valuable insights emerging from diverse global contexts. These findings suggest that effective digital academic leadership requires not only technical competencies but also transformational capabilities, communication skills, and innovation management to enhance student outcomes and institutional performance in an increasingly digitalized educational landscape. Full article
Show Figures

Figure 1

20 pages, 3503 KiB  
Article
Finite Element Analysis Framework for Structural Safety Evaluation of Type IV Hydrogen Storage Vessel
by Gunwoo Kim, Hyewon Kim, Hanmin Park, Kyuhwan Park, Sujin Yoon, Hansu Lee, Seokjin Lee, Jonglyul Kim, Gyehyoung Yoo, Younggil Youn and Hansang Kim
Hydrogen 2025, 6(3), 44; https://doi.org/10.3390/hydrogen6030044 - 2 Jul 2025
Viewed by 306
Abstract
Type IV composite overwrapped pressure vessels (COPVs) store hydrogen at pressures up to 70 MPa and must meet stringent safety standards through physical testing. However, full-scale burst, plug torque, axial compression, impact, and drop tests are time-consuming and costly. This study proposes a [...] Read more.
Type IV composite overwrapped pressure vessels (COPVs) store hydrogen at pressures up to 70 MPa and must meet stringent safety standards through physical testing. However, full-scale burst, plug torque, axial compression, impact, and drop tests are time-consuming and costly. This study proposes a unified finite element analysis (FEA) workflow that replicates these mandatory tests and predicts failure behavior without physical prototypes. Axisymmetric and three-dimensional solid models with reduced-integration elements were constructed for the polyamide liner, aluminum boss, and carbon/epoxy composite. Burst simulations showed that increasing the hoop-to-axial stiffness ratio shifts peak stress to the cylindrical region, promoting a longitudinal rupture—considered structurally safer. Plug torque and axial load simulations revealed critical stresses at the boss–composite interface, which can be reduced through neck boss shaping and layup optimization. A localized impact with a 25 mm sphere generated significantly higher stress than a larger 180 mm impactor under equal energy. Drop tests confirmed that 45° oblique drops cause the most severe dome stresses due to thin walls and the lack of hoop support. The proposed workflow enables early-stage structural validation, supports cost-effective design optimization, and accelerates the development of safe hydrogen storage systems for automotive and aerospace applications. Full article
Show Figures

Figure 1

29 pages, 17942 KiB  
Review
Bibliometric Analysis of Coating Protection from 2015 to 2025
by Yin Hu, Tianyao Hong, Sheng Zhou, Yangrui Wang, Qihang Ye, Shiyu Sheng, Shifang Wang, Chuang He, Haijie He and Minjie Xu
Coatings 2025, 15(6), 686; https://doi.org/10.3390/coatings15060686 - 6 Jun 2025
Viewed by 944
Abstract
Composite protective coatings are critical for material durability but face challenges like fragmented knowledge and scalability issues. Existing research lacks the systematic integration of nanomaterial properties with macroscale performance and standardized evaluation protocols for hybrid systems. This study uses CiteSpace to analyze 18,363 [...] Read more.
Composite protective coatings are critical for material durability but face challenges like fragmented knowledge and scalability issues. Existing research lacks the systematic integration of nanomaterial properties with macroscale performance and standardized evaluation protocols for hybrid systems. This study uses CiteSpace to analyze 18,363 publications (2015–2025) from Web of Science, visualizing collaborative networks, keyword clusters, and citation bursts. China leads global research output (8508 publications), with the USA and India following, while materials science, chemistry, and physics dominate disciplines. Key themes include nanocomposite coatings (e.g., graphene oxide, MXene), corrosion resistance mechanisms, and sustainable technologies, with citation bursts highlighting nanocomposites and surface functionalization. The study reveals interdisciplinary synergies in 2D nanomaterial-polymer systems, thereby improving barrier properties and enabling stimuli-responsive inhibitor release, yet it identifies gaps in lifecycle sustainability and industrial scalability. By constructing a holistic knowledge framework, this work bridges theory and application, quantifying interdisciplinary linkages and pinpointing frontiers like smart, multifunctional coatings. This study integrates data-driven insights to facilitate cross-sector collaboration. It delivers a strategic framework to tackle global challenges in material durability, sustainability, and practical application. Full article
(This article belongs to the Special Issue Advances in Corrosion Behaviors and Protection of Coatings)
Show Figures

Graphical abstract

16 pages, 12865 KiB  
Review
Knowledge Structure and Frontier Evolution of Research on Nickel Deposits
by Ran Liu, Pengjie Cai and Xin Chen
Minerals 2025, 15(5), 464; https://doi.org/10.3390/min15050464 - 29 Apr 2025
Viewed by 533
Abstract
Nickel (Ni) resources are critical for the development of modern industry. This study investigates the knowledge structure and frontier evolution of Ni deposit research by constructing a domain-specific knowledge graph using bibliometric analysis and semantic extraction from 7090 publications (1966–2024) sourced from the [...] Read more.
Nickel (Ni) resources are critical for the development of modern industry. This study investigates the knowledge structure and frontier evolution of Ni deposit research by constructing a domain-specific knowledge graph using bibliometric analysis and semantic extraction from 7090 publications (1966–2024) sourced from the Web of Science Core Collection. The results show that Ni research has three distinct phases: slow growth (1966–1990), early growth (1991–2010), and rapid expansion (2011–present). The collaborative network of institutions in which articles are published forms three regional clusters centered on China, Russia, and Australia. Keyword burst analysis identifies emerging frontiers, including sulfur isotopes, pyrite geochemistry, and LA-ICP-MS applications. Temporal keyword analysis identifies “platinum-group minerals”, “ore-forming fluids”, “isotopic analysis”, and “Eastern Tianshan” interactions as five pivotal research frontiers in nickel deposit studies. The knowledge graph framework demonstrates significant potential in mitigating data fragmentation, enhancing interdisciplinary data accessibility, and guiding future exploration strategies. This study shows the important role of knowledge maps in optimizing the study of nickel deposits. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

17 pages, 7193 KiB  
Article
Effects of Packet Loss on Neural Decoding Effectiveness in Wireless Transmission
by Jiaqi Zheng, Yuan Li, Liangliang Chen, Fei Wang, Boxuan Gu, Qixiang Sun, Xiang Gao and Fan Zhou
Brain Sci. 2025, 15(3), 221; https://doi.org/10.3390/brainsci15030221 - 20 Feb 2025
Viewed by 969
Abstract
Background: In brain–computer interfaces, neural decoding plays a central role in translating neural signals into meaningful physical actions. These signals are transmitted to processors for decoding via wired or wireless channels; however, they are often subject to data loss, commonly referred to as [...] Read more.
Background: In brain–computer interfaces, neural decoding plays a central role in translating neural signals into meaningful physical actions. These signals are transmitted to processors for decoding via wired or wireless channels; however, they are often subject to data loss, commonly referred to as “packet loss”. Despite their importance, the effects of different types and degrees of packet loss on neural decoding have not yet been comprehensively studied. Understanding these effects is critical for advancing neural signal processing. Methods: This study addresses this gap by constructing four distinct packet loss models that simulate the congestion, distribution, and burst loss scenarios. Using macaque superior arm movement decoding experiments, we analyzed the effects of the aforementioned packet loss types on decoding performance across six parameters (position, velocity, and acceleration in the x and y dimensions). The performance was assessed using the R2 metric and statistical comparisons across different loss scenarios. Results: Our results indicate that sudden, consecutive packet loss significantly degraded decoding performance. For the same packet loss probability, burst loss led to the largest decrease in the R2 value. Notably, when the packet loss rate reached 10%, the decoding performance for acceleration dropped to 73% of the original R2 value. On the other hand, when the packet loss rate was within 2%, the neural signal decoding results across all packet loss models remained largely unaffected. However, as the packet loss rate increased, the impact became more pronounced. These findings highlight the varying degrees to which different packet loss models affect decoding outcomes. Conclusions: This study quantitatively evaluated the relationship between packet loss and neural decoding outcomes, highlighting the differential effects of loss patterns on decoding parameters, and it proposed some methods and devices to solve the problem of packet loss. These findings offer valuable insights for the development of resilient neural signal acquisition and processing systems capable of mitigating the impact of packet loss. Full article
(This article belongs to the Special Issue The Use of the Brain–Computer Interface (BCI) in Neuroscience)
Show Figures

Figure 1

26 pages, 9559 KiB  
Article
Exploring Knowledge Domain of Intelligent Safety and Security Studies by Bibliometric Analysis
by Ting Mei, Hui Liu, Bingrui Tong, Chaozhen Tong, Junjie Zhu, Yuxuan Wang and Mengyao Kou
Sustainability 2025, 17(4), 1475; https://doi.org/10.3390/su17041475 - 11 Feb 2025
Viewed by 853
Abstract
Intelligent safety and security is significant for preventing risks, ensuring information security and promoting sustainable social development, making it an indispensable part of modern society. Current research primarily focuses on the knowledge base and research hotspots in the field of intelligent safety and [...] Read more.
Intelligent safety and security is significant for preventing risks, ensuring information security and promoting sustainable social development, making it an indispensable part of modern society. Current research primarily focuses on the knowledge base and research hotspots in the field of intelligent safety and security. However, a comprehensive mapping of its overall knowledge structure remains lacking. A total of 1400 publications from the Web of Science Core Collection (2013–2023) are analyzed using VOSviewer and CiteSpace, through which co-occurrence analysis, keyword burst detection, and co-citation analysis are conducted. Through this approach, this analysis systematically uncovers the core themes, evolutionary trajectories, and emerging trends in intelligent safety and security research. Unlike previous bibliometric studies, this study is the first to integrate multiple visualization techniques to construct a holistic framework of the intelligent safety and security knowledge system. Additionally, it offers an in-depth analysis of key topics such as IoT security, intelligent transportation systems, smart cities, and smart grids, providing quantitative insights to guide future research directions. The results show that the most significant number of publications are from China; the top position on the list of papers published by related institutions is occupied by King Saud University from Saudi Arabia. Renewable and Sustainable Energy Reviews, Sustainable Cities and Society, and IEEE Transactions on Intelligent Transportation Systems are identified as the leading publications in this field. The decentralization of blockchain technology, the security and challenges of the Internet of Things (IoT), and research on intelligent cities and smart homes have formed the knowledge base for innovative security research. The four key directions of intelligent safety and security research mainly comprise IoT security, intelligent transportation systems, traffic safety and its far-reaching impact, and the utilization of smart grids and renewable energy. Research on IoT technology, security, and limitations is at the forefront of interest in this area. Full article
(This article belongs to the Special Issue Intelligent Information Systems and Operations Management)
Show Figures

Figure 1

23 pages, 5106 KiB  
Review
The Role of Government Procurement in Sustainable Industry Development—The Trends and Research Agenda
by Nannan Wang, Naixiao Cui, Junlin Hao and Yilin Chai
Sustainability 2025, 17(3), 1319; https://doi.org/10.3390/su17031319 - 6 Feb 2025
Cited by 1 | Viewed by 1580
Abstract
Government procurement (GP) has evolved beyond a mere administrative activity and has emerged as a powerful policy instrument to guide industry development directions. The existing literature often falls short in providing an exhaustive interpretation of such a role of GP in the critical [...] Read more.
Government procurement (GP) has evolved beyond a mere administrative activity and has emerged as a powerful policy instrument to guide industry development directions. The existing literature often falls short in providing an exhaustive interpretation of such a role of GP in the critical industry sectors. This study employs a two-stage approach, comprising database construction, filtering, coding, and statistical analysis, aimed at conducting a systematic bibliometric review of the studies related to GP to identify its functionalities, including promoting sustainable development, initiating new industry policies, and stimulating innovation. The most addressed industry sectors by researchers are manufacturing, food, agriculture, and construction. Environmental science is the most explored research field, and the circular economy appears as the most recent bursting keyword. The insights from this review identify research gaps and challenges, based on which the proposing directions for future research are suggested, including promoting a circular economy, the sustainable development of the healthcare sector, protecting sustainable supply chains, efficiency evaluation, the application of artificial intelligence technologies in procurement, and exploring inter-functional relationships in GP. Full article
Show Figures

Figure 1

16 pages, 6142 KiB  
Article
Migration and Transformation of Greenhouse Gases in Constructed Wetlands: A Bibliometric Analysis and Trend Forecast
by Ruiyao Qi, Jiahao Dong, Yan Kang, Huijun Xie, Haiming Wu, Zhen Hu and Zizhang Guo
Water 2025, 17(3), 412; https://doi.org/10.3390/w17030412 - 2 Feb 2025
Viewed by 1027
Abstract
Constructed wetlands (CWs), serving as an advanced wastewater treatment system, play a vital role in both the emission and sequestration of diverse GHGs. However, there are few papers reviewing and analyzing developments in the field. In this study, bibliometrics were used as an [...] Read more.
Constructed wetlands (CWs), serving as an advanced wastewater treatment system, play a vital role in both the emission and sequestration of diverse GHGs. However, there are few papers reviewing and analyzing developments in the field. In this study, bibliometrics were used as an essential tool for identifying and establishing connections among key elements within a discipline, as well as for analyzing the research status and developmental trends of the research fields. CiteSpace 6.3.1 was utilized to conduct an analysis of the references from the Web of Science Core Collection pertaining to GHG emissions from CWs over the period from 1993 to 2023. This study showed the following conclusions. (1) Organic nitrogen conversion produces N2O, which is eventually transformed into N2 and released from CWs. Anammox represents an attractive route for nitrogen removal. (2) The CO2 is the final product of the oxidation of organic matter in the influent of CWs and can be fixed by plant photosynthesis. Anaerobic fermentation and CO2 reduction produce CH4. The two are emitted through aerenchyma transport, bubble diffusion, and other forms. (3) In the past 30 years, the number of publications and citation frequency shows an increasing trend. China and the United States published more papers. The top ten authors contributed to 20.607% of the total 1019, and the cooperation between different author groups needs to be strengthened. (4) The emerging burst keywords following 2020 are “microbial fuel cell” and “microbial community”, which highlights the current hotspots in research related to GHG emissions from CWs. (5) There is still a lack of long-term and applied discussion on the role of CWs in promoting GHG emission reduction. The relevant reaction conditions and mechanisms need to be explored and the possible research directions can be genetic regulation and information technology. Full article
Show Figures

Figure 1

22 pages, 444 KiB  
Article
Some New Constructions of q-ary Codes for Correcting a Burst of at Most t Deletions
by Wentu Song, Kui Cai and Tony Q. S. Quek
Entropy 2025, 27(1), 85; https://doi.org/10.3390/e27010085 - 18 Jan 2025
Viewed by 743
Abstract
In this paper, we construct q-ary codes for correcting a burst of at most t deletions, where t,q2 are arbitrarily fixed positive integers. We consider two scenarios of error correction: the classical error correcting codes, which recover each [...] Read more.
In this paper, we construct q-ary codes for correcting a burst of at most t deletions, where t,q2 are arbitrarily fixed positive integers. We consider two scenarios of error correction: the classical error correcting codes, which recover each codeword from one read (channel output), and the reconstruction codes, which allow to recover each codeword from multiple channel reads. For the first scenario, our construction has redundancy logn+8loglogn+o(loglogn) bits, encoding complexity O(q7tn(logn)3) and decoding complexity O(nlogn). For the reconstruction scenario, our construction can recover the codewords with two reads and has redundancy 8loglogn+o(loglogn) bits. The encoding complexity of this construction is Oq7tn(logn)3, and decoding complexity is Oq9t(nlogn)3. Both of our constructions have lower redundancy than the best known existing works. We also give explicit encoding functions for both constructions that are simpler than previous works. Full article
(This article belongs to the Special Issue Coding Theory and Its Applications)
Show Figures

Figure 1

12 pages, 11141 KiB  
Article
Key Parameters of the Roof Cutting and Pressure Relief Technology in the Pre-Splitting Blasting of a Hard Roof in Guqiao Coal Mine
by Hanlin You and Zegong Liu
Appl. Sci. 2024, 14(24), 11779; https://doi.org/10.3390/app142411779 - 17 Dec 2024
Cited by 1 | Viewed by 861
Abstract
The phenomenon of crushing the support of the hard roof of a coal seam occurs occasionally during the coal mining process. However, making the hard roof fall is difficult due to its good integrity and high strength. A vast area of unsupported, suspended [...] Read more.
The phenomenon of crushing the support of the hard roof of a coal seam occurs occasionally during the coal mining process. However, making the hard roof fall is difficult due to its good integrity and high strength. A vast area of unsupported, suspended roof can easily form in the goaf, inducing the hidden dangers of rock burst and coal and gas outbursts. A deep-hole pre-splitting blasting technique is used to fracture the roof and relieve the pressure exerted by the rigid roof in order to improve the caving of the hard roof and protect the stability of the roadway, ensuring safe and effective operational production of the 1127 (1) working face in Guqiao Coal Mine. By collecting field samples, the mechanical properties of relevant rock formations are ascertained. Combining numerical simulation with theoretical computation, a roof cutting pressure-relief scheme with a roof cutting height of 13.5 m and a roof cutting angle of 20° is selected. This scheme can decrease the peak vertical stress on the roadway roof from 22.01 MPa to 13.63 MPa compared to when roof cutting is not performed. By ensuring the effectiveness of roof cutting for pressure relief, this scheme can optimize the actual construction workload to a minimum. The study’s conclusions provide insightful information and can be used as a guide for future research on related technical topics. Full article
(This article belongs to the Special Issue Advances and Challenges in Rock Mechanics and Rock Engineering)
Show Figures

Figure 1

22 pages, 13909 KiB  
Article
Stress Characteristics and Rock Burst Prediction of the Xuefeng Mountain No.1 Tunnel: On-Site and Numerical Investigations
by Guo Xiang, Xiaohua Zhang, Shengnian Wang, Sanyou Wu, Xinming Pan and Dehui Xu
Sustainability 2024, 16(24), 10904; https://doi.org/10.3390/su162410904 (registering DOI) - 12 Dec 2024
Viewed by 886
Abstract
The risk level and disaster scale of rock bursts in deeply buried and highly stressed tunnels are commonly high, posing serious threats to their construction safety. This study employed a combination of on-site measurements and discrete-continuous coupled numerical simulations to analyze the geo-stress [...] Read more.
The risk level and disaster scale of rock bursts in deeply buried and highly stressed tunnels are commonly high, posing serious threats to their construction safety. This study employed a combination of on-site measurements and discrete-continuous coupled numerical simulations to analyze the geo-stress distribution characteristics of surrounding rock masses in the Xuefeng Mountain No.1 Tunnel. The evolution processes of rock burst failure in surrounding rock masses with different lithologies and buried at different depths were discussed. The risk of rock bursts along this long tunnel was predicted using the stress–strength ratio criterion and the energy method. The results showed that the principal stress values of surrounding rock masses in the Xuefeng Mountain No.1 Tunnel followed a distribution pattern of σx > σy > σz (where x, y, and z denoted the directions of tunnel cross-section and tunnel axis and the direction perpendicular to the ground), with average stress levels exceeding 20 MPa. It should be a typical tunnel dominated by horizontal tectonic stress. Stress concentration and elastic strain energy accumulation zones in this tunnel were mainly located at the bottom, and the largest displacements always occurred at the inverted arch. The main characteristics of rock burst failure in this tunnel included the sheet-like splitting of rock mass layers and the ejection of rock blocks. The risk evaluation of rock bursts across different sections of the tunnel, considering various rock types and buried depths, presented that these deeply buried slate and granite exhibited the highest risk level when assessed using the elastic strain energy index criterion. The comparative analysis between the elastic strain energy method and the stress–strength ratio criterion showed that the evaluation results obtained by the latter were more conservative. The findings of this study can provide a valuable reference for cognizing the geo-stress characteristics and predicting rock bursts in the surrounding rock masses of deep-buried and highly stressed tunnels. Full article
(This article belongs to the Special Issue Remote Sensing in Geologic Hazards and Risk Assessment)
Show Figures

Figure 1

Back to TopTop