Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = bufotalin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6413 KB  
Article
Bufotalin Induces Oxidative Stress-Mediated Apoptosis by Blocking the ITGB4/FAK/ERK Pathway in Glioblastoma
by Junchao Tan, Guoqiang Lin, Rui Zhang, Yuting Wen, Chunying Luo, Ran Wang, Feiyun Wang, Shoujiao Peng and Jiange Zhang
Antioxidants 2024, 13(10), 1179; https://doi.org/10.3390/antiox13101179 - 27 Sep 2024
Cited by 7 | Viewed by 1618
Abstract
Bufotalin (BT), a major active constituent of Chansu, has been found to possess multiple pharmacological activities. Although previous studies have shown that BT could inhibit the growth of glioblastoma (GBM), the safety of BT in vivo and the potential mechanism are still unclear. [...] Read more.
Bufotalin (BT), a major active constituent of Chansu, has been found to possess multiple pharmacological activities. Although previous studies have shown that BT could inhibit the growth of glioblastoma (GBM), the safety of BT in vivo and the potential mechanism are still unclear. We conducted a systematic assessment to investigate the impact of BT on GBM cell viability, migration, invasion, and colony formation. Furthermore, in vivo results were obtained to evaluate the effect of BT on tumor growth. The preliminary findings of our study demonstrate the effective inhibition of GBM cell growth and subcutaneous tumor development in mice by BT, with tolerable levels of tolerance observed. Mechanistically, BT treatment induced mitochondrial dysfunction, bursts of reactive oxygen species (ROS), and subsequent cell apoptosis. More importantly, proteomic-based differentially expressed proteins analysis revealed a significant downregulation of integrin β4 (ITGB4) following BT treatment. Furthermore, our evidence suggested that the ITGB4/focal adhesion kinase (FAK)/extracellular signal-related kinase (ERK) pathway involved BT-induced apoptosis. Overall, our study demonstrates the anti-GBM effects of BT and elucidates the underlying mechanism, highlighting BT as a potential therapeutic option for GBM. Full article
Show Figures

Figure 1

20 pages, 2574 KB  
Article
Comprehensive Analysis of Bufadienolide and Protein Profiles of Gland Secretions from Medicinal Bufo Species
by Yunge Fang, Liangmian Chen, Pengfei Wang, Yating Liu, Yuxiu Wang, Zhimin Wang, Yue Ma and Huimin Gao
Toxins 2024, 16(3), 159; https://doi.org/10.3390/toxins16030159 - 20 Mar 2024
Cited by 2 | Viewed by 3109
Abstract
Toad Venom (TV) is the dried product of toxic secretions from Bufo bufo gargarizans Cantor (BgC) or B. melanostictus Schneider (BmS). Given the increasing medical demand and the severe depletion of wild toads, a number of counterfeit TVs appeared on the market, posing challenges [...] Read more.
Toad Venom (TV) is the dried product of toxic secretions from Bufo bufo gargarizans Cantor (BgC) or B. melanostictus Schneider (BmS). Given the increasing medical demand and the severe depletion of wild toads, a number of counterfeit TVs appeared on the market, posing challenges to its quality control. In order to develop an efficient, feasible, and comprehensive approach to evaluate TV quality, a thorough analysis and comparison of chemical compounds among legal species BgC and BmS, as well as the main confusion species B. andrewsi Schmidt (BaS) and B. raddei Strauch (BrS), were conducted by ultra-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS), high performance liquid chromatography (HPLC), sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and Nano LC-MS/MS analyses. We identified 126 compounds, including free or conjugated bufadienolides, indole alkaloids and amino acids, among the four Bufo species. The content of main bufadienolides, such as gamabufotalin, bufotalin, bufalin, cinobufagin, and resibufogenin, and the total protein contents varied widely among 28 batches of TV due to their origin species. The sum of the five bufadienolides within the BgC, BmS, BaS, and BrS samples were 8.15–15.93%, 2.45–4.14%, 11.15–13.50%, and 13.21–14.68%, respectively. The total protein content of BgC (6.9–24.4%) and BaS (19.1–20.6%) samples were higher than that of BmS (4.8–20.4%) and BrS (10.1–13.7%) samples. Additionally, a total of 1357 proteins were identified. There were differences between the protein compositions among the samples of the four Bufo species. The results indicated that BgC TV is of the highest quality; BaS and BrS TV could serve as alternative resources, whereas BmS TV performed poorly overall. This research provides evidence for developing approaches to evaluate TV quality and selecting the proper Bufo species as the origin source of TV listed in the Chinese pharmacopoeia. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Graphical abstract

14 pages, 6108 KB  
Article
Bufotalin Suppresses Proliferation and Metastasis of Triple-Negative Breast Cancer Cells by Promoting Apoptosis and Inhibiting the STAT3/EMT Axis
by So Jin Park and Hye Jin Jung
Molecules 2023, 28(19), 6783; https://doi.org/10.3390/molecules28196783 - 23 Sep 2023
Cited by 13 | Viewed by 3371
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive type of breast cancer and has a poor prognosis. As standardized TNBC treatment regimens cause drug resistance and tumor recurrence, the development of new TNBC treatment strategies is urgently required. Bufotalin is a bufadienolide isolated [...] Read more.
Triple-negative breast cancer (TNBC) is a highly aggressive type of breast cancer and has a poor prognosis. As standardized TNBC treatment regimens cause drug resistance and tumor recurrence, the development of new TNBC treatment strategies is urgently required. Bufotalin is a bufadienolide isolated from the skin and parotid venom glands of the toad Bufo gargarizan, and has several pharmacological properties, including antiviral, anti-inflammatory, and anticancer activities. However, the anticancer effect and underlying molecular mechanisms of action of bufotalin in TNBC have not been fully studied. In the current study, we investigated the effects of bufotalin on the growth and metastasis of MDA-MB-231 and HCC1937 TNBC cells. Bufotalin potently inhibited the proliferation of both TNBC cell lines by promoting cell cycle arrest and caspase-mediated apoptosis. Furthermore, bufotalin effectively suppressed the migration and invasion of both TNBC cell lines by regulating the expression of key epithelial-mesenchymal transition (EMT) biomarkers, matrix metalloproteinases (MMPs), and integrin α6. Notably, the anticancer effect of bufotalin in TNBC cells was associated with the downregulation of the signal transducer and activator of the transcription 3 (STAT3) signaling pathway. Collectively, our results suggest that the natural compound bufotalin may exert antiproliferative and antimetastatic activities in TNBC cells by modulating the apoptotic pathway and the STAT3/EMT axis. Full article
Show Figures

Figure 1

23 pages, 1240 KB  
Review
Chemistry and the Potential Antiviral, Anticancer, and Anti-Inflammatory Activities of Cardiotonic Steroids Derived from Toads
by Hesham R. El-Seedi, Nermeen Yosri, Bishoy El-Aarag, Shaymaa H. Mahmoud, Ahmed Zayed, Ming Du, Aamer Saeed, Syed G. Musharraf, Islam M. El-Garawani, Mohamed R. Habib, Haroon Elrasheid Tahir, Momtaz M. Hegab, Xiaobo Zou, Zhiming Guo, Thomas Efferth and Shaden A. M. Khalifa
Molecules 2022, 27(19), 6586; https://doi.org/10.3390/molecules27196586 - 5 Oct 2022
Cited by 34 | Viewed by 4790
Abstract
Cardiotonic steroids (CTS) were first documented by ancient Egyptians more than 3000 years ago. Cardiotonic steroids are a group of steroid hormones that circulate in the blood of amphibians and toads and can also be extracted from natural products such as plants, herbs, [...] Read more.
Cardiotonic steroids (CTS) were first documented by ancient Egyptians more than 3000 years ago. Cardiotonic steroids are a group of steroid hormones that circulate in the blood of amphibians and toads and can also be extracted from natural products such as plants, herbs, and marines. It is well known that cardiotonic steroids reveal effects against congestive heart failure and atrial fibrillation; therefore, the term "cardiotonic" has been coined. Cardiotonic steroids are divided into two distinct groups: cardenolides (plant-derived) and bufadienolides (mainly of animal origin). Cardenolides have an unsaturated five-membered lactone ring attached to the steroid nucleus at position 17; bufadienolides have a doubly unsaturated six-membered lactone ring. Cancer is a leading cause of mortality in humans all over the world. In 2040, the global cancer load is expected to be 28.4 million cases, which would be a 47% increase from 2020. Moreover, viruses and inflammations also have a very nebative impact on human health and lead to mortality. In the current review, we focus on the chemistry, antiviral and anti-cancer activities of cardiotonic steroids from the naturally derived (toads) venom to combat these chronic devastating health problems. The databases of different research engines (Google Scholar, PubMed, Science Direct, and Sci-Finder) were screened using different combinations of the following terms: “cardiotonic steroids”, “anti-inflammatory”, “antiviral”, “anticancer”, “toad venom”, “bufadienolides”, and “poison chemical composition”. Various cardiotonic steroids were isolated from diverse toad species and exhibited superior anti-inflammatory, anticancer, and antiviral activities in in vivo and in vitro models such as marinobufagenin, gammabufotalin, resibufogenin, and bufalin. These steroids are especially difficult to identify. However, several compounds and their bioactivities were identified by using different molecular and biotechnological techniques. Biotechnology is a new tool to fully or partially generate upscaled quantities of natural products, which are otherwise only available at trace amounts in organisms. Full article
(This article belongs to the Special Issue New Anticancer Agents Based on Natural Products)
Show Figures

Figure 1

14 pages, 1615 KB  
Article
Bufadienolides from the Skin Secretions of the Neotropical Toad Rhinella alata (Anura: Bufonidae): Antiprotozoal Activity against Trypanosoma cruzi
by Candelario Rodriguez, Roberto Ibáñez, Luis Mojica, Michelle Ng, Carmenza Spadafora, Armando A. Durant-Archibold and Marcelino Gutiérrez
Molecules 2021, 26(14), 4217; https://doi.org/10.3390/molecules26144217 - 12 Jul 2021
Cited by 15 | Viewed by 4683
Abstract
Toads in the family Bufonidae contain bufadienolides in their venom, which are characterized by their chemical diversity and high pharmacological potential. American trypanosomiasis is a neglected disease that affects an estimated 8 million people in tropical and subtropical countries. In this research, we [...] Read more.
Toads in the family Bufonidae contain bufadienolides in their venom, which are characterized by their chemical diversity and high pharmacological potential. American trypanosomiasis is a neglected disease that affects an estimated 8 million people in tropical and subtropical countries. In this research, we investigated the chemical composition and antitrypanosomal activity of toad venom from Rhinella alata collected in Panama. Structural determination using mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy led to the identification of 10 bufadienolides. Compounds identified include the following: 16β-hydroxy-desacetyl-bufotalin-3-adipoyl-arginine ester (1), bufotalin (2), 16β-hydroxy-desacetyl-bufotalin-3-pimeloyl-arginine ester (3), bufotalin-3-pimeloyl-arginine ester (4), 16β-hydroxy-desacetyl-bufotalin-3-suberoyl-arginine ester (5), bufotalin-3-suberoyl-arginine ester (6), cinobufagin-3-adipoyl-arginine ester (7), cinobufagin-3-pimeloyl-arginine ester (8), cinobufagin-3-suberoyl-arginine ester (9), and cinobufagin (10). Among these, three new natural products, 1, 3, and 5, are described, and compounds 110 are reported for the first time in R. alata. The antitrypanosomal activity assessed in this study revealed that the presence of an arginyl-diacid attached to C-3, and a hydroxyl group at C-14 in the structure of bufadienolides that is important for their biological activity. Bufadienolides showed cytotoxic activity against epithelial kidney Vero cells; however, bufagins (2 and 10) displayed low mammalian cytotoxicity. Compounds 2 and 10 showed activity against the cancer cell lines MCF-7, NCI-H460, and SF-268. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

21 pages, 2828 KB  
Article
Chemical and Pharmacological Screening of Rhinella icterica (Spix 1824) Toad Parotoid Secretion in Avian Preparations
by Raquel Soares Oliveira, Bruna Trindade Borges, Allan Pinto Leal, Manuela Merlin Lailowski, Karla de Castro Figueiredo Bordon, Velci Queiróz de Souza, Lúcia Vinadé, Tiago Gomes dos Santos, Stephen Hyslop, Sidnei Moura, Eliane Candiani Arantes, Alexandre Pinto Corrado and Cháriston A. Dal Belo
Toxins 2020, 12(6), 396; https://doi.org/10.3390/toxins12060396 - 15 Jun 2020
Cited by 8 | Viewed by 4327
Abstract
The biological activity of Rhinella icterica parotoid secretion (RIPS) and some of its chromatographic fractions (RI18, RI19, RI23, and RI24) was evaluated in the current study. Mass spectrometry of these fractions indicated the presence of sarmentogenin, argentinogenin, (5β,12β)-12,14-dihydroxy-11-oxobufa-3,20,22-trienolide, marinobufagin, [...] Read more.
The biological activity of Rhinella icterica parotoid secretion (RIPS) and some of its chromatographic fractions (RI18, RI19, RI23, and RI24) was evaluated in the current study. Mass spectrometry of these fractions indicated the presence of sarmentogenin, argentinogenin, (5β,12β)-12,14-dihydroxy-11-oxobufa-3,20,22-trienolide, marinobufagin, bufogenin B, 11α,19-dihydroxy-telocinobufagin, bufotalin, monohydroxylbufotalin, 19-oxo-cinobufagin, 3α,12β,25,26-tetrahydroxy-7-oxo-5β-cholestane-26-O-sulfate, and cinobufagin-3-hemisuberate that were identified as alkaloid and steroid compounds, in addition to marinoic acid and N-methyl-5-hydroxy-tryptamine. In chick brain slices, all fractions caused a slight decrease in cell viability, as also seen with the highest concentration of RIPS tested. In chick biventer cervicis neuromuscular preparations, RIPS and all four fractions significantly inhibited junctional acetylcholinesterase (AChE) activity. In this preparation, only fraction RI23 completely mimicked the pharmacological profile of RIPS, which included a transient facilitation in the amplitude of muscle twitches followed by progressive and complete neuromuscular blockade. Mass spectrometric analysis showed that RI23 consisted predominantly of bufogenins, a class of steroidal compounds known for their cardiotonic activity mediated by a digoxin- or ouabain-like action and the blockade of voltage-dependent L-type calcium channels. These findings indicate that the pharmacological activities of RI23 (and RIPS) are probably mediated by: (1) inhibition of AChE activity that increases the junctional content of Ach; (2) inhibition of neuronal Na+/K+-ATPase, leading to facilitation followed by neuromuscular blockade; and (3) blockade of voltage-dependent Ca2+ channels, leading to stabilization of the motor endplate membrane. Full article
(This article belongs to the Special Issue Animal Venoms and Their Components: Molecular Mechanisms of Action)
Show Figures

Graphical abstract

Back to TopTop