Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = bright band (BB)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6073 KiB  
Communication
Microphysical Characteristics of Convective and Stratiform Precipitation Generated at Different Life Stages of Precipitating Cloud in the Pre-Summer Rainy Season in South China
by Jiayan Yang, Yunying Li, Xiong Hu, Zhiwei Zhang and Xiongwei Kou
Remote Sens. 2025, 17(7), 1250; https://doi.org/10.3390/rs17071250 - 1 Apr 2025
Viewed by 421
Abstract
This study uses GPM DPR and Himawari-8 cloud-top infrared data to classify the precipitating cloud (PC) into three life stages: developing, mature, and dissipating. Based on GPM DPR data from April to June 2018–2022, this research investigates the microphysical features of convective and [...] Read more.
This study uses GPM DPR and Himawari-8 cloud-top infrared data to classify the precipitating cloud (PC) into three life stages: developing, mature, and dissipating. Based on GPM DPR data from April to June 2018–2022, this research investigates the microphysical features of convective and stratiform precipitation over South China. The precipitation generated by the developing stage of the PC contains the largest proportion of convective precipitation, the largest precipitation area in the mature stage of PC, and the smallest precipitation area with the lowest convective precipitation proportion in the dissipating stage of the PC. For stratiform precipitation generated by the developing PC, the height of 0 °C level is marginally above the top height of Bright Band (BB), with both heights aligning in altitude during the mature and dissipating stages of the PC. The mass-weighted mean diameter (Dm) peaks at 1.2 mm below the BB, and near-surface Dm is positively correlated with the storm top height. For convective precipitation, raindrops with Dm of 1.9 mm and those exceeding 3.0 mm predominate. Notably, the near-surface Dm shows a positive correlation with storm top height, with the correlation coefficient for convective precipitation being greater than that for stratiform precipitation. Significantly, the average liquid and non-liquid water paths are larger in the dissipating stage as compared to the developing stage for both precipitation types. These findings suggest enhanced precipitation efficiency in South China and underscore the critical importance of stage-specific analyses in comprehending precipitating cloud microphysics. Full article
(This article belongs to the Special Issue Synergetic Remote Sensing of Clouds and Precipitation II)
Show Figures

Graphical abstract

19 pages, 3354 KiB  
Article
The Characteristics of Precipitation with and without Bright Band in Summer Tibetan Plateau and Central-Eastern China
by Liu Yang, Nan Sun, Ming Ma, Chunguang Cui, Bin Wang, Xiaofang Wang and Yunfei Fu
Remote Sens. 2024, 16(19), 3703; https://doi.org/10.3390/rs16193703 - 5 Oct 2024
Viewed by 1316
Abstract
The bright band (BB) is an important symbol of the ice–water transition zone in stratiform precipitation, and the presence or absence of BB will lead to different microphysical processes. In this paper, the characteristics of BB and precipitation characteristics with and without BB [...] Read more.
The bright band (BB) is an important symbol of the ice–water transition zone in stratiform precipitation, and the presence or absence of BB will lead to different microphysical processes. In this paper, the characteristics of BB and precipitation characteristics with and without BB in summer at Tibetan Plateau (TP) as well as Central-eastern China (CEC) are analyzed by using Global Precipitation Measurement (GPM) and the fifth generation ECMWF atmospheric reanalysis of the global climates (ERA5) datasets. The results show the freezing level height and BB height in TP are 0.5 km higher than those in CEC. With the increase in rain rate, the BB height decreases in TP but increases in CEC. The BB width becomes wider with the increase in maximum radar reflectivity. Secondly, the maximum reflectivity factor and particle diameter of stratiform precipitation with BB appear at 5 km, while the maximum reflectivity factor of stratiform precipitation without BB and convective precipitation appear near the ground. The particle diameter first decreases and then increases from the cloud top to the ground. Thirdly, the land surface temperature of convective precipitation is about 2.5 °C higher than stratiform precipitation with BB, indicating higher land surface temperatures are more likely to trigger convection. Lastly, BB can lead to a decrease in brightness temperature and an increase in polarized difference at 89 GHZ and 166 GHZ in CEC, likely due to the increasing ice particles in stratiform precipitation with BB. Full article
Show Figures

Figure 1

13 pages, 3786 KiB  
Article
Characteristics of the Evolution of Precipitation Particles during a Stratiform Precipitation Event in Liupan Mountains
by Yujun Qiu, Nansong Feng, Ying He, Rui Xu and Danning Zhao
Atmosphere 2024, 15(6), 732; https://doi.org/10.3390/atmos15060732 - 19 Jun 2024
Cited by 1 | Viewed by 1054
Abstract
This study utilizes comprehensive observational data from a stratiform mixed-cloud precipitation event in Liupan Mountains, combined with ground-based millimeter-wave cloud radar (CR), micro rain radar (MRR), and microwave radiometer (MR) data, to study the evolution characteristics and conversion efficiency of precipitation particles in [...] Read more.
This study utilizes comprehensive observational data from a stratiform mixed-cloud precipitation event in Liupan Mountains, combined with ground-based millimeter-wave cloud radar (CR), micro rain radar (MRR), and microwave radiometer (MR) data, to study the evolution characteristics and conversion efficiency of precipitation particles in the ice–water mixed layer, melting layer, and below these layers during the formation and dissipation of precipitation. The results show the following: (1) When precipitation particles occupy more than 20% of cloud layers detected by cloud radar, the ice–water mixed cloud layer descends and evolves into a precipitating cloud. (2) During surface precipitation periods, the proportion of raindrops forming precipitation was equivalent to that of small-scale precipitation particles in the cloud layers. The proportion of precipitation particles in the cloud layers with temperatures below 0 °C averaged 25%. Ice-phase particles within the bright band (BB) melted, coalesced, and grew into larger precipitation particles, increasing their proportion to 55%. (3) After surface precipitation ended, the water content and precipitation rate of the cloud layer were 60% and 52% of those during the precipitation process, respectively. The proportion of small-scale precipitation particles in the cloud layers was approximately half of that during the precipitation period. A large number of evaporated small-scale precipitation particles floated in the air layer below the clouds, occupying less than 6.0% of the cloud layers. Full article
(This article belongs to the Special Issue Cloud Remote Sensing: Current Status and Perspective)
Show Figures

Figure 1

20 pages, 7419 KiB  
Article
A New Methodology to Characterise the Radar Bright Band Using Doppler Spectral Moments from Vertically Pointing Radar Observations
by Albert Garcia-Benadí, Joan Bech, Sergi Gonzalez, Mireia Udina and Bernat Codina
Remote Sens. 2021, 13(21), 4323; https://doi.org/10.3390/rs13214323 - 27 Oct 2021
Cited by 10 | Viewed by 4101
Abstract
The detection and characterisation of the radar Bright Band (BB) are essential for many applications of weather radar quantitative precipitation estimates, such as heavy rainfall surveillance, hydrological modelling or numerical weather prediction data assimilation. This study presents a new technique to detect the [...] Read more.
The detection and characterisation of the radar Bright Band (BB) are essential for many applications of weather radar quantitative precipitation estimates, such as heavy rainfall surveillance, hydrological modelling or numerical weather prediction data assimilation. This study presents a new technique to detect the radar BB levels (top, peak and bottom) for Doppler radar spectral moments from the vertically pointing radars applied here to a K-band radar, the MRR-Pro (Micro Rain Radar). The methodology includes signal and noise detection and dealiasing schemes to provide realistic vertical Doppler velocities of precipitating hydrometeors, subsequent calculation of Doppler moments and associated parameters and BB detection and characterisation. Retrieved BB properties are compared with the melting level provided by the MRR-Pro manufacturer software and also with the 0 °C levels for both dry-bulb temperature (freezing level) and wet-bulb temperature from co-located radio soundings in 39 days. In addition, a co-located Parsivel disdrometer is used to analyse the equivalent reflectivity of the lowest radar height bins confirming consistent results of the new signal and noise detection scheme. The processing methodology is coded in a Python program called RaProM-Pro which is freely available in the GitHub repository. Full article
(This article belongs to the Special Issue Radar-Based Studies of Precipitation Systems and Their Microphysics)
Show Figures

Figure 1

21 pages, 25773 KiB  
Article
A Comparative Study on the Vertical Structures and Microphysical Properties of Stratiform Precipitation over South China and the Tibetan Plateau
by Jingshu He, Jiafeng Zheng, Zhengmao Zeng, Yuzhang Che, Min Zheng and Jianjie Li
Remote Sens. 2021, 13(15), 2897; https://doi.org/10.3390/rs13152897 - 23 Jul 2021
Cited by 11 | Viewed by 2959
Abstract
Under different water vapor and dynamic conditions, and the influence of topographies and atmospheric environments, stratiform precipitation over South China and the Tibetan Plateau can produce different features. In this study, stratiform precipitation vertical characteristics, bright-band (BB) microstructures, and the vertical variations of [...] Read more.
Under different water vapor and dynamic conditions, and the influence of topographies and atmospheric environments, stratiform precipitation over South China and the Tibetan Plateau can produce different features. In this study, stratiform precipitation vertical characteristics, bright-band (BB) microstructures, and the vertical variations of the raindrop size distribution (DSD) over a low-altitude site (Longmen site, 86 m) in South China and a high-altitude site (Nagqu site, 4507 m) on the Tibetan Plateau were comprehensively investigated and compared using measurements from a Ka-band millimeter-wave cloud radar (CR), a K-band microrain radar (MRR), and a Parsivel disdrometer (disdrometer). A reliable BB identification scheme was proposed on the basis of CR variables and used for stratiform precipitation sample selection and further statistics and analysis. Results indicate that melting layers over the Longmen are much higher and slightly thicker than those over the Nagqu due to significant differences in atmospheric conditions. For stratiform precipitation, vertical air motions and radar variables over the two sites show different variation trends from cloud top to the ground. Vertical air motions are very weak in the stratiform precipitation over the Longmen, whereas updrafts are more active over the Nagqu. Above the melting layer, radar equivalent reflectivity factor Ze (mean Doppler velocity VM) gradually increases (decreases) as height decreases over the two sites, but the aggregation rate for ice particles over the Longmen can be faster. In the melting layer, Ze (VM) at the BB bottom/center over the Longmen is larger (smaller) than those over the Nagqu for the reason that melted raindrops in the melting layers over the Longmen are larger than those over the Nagqu. Below the melting layer, profiles of radar variables and DSDs show completely different behaviors over the two sites, which reflects that the collision, coalescence, evaporation, and breakup processes of raindrops are different between the two sites. Over the Longmen, collision and coalescence dominate the precipitation properties; in particular, from 2.0–2.8 km, the breakup process competes with collision–coalescence processes but later is overpowered. In contrast, due to the lower BB heights over the Nagqu, collision and coalescence dominate raindrop properties. Comparisons of raindrop spectra suggest that the concentration of small (medium-to-large) raindrops over the Nagqu is much higher (slightly lower) than that over the Longmen. Therefore, the mass-weighted mean diameter Dm (the generalized intercept parameter Nw) over the Nagqu is smaller (larger) than that over the Longmen. Full article
Show Figures

Graphical abstract

18 pages, 7229 KiB  
Article
Characteristics of the Bright Band Based on Quasi-Vertical Profiles of Polarimetric Observations from an S-Band Weather Radar Network
by Jeong-Eun Lee, Sung-Hwa Jung and Soohyun Kwon
Remote Sens. 2020, 12(24), 4061; https://doi.org/10.3390/rs12244061 - 11 Dec 2020
Cited by 11 | Viewed by 3252
Abstract
Bright band (BB) characteristics obtained via dual-polarization weather radars elucidate thermodynamic and microphysical processes within precipitation systems. This study identified BB using morphological features from quasi-vertical profiles (QVPs) of polarimetric observations, and their geometric, thermodynamic, and polarimetric characteristics were statistically examined using nine [...] Read more.
Bright band (BB) characteristics obtained via dual-polarization weather radars elucidate thermodynamic and microphysical processes within precipitation systems. This study identified BB using morphological features from quasi-vertical profiles (QVPs) of polarimetric observations, and their geometric, thermodynamic, and polarimetric characteristics were statistically examined using nine operational S-band weather radars in South Korea. For comparable analysis among weather radars in the network, the calibration biases in reflectivity (ZH) and differential reflectivity (ZDR) were corrected based on self-consistency. The cross-correlation coefficient (ρHV) bias in the weak echo regions was corrected using the signal-to-noise ratio (SNR). First, we analyzed the heights of BBPEAK derived from the ZH as a function of season and compared the heights of BBPEAK derived from the ZH, ZDR, and ρHV. The heights of BBPEAK were highest in the summer season when the surface temperature was high. However, they showed distinct differences depending on the location (e.g., latitude) within the radar network, even in the same season. The height where the size of melting particles was at a maximum (BBPEAK from the ZH) was above that where the oblateness of these particles maximized (BBPEAK from ZDR). The height at which the inhomogeneity of hydometeors was at maximum (BBPEAK from the ρHV) was also below that of BBPEAK from the ZH. Second, BB thickness and relative position of BBPEAK were investigated to characterize the geometric structure of the BBs. The BB thickness increased as the ZH at BBBOTTOM increased, which indicated that large snowflakes melt more slowly than small snowflakes. The geometrical structure of the BBs was asymmetric, since the melting particles spent more time forming the thin shell of meltwater around them, and they rapidly collapsed to form a raindrop at the final stage of melting. Third, the heights of BBTOP, BBPEAK, and BBBOTTOM were compared with the zero-isotherm heights. The dry-temperature zero-isotherm heights were between BBTOP and BBBOTTOM, while the wet-bulb temperature zero-isotherm heights were close to the height of BBPEAK. Finally, we examined the polarimetric observations to understand the involved microphysical processes. The correlation among ZH at BBTOP, BBPEAK, and BBBOTTOM was high (>0.94), and the ZDR at BBBOTTOM was high when the BB’s intensity was strong. This proved that the size and concentration of snowflakes above the BB influence the size and concentration of raindrops below the BB. There was no depression in the ρHV for a weak BB. Finally, the mean profile of the ZH and ZDR depended on the ZH at BBBOTTOM. In conclusion, the growth process of snowflakes above the BB controls polarimetric observations of BB. Full article
(This article belongs to the Special Issue Radar-Based Studies of Precipitation Systems and Their Microphysics)
Show Figures

Figure 1

16 pages, 13295 KiB  
Article
Numerical Investigations of Atmospheric Rivers and the Rain Shadow over the Santa Clara Valley
by Dalton Behringer and Sen Chiao
Atmosphere 2019, 10(3), 114; https://doi.org/10.3390/atmos10030114 - 3 Mar 2019
Cited by 5 | Viewed by 4187
Abstract
This study investigated precipitation distribution patterns in association with atmospheric rivers (ARs). The Weather Research and Forecasting (WRF) model was employed to simulate two strong atmospheric river events. The precipitation forecasts were highly sensitive to cloud microphysics parameterization schemes. Thus, radar observed and [...] Read more.
This study investigated precipitation distribution patterns in association with atmospheric rivers (ARs). The Weather Research and Forecasting (WRF) model was employed to simulate two strong atmospheric river events. The precipitation forecasts were highly sensitive to cloud microphysics parameterization schemes. Thus, radar observed and simulated Z H and Z D R were evaluated to provide information about the drop-size distribution (DSD). Four microphysics schemes (WSM-5, WSM-6, Thompson, and WDM-6) with nested simulations (3 km, 1 km, and 1/3 km) were conducted. One of the events mostly contained bright-band (BB) rainfall and lasted less than 24 h, while the other contained both BB and non-bright-band (NBB) rainfall, and lasted about 27 h. For each event, there was no clear improvement in the 1/3 km model, over the 1 km model. Overall, the WDM-6 microphysics scheme best represented the rainfall and the DSD. It appears that this scheme performed well, due to its relative simplicity in ice and mixed-phase microphysics, while providing double-moment predictions of warm rain microphysics (i.e., cloud and rain mixing ratio and number concentration). The other schemes tested either provided single-moment predictions of all classes or double-moment predictions of ice and rain (Thompson). Considering the shallow nature of precipitation in atmospheric rivers and the high-frequency of the orographic effect enhancing the warm rain process, these assumptions appear to be applicable over the southern San Francisco Bay Area. Full article
(This article belongs to the Special Issue Atmospheric Rivers)
Show Figures

Figure 1

26 pages, 6486 KiB  
Article
Similarities and Improvements of GPM Dual-Frequency Precipitation Radar (DPR) upon TRMM Precipitation Radar (PR) in Global Precipitation Rate Estimation, Type Classification and Vertical Profiling
by Jinyu Gao, Guoqiang Tang and Yang Hong
Remote Sens. 2017, 9(11), 1142; https://doi.org/10.3390/rs9111142 - 7 Nov 2017
Cited by 51 | Viewed by 9807
Abstract
Spaceborne precipitation radars are powerful tools used to acquire adequate and high-quality precipitation estimates with high spatial resolution for a variety of applications in hydrological research. The Global Precipitation Measurement (GPM) mission, which deployed the first spaceborne Ka- and Ku-dual frequency radar (DPR), [...] Read more.
Spaceborne precipitation radars are powerful tools used to acquire adequate and high-quality precipitation estimates with high spatial resolution for a variety of applications in hydrological research. The Global Precipitation Measurement (GPM) mission, which deployed the first spaceborne Ka- and Ku-dual frequency radar (DPR), was launched in February 2014 as the upgraded successor of the Tropical Rainfall Measuring Mission (TRMM). This study matches the swath data of TRMM PR and GPM DPR Level 2 products during their overlapping periods at the global scale to investigate their similarities and DPR’s improvements concerning precipitation amount estimation and type classification of GPM DPR over TRMM PR. Results show that PR and DPR agree very well with each other in the global distribution of precipitation, while DPR improves the detectability of precipitation events significantly, particularly for light precipitation. The occurrences of total precipitation and the light precipitation (rain rates < 1 mm/h) detected by GPM DPR are ~1.7 and ~2.53 times more than that of PR. With regard to type classification, the dual-frequency (Ka/Ku) and single frequency (Ku) methods performed similarly. In both inner (the central 25 beams) and outer swaths (1–12 beams and 38–49 beams) of DPR, the results are consistent. GPM DPR improves precipitation type classification remarkably, reducing the misclassification of clouds and noise signals as precipitation type “other” from 10.14% of TRMM PR to 0.5%. Generally, GPM DPR exhibits the same type division for around 82.89% (71.02%) of stratiform (convective) precipitation events recognized by TRMM PR. With regard to the freezing level height and bright band (BB) height, both radars correspond with each other very well, contributing to the consistency in stratiform precipitation classification. Both heights show clear latitudinal dependence. Results in this study shall contribute to future development of spaceborne radar precipitation retrievals and benefit hydrological and meteorological research. Full article
Show Figures

Figure 1

16 pages, 2595 KiB  
Article
Crosstalk Effect in SNPP VIIRS
by Junqiang Sun and Menghua Wang
Remote Sens. 2017, 9(4), 344; https://doi.org/10.3390/rs9040344 - 4 Apr 2017
Cited by 10 | Viewed by 4649
Abstract
An investigation has been carried out to examine the crosstalk contamination in the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) spacecraft. Prior to this study, the cause of the pronounced striping in Earth View (EV) images and [...] Read more.
An investigation has been carried out to examine the crosstalk contamination in the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) spacecraft. Prior to this study, the cause of the pronounced striping in Earth View (EV) images and obvious discontinuity in the EV brightness temperature (BT) of the thermal emissive bands (TEB) during black body (BB) warm-up cool-down (WUCD) calibration observed since launch has not been identified. Meanwhile, it has been recently demonstrated in the MODerate-resolution Imaging Spectroradiometer (MODIS) long-wave infrared (LWIR) photovoltaic (PV) bands that the crosstalk effect induces the same erroneous features. In this investigation, it is shown that the established lunar imagery analysis indeed verifies the existence of crosstalk contamination in SNPP VIIRS TEB. The crosstalk effect is quantitatively characterized by deriving the crosstalk coefficients from the scheduled lunar observations. The magnitude of the effect is comparatively smaller than that in MODIS LWIR PV bands, but is of a large enough magnitude to induce the aforementioned artificial features. Among all SNPP VIIRS TEB, Band M14 has the largest crosstalk contamination from Band M15, while Bands M13, M15, M16, and I5 have pronounced crosstalk effects as well. One new detail of the crosstalk effect specific to SNPP VIIRS, differing from the MODIS result, is the distinctive two-group pattern of odd and even detectors for each affected band due to the arrangement of the detector on the focal plane assembly (FPA). This is fully consistent with the earlier finding that this odd-even detector arrangement contributes to striping in the sea surface temperature (SST) products. Our analyses additionally suggest an explanation of the large temperature anomalies appearing during the WUCD time periods. The parallel effort examining the potential crosstalk contamination in SNPP VIIRS reflective solar bands, however, reveals no observable effect. Full article
Show Figures

Graphical abstract

22 pages, 4758 KiB  
Article
Assessing the Effects of Suomi NPP VIIRS M15/M16 Detector Radiometric Stability and Relative Spectral Response Variation on Striping
by Zhuo Wang and Changyong Cao
Remote Sens. 2016, 8(2), 145; https://doi.org/10.3390/rs8020145 - 15 Feb 2016
Cited by 51 | Viewed by 6996
Abstract
Modern satellite radiometers have many detectors with different relative spectral response (RSR). Effect of RSR differences on striping and the root cause of striping in sensor data record (SDR) radiance and brightness temperature products have not been well studied. A previous study used [...] Read more.
Modern satellite radiometers have many detectors with different relative spectral response (RSR). Effect of RSR differences on striping and the root cause of striping in sensor data record (SDR) radiance and brightness temperature products have not been well studied. A previous study used MODTRAN radiative transfer model (RTM) to analyze striping. In this study, we make efforts to find the possible root causes of striping. Line-by-Line RTM (LBLRTM) is used to evaluate the effect of RSR difference on striping and the atmospheric dependency for VIIRS bands M15 and M16. The results show that previous study using MODTRAN is repeatable: the striping is related to the difference between band-averaged and detector-level RSR, and the BT difference has some atmospheric dependency. We also analyzed VIIRS earth view (EV) data with several striping index methods. Since the EV data is complex, we further analyze the onboard calibration data. Analysis of Variance (ANOVA) test shows that the noise along track direction is the major reason for striping. We also found evidence of correlation between solar diffuser (SD) and blackbody (BB) for detector 1 in M15. Digital Count Restoration (DCR) and detector instability are possibly related to the striping in SD and EV data, but further analysis is needed. These findings can potentially lead to further SDR processing improvements. Full article
(This article belongs to the Collection Visible Infrared Imaging Radiometers and Applications)
Show Figures

Graphical abstract

Back to TopTop