A Comparative Study on the Vertical Structures and Microphysical Properties of Stratiform Precipitation over South China and the Tibetan Plateau
Abstract
:1. Introduction
2. Instruments, Measurements, and Methods
2.1. Instruments and Measurements
2.2. Data Processing and Quality Control
2.3. Stratiform Precipitation Sample Identification and Data Matching
2.3.1. Stratiform Precipitation Sample Identification
2.3.2. Data Matching
3. Results
3.1. Stratiform Precipitation Vertical Characteristics and BB Microstructures
3.2. Vertical Variations of Stratiform Precipitation Raindrop Spectra
4. Discussion
4.1. Comparison of MRR with Disdrometer
4.2. Comparison of Stratiform Precipitation Microphysical Characteristics
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
No. | Abb. | Meaning | No. | Abb. | Meaning |
---|---|---|---|---|---|
1 | BB | bright-band | 9 | spectrum width | |
2 | DSD | raindrop size distribution | 10 | LDR | linear depolarization ratio |
3 | CR | Ka-band millimeter-wave cloud radar | 11 | mass-weighted mean diameter | |
4 | MRR | K-band microrain radar | 12 | generalized intercept parameter | |
5 | disdrometer | Parsivel disdrometer | 13 | AVs | averages |
6 | DSP | Doppler spectra | 14 | MDs | medians |
7 | radar equivalent reflectivity factor | 15 | STDs | standard deviations | |
8 | mean Doppler velocity | 16 | SKs | skewnesses |
References
- Houze, R.A. Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Am. Meteorol. Soc. 1997, 78, 2179–2196. [Google Scholar] [CrossRef]
- Schumacher, C.; Houze, R.A. Stratiform rain in the tropics as seen by the TRMM precipitation radar. J. Clim. 2003, 16, 1739–1756. [Google Scholar] [CrossRef]
- Gettelman, A.; Liu, X.; Barahona, D.; Lohmann, U.; Chen, C. Climate impacts of ice nucleation. J. Geophys. Res. Atmos. 2012, 117, D20201. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Leo, A.M.; Hernández, E.; Queralt, S.; Maqueda, G. Convective and stratiform precipitation trends in the Spanish Mediterranean coast. Atmos. Res. 2013, 119, 46–55. [Google Scholar] [CrossRef]
- Hou, T.; Lei, H.; Hu, Z.; Yang, J.; Li, X. Simulations of microphysics and precipitation in a stratiform cloud case over Northern China: Comparison of two microphysics schemes. Adv. Atmos. Sci. 2020, 37, 117–129. [Google Scholar] [CrossRef]
- Hobbs, P.V.; Matejka, T.J.; Herzegh, P.H.; Locatelli, J.D.; Houze, R.A. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. I: A case study of a cold front. J. Atmos. Sci. 1980, 37, 568–596. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.; Bindschadler, R. Cloud detection in Landsat imagery of ice sheets using shadow matching technique and automatic normalized difference snow index threshold value decision. Remote Sens. Environ. 2004, 91, 237–242. [Google Scholar] [CrossRef]
- Ruan, Z.; Ming, H.; Ma, J.; Ge, R.; Bian, L. Analysis of the microphysical properties of a stratiform rain event using an L-band profiler radar. J. Meteorol. Res. 2014, 28, 268–280. [Google Scholar] [CrossRef]
- Konwar, M.; Maheskumar, R.S.; Das, S.K.; Morwal, S.B. Nature of light rain during presence and absence of bright band. J. Earth Syst. Sci. 2012, 121, 947–961. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.J. The reduction of errors caused by bright bands in quantitative rainfall measurements made using radar. J. Atmos. Ocean. Technol. 1986, 3, 129–141. [Google Scholar] [CrossRef] [Green Version]
- Bellon, A.; Lee, G.W.; Zawadzki, I. Error statistics of VPR corrections in stratiform precipitation. J. Appl. Meteorol. 2005, 44, 998–1015. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Castillo-Velarde, C.D.; Valdivia Prado, J.M.; Flores Rojas, J.L.; Callañaupa Gutierrez, S.M.; Moya Alvarez, A.S.; Martine-Castro, D.; Silva, Y. Rainfall characteristics in the Mantaro Basin over tropical Andes from a vertically pointed profile rain radar and in-situ field campaign. Atmosphere 2020, 11, 248. [Google Scholar] [CrossRef] [Green Version]
- Jash, D.; Resmi, E.; Unnikrishnan, C.K.; Sumesh, R.K.; Sreekanth, T.S.; Sukumar, N.; Ramachandran, K. Variation in rain drop size distribution and rain integral parameters during southwest monsoon over a tropical station: An inter-comparison of disdrometer and Micro Rain Radar. Atmos. Res. 2019, 217, 24–36. [Google Scholar] [CrossRef]
- Devisetty, H.K.; Jha, A.K.; Das, S.K.; Deshpande, S.M.; Krishna, U.V.M.; Kalekar, P.M.; Pandithurai, G. A case study on bright band transition from very light to heavy rain using simultaneous observations of collocated X- and Ka-band radars. J. Earth Syst. Sci. 2019, 128, 136. [Google Scholar] [CrossRef] [Green Version]
- Foth, A.; Zimmer, J.; Lauermann, F.; Kalesse-Los, H. Evaluation of micro rain radar-based precipitation classification algorithms to discriminate between stratiform and convective precipitation. Atmos. Meas. Tech. 2021, 14, 4565–4574. [Google Scholar] [CrossRef]
- Sumesh, R.K.; Resmi, E.A.; Unnikrishnan, C.K.; Jash, D.; Sreekanth, T.S.; Resmi, M.C.M.; Rajeevan, K.; Nita, S.; Ramachandran, K.K. Microphysical aspects of tropical rainfall during bright band events at mid and high-altitude regions over southern Western Ghats, India. Atmos. Res. 2019, 227, 178–197. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Ulbrich, C.W. Cloud Microphysical Properties, Processes, and Rainfall Estimation Opportunities. Meteorol. Monogr. 2003, 30, 237–258. [Google Scholar] [CrossRef]
- Zwiebel, J.; Van Baelen, J.; Anquetin, S.; Pointin, Y.; Boudevillain, B. Impacts of orography and rain intensity on rainfall structure. The case of the HyMeX IOP7a event. Q. J. R. Meteorol. Soc. 2016, 142, 310–319. [Google Scholar] [CrossRef]
- Zhou, L.; Dong, X.; Fu, Z.; Wang, B.; Leng, L.; Xi, B.; Cui, C. Vertical distributions of raindrops and Z-R relationships using microrain radar and 2-D-video distrometer measurements during the Integrative Monsoon Frontal Rainfall Experiment (IMFRE). J. Geophys. Res. Atmos. 2019, 125. [Google Scholar] [CrossRef] [Green Version]
- Ramadhan, R.; Marzuki; Vonnisa, M.; Harmadi; Hashiguchi, H.; Shimomai, T. Diurnal variation in the vertical profile of the raindrop size distribution for stratiform rain as inferred from micro rain radar observations in Sumatra. Adv. Atmos. Sci. 2020, 37, 832–846. [Google Scholar] [CrossRef]
- Seela, B.K.; Janapati, J.; Lin, P.-L.; Wang, P.K.; Lee, M.-T. Raindrop size distribution characteristics of summer and winter season rainfall over north Taiwan. J. Geophys. Res. Atmos. 2018, 123, 11,602–11,624. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Yin, Y.; Shan, Y.; Jin, Q. Statistical characteristics of raindrop size distribution for stratiform and convective precipitation at different altitudes in Mt. Huangshan. Chin. J. Atmos. Sci. 2018, 42, 268–280. (In Chinese) [Google Scholar] [CrossRef]
- Huo, Z.Y.; Ruan, Z.; Wei, M.; Ge, R.S.; Li, F.; Ruan, Y. Statistical characteristics of raindrop size distribution in South China summer based on the vertical structure derived from VPR-CFMCW. Atmos. Res. 2019, 222, 47–61. [Google Scholar] [CrossRef]
- Tang, Q.; Xiao, H.; Guo, C.; Feng, L. Characteristics of the raindrop size distributions and their retrieved polarimetric radar parameters in northern and southern China. Atmos. Res. 2014, 135–136, 59–75. [Google Scholar] [CrossRef]
- Zhang, A.; Hu, J.; Chen, S.; Hu, D.; Liang, Z.; Huang, C.; Xiao, L.; Min, C.; Li, H. Statistical characteristics of raindrop size distribution in the monsoon season observed in southern China. Remote Sens. 2019, 11, 432. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.; Hu, S.; Liu, X.; Xiao, H.; Pan, X.; Xia, F.; Ou, G.; Zhang, C. Precipitation microphysical characteristics of Typhoon Mangkhut in southern China using 2D video disdrometers. Atmosphere 2020, 11, 975. [Google Scholar] [CrossRef]
- Chen, B.; Hu, Z.; Liu, L.; Zhang, G. Raindrop size distribution measurements at 4500 m on the Tibetan Plateau during TIPEX-III. J. Geophys. Res. Atmos. 2017, 122, 11092–11106. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, J.; Cheng, Z.; Wang, B. Characteristics of raindrop size distribution on the eastern slope of the Tibetan Plateau in summer. Atmosphere 2020, 11, 562. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, L. Statistical characteristics of raindrop size distribution in the Tibetan Plateau and southern China. Adv. Atmos. Sci. 2017, 34, 727–736. [Google Scholar] [CrossRef]
- Liu, L.P.; Zheng, J.F.; Ruan, Z.; Cui, Z.H.; Hu, Z.Q.; Wu, S.H.; Dai, G.Y.; Wu, Y.H. Comprehensive radar observations of clouds and precipitation over the Tibetan Plateau and preliminary analysis of cloud properties. J. Meteorol. Res. 2015, 29, 546–561. [Google Scholar] [CrossRef]
- Liu, L.P.; Ruan, Z.; Zheng, J.F.; Gao, W.H. Comparing and merging observation data from Ka-band cloud radar, C-band frequency-modulated continuous wave radar and ceilometer systems. Remote Sens. 2017, 9, 1282. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Zheng, J.; Wu, J. A Ka-band solid-state transmitter cloud radar and data merging algorithm for its measurements. Adv. Atmos. Sci. 2017, 34, 545–558. [Google Scholar] [CrossRef]
- Peters, G.; Fischer, B.; Andersson, T. Rain observations with a vertically looking Micro Rain Radar (MRR). Boreal Environ. Res. 2002, 7, 353–362. [Google Scholar]
- Peters, G.; Fischer, B.; Munster, H.; Clemens, M.; Wagner, A. Profiles of raindrop size distributions as retrieved by microrain radars. J. Appl. Meteorol. 2005, 44, 1930–1949. [Google Scholar] [CrossRef]
- Adirosi, E.; Baldini, L.; Roberto, N.; Gatlin, P.; Tokay, A. Improvement of vertical profiles of raindrop size distribution from micro rain radar using 2D video disdrometer measurements. Atmos. Res. 2016, 169, 404–415. [Google Scholar] [CrossRef]
- Wen, L.; Zhao, K.; Zhang, G.; Xue, M.; Zhou, B.; Liu, S.; Chen, X. Statistical characteristics of raindrop size distributions observed in East China during the Asian summer monsoon season using 2-D video disdrometer and Micro Rain Radar data. J. Geophys. Res. Atmos. 2016, 121, 2265–2282. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Lei, H.C.; Yang, J.F. Microphysical processes of a stratiform precipitation event over eastern China: Analysis using micro rain radar data. Adv. Atmos. Sci. 2017, 34, 1472–1482. [Google Scholar] [CrossRef]
- Wen, L.; Zhao, K.; Wang, M.Y.; Zhang, G.F. Seasonal variations of observed raindrop size distribution in East China. Adv. Atmos. Sci. 2019, 36, 346–362. [Google Scholar] [CrossRef]
- Jaffrain, J.; Berne, A. Experimental quantification of the sampling uncertainty associated with measurements from PARSIVEL disdrometers. J. Hydrometeor. 2011, 12, 352–370. [Google Scholar] [CrossRef]
- Tokay, A.; Petersen, W.A.; Gatlin, P.; Wingo, M. Comparison of raindrop size distribution measurements by collocated disdrometers. J. Atmos. Ocean. Technol. 2013, 30, 1672–1690. [Google Scholar] [CrossRef]
- Raupach, T.H.; Berne, A. Correction of raindrop size distributions measured by Parsivel disdrometers, using a two-dimensional video disdrometer as a reference. Atmos. Meas. Tech. 2015, 8, 343–365. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.J.; Wang, J.; Gong, D.L. Raindrop size distribution in a midlatitude continental squall line measured by Thies optical disdrometers over east China. J. Appl. Meteorol. Climatol. 2016, 55, 621–634. [Google Scholar] [CrossRef]
- Das, S.K.; Konwar, M.; Chakravarty, K.; Deshpande, S.M. Raindrop size distribution of different cloud types over the Western Ghats using simultaneous measurements from Micro-Rain Radar and disdrometer. Atmos. Res. 2017, 186, 72–82. [Google Scholar] [CrossRef]
- Janapati, J.; Seela, B.K.; Lin, P.L.; Lee, M.T.; Joseph, E. Microphysical features of typhoon and non-typhoon rainfall observed in Taiwan, an island in the northwestern Pacific. Hydrol. Earth Syst. Sci. 2021, 25, 4025–4040. [Google Scholar] [CrossRef]
- Huang, X.Y.; Fan, Y.W.; Li, F.; Xiao, H.; Zhang, X. The attenuation correction for a 35 GHz ground-based cloud radar. J. Infrared Millim. Waves 2013, 32, 325–330. (In Chinese) [Google Scholar] [CrossRef]
- Kollias, P.; Albrecht, B.A.; Marks, F.D., Jr. Cloud radar observations of vertical drafts and microphysics in convective rain. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Kollias, P.; Clothiaux, E.E.; Miller, M.A.; Albrecht, B.A.; Stephens, G.L.; Ackerman, T.P. Millimeter-Wavelength Radars: New Frontier in Atmospheric Cloud and Precipitation Research. Bull. Am. Meteorol. Soc. 2007, 88, 1608–1624. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Zhang, P.; Liu, L.; Liu, Y.; Che, Y. A study of vertical structures and microphysical characteristics of different convective cloud-precipitation types using Ka-band millimeter wave radar measurements. Remote Sens. 2019, 11, 1810. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Ding, H.; Dong, X.; Cao, J.; Su, T. Applications of QC and merged doppler spectral density data from Ka-band cloud radar to microphysics retrieval and comparison with airplane in situ observation. Remote Sens. 2019, 11, 1595. [Google Scholar] [CrossRef] [Green Version]
- Matrosov, S.Y. Attenuation-based estimates of rainfall rates aloft with vertically pointing Ka-band radars. J. Atmos. Ocean. Technol. 2005, 22, 43–54. [Google Scholar] [CrossRef]
- Kunz, M. Niederschlagsmessungen Mit Einem Vertikal Ausgerichteten K-Band FM-CW-Dopplerradar. Ph.D. Thesis, Institut für Meteorologie und Klimaforschung, Universität Karlsruhe, Karlsruhe, Germany, 1998; p. 95. [Google Scholar]
- Battaglia, A.; Rustemeier, E.; Tokay, A.; Blahak, U.; Simmer, C. PARSIVEL snow observations: A critical assessment. J. Atmos. Ocean. Technol. 2010, 27, 333–344. [Google Scholar] [CrossRef]
- Atlas, D.; Srivastava, R.C.; Sekhon, R.S. Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys. 1973, 11, 1–35. [Google Scholar] [CrossRef]
- Jha, A.K.; Kalapureddy, M.C.R.; Devisetty, H.K.; Deshpande, S.M.; Pandithurai, G. A case study on large-scale dynamical influence on bright band using cloud radar during the Indian summer monsoon. Meteorol. Atmos. Phys. 2019, 131, 505–515. [Google Scholar] [CrossRef]
- Trömel, S.; Ryzhkov, A.V.; Hickman, B.; Mühlbauer, K.; Simmer, C. Polarimetric radar variables in the layers of melting and dendritic growth at X band—Implications for a nowcasting strategy in stratiform rain. J. Appl. Meteorol. Climatol. 2019, 58, 2497–2522. [Google Scholar] [CrossRef]
- Allabakash, S.; Lim, S.; Jang, B.-J. Melting layer detection and characterization based on range height indicator–quasi vertical profiles. Remote Sens. 2019, 11, 2848. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Moisseev, D. Two layers of melting ice particles within a single radar bright band: Interpretation and implications. Geophys. Res. Lett. 2020, 47, e2020GL087499. [Google Scholar] [CrossRef]
- Fabry, F.; Zawadzki, I. Long-term radar observations of the melting layer of precipitation and their interpretation. J. Atmos. Sci. 1995, 52, 838–851. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, M. Characteristics of bright band and automatic detection algorithm with vertical pointed Ka band cloud radar. Plateau Meteorol. 2016, 35, 734–744. (In Chinese) [Google Scholar] [CrossRef]
- Wang, H.; Guo, X. Comparative analyses of vertical structure of deep convective clouds retrieved from satellites and ground-based radars at Naqu over the Tibetan Plateau. J. Meteorol. Res. 2019, 33, 446–462. [Google Scholar] [CrossRef]
- Wang, D.; Liu, L.; Zhong, L.; Wei, Y.; Wang, X. Analysis of the characters of melting layer of cloud radar data and its identification. Meteorol. Mon. 2012, 38, 712–721. (In Chinese) [Google Scholar] [CrossRef]
- Sun, X.; Liu, X.; He, H.; Cheng, Z. Automatic identification technology of melting layer in millimeter wave cloud radar data. Meteorol. Mon. 2011, 37, 720–726. (In Chinese) [Google Scholar] [CrossRef]
- Xie, L.; Wang, D.; Huang, N.; Xie, X.; Liu, F.; Ou, J. Identification of atmosphere 0 °C isotherm through cloud radar data. J. Arid Meteorol. 2016, 34, 472–480. (In Chinese) [Google Scholar] [CrossRef]
- Brandes, E.A.; Ikeda, K. Freezing-level estimation with polarimetric radar. J. Appl. Meteorol. 2004, 43, 1541–1553. [Google Scholar] [CrossRef]
- Liu, L.P.; Xie, L.; Cui, Z.H. Examination and Application of Doppler Spectral Density Data in Drop Size Distribution Retrieval in Weak Precipitation by Cloud Radar. Chin. J. Atmos. Sci. 2014, 38, 223–236. (In Chinese) [Google Scholar] [CrossRef]
- Smyth, T.J.; Illingworth, A.J. Radar estimates of rainfall rates at the ground in bright band and non-bright band events. Q. J. R. Meteorol. Soc. 1998, 124, 2417–2434. [Google Scholar] [CrossRef]
- Low, T.B.; List, R. Collision, Coalescence and Breakup of Raindrops. Part I: Experimentally Established Coalescence Efficiencies and Fragment Size Distributions in Breakup. J. Atmos. Sci. 1982, 39, 1591–1606. [Google Scholar] [CrossRef] [Green Version]
- Niu, S.; An, X.; San, J. Observational research on physical feature of summer rain dropsize distribution under synoptic systems in Ningxia. Plateau Meteorol. 2002, 21, 37–44. (In Chinese) [Google Scholar] [CrossRef]
- Thurai, M.; Gatlin, P.; Bringi, V.N.; Petersen, W.; Kennedy, P.; Notaroš, B.; Carey, L. Toward completing the raindrop size spectrum: Case studies involving 2D-video disdrometer, droplet spectrometer, and polarimetric radar measurements. J. Appl. Meteor. Clim. 2017, 56, 877–896. [Google Scholar] [CrossRef]
- Wen, L.; Zhao, K.; Zhang, G.; Liu, S.; Chen, G. Impacts of instrument limitations on estimated raindrop size distribution, radar parameters, and model microphysics during mei-yu season in east China. J. Atmos. Ocean. Technol. 2017, 34, 1021–1037. [Google Scholar] [CrossRef]
- Wen, L.; Zhao, K.; Yang, Z.; Chen, H.; Huang, H.; Chen, G.; Yang, Z. Microphysics of Stratiform and Convective Precipitation During Meiyu Season in Eastern China. J. Geophys. Res. Atmos. 2020, 125, e2020JD032677. [Google Scholar] [CrossRef]
Sites | Date | Datasets (Sample Numbers) | Mean Rain Rate (mm·h−1) | Accumulated Rain Amount (mm) | ||
---|---|---|---|---|---|---|
CR | MRR | Disdrometer | ||||
Longmen | 2016/06–08 | 23851 | 3742 | 3743 | 1.00 | 62.38 |
2017/06–07 | 19637 | 2902 | 3038 | 1.05 | 53.17 | |
Nagqu | 2014/07–08 | 25085 | 3793 | 4021 | 1.17 | 78.82 |
2015/07–08 | 23178 | 3605 | 3605 | 1.04 | 62.49 |
BB Quantities | Statistical Parameters (km) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
5th | 25th | 50th | 75th | 95th | AV | STD | SK | |||
Heights | Longmen | bottom | 4.17 | 4.38 | 4.53 | 4.74 | 4.98 | 4.56 | 0.25 | 0.13 |
center | 4.47 | 4.65 | 4.80 | 4.98 | 5.19 | 4.81 | 0.22 | 0.14 | ||
top | 4.71 | 4.89 | 5.04 | 5.19 | 5.43 | 5.05 | 0.22 | 0.15 | ||
Nagqu | bottom | 0.42 | 0.57 | 0.75 | 0.90 | 1.08 | 0.74 | 0.22 | −0.10 | |
center | 0.51 | 0.78 | 0.99 | 1.11 | 1.26 | 0.94 | 0.23 | −0.42 | ||
top | 0.75 | 0.99 | 1.20 | 1.32 | 1.47 | 1.16 | 0.23 | −0.41 | ||
Thickness | Longmen | the entire | 0.33 | 0.45 | 0.51 | 0.57 | 0.69 | 0.51 | 0.11 | 0.15 |
lower-half | 0.18 | 0.21 | 0.27 | 0.30 | 0.36 | 0.27 | 0.07 | 0.34 | ||
upper-half | 0.18 | 0.21 | 0.27 | 0.30 | 0.39 | 0.27 | 0.07 | 1.32 | ||
Nagqu | the entire | 0.27 | 0.36 | 0.42 | 0.51 | 0.63 | 0.44 | 0.11 | 0.85 | |
lower-half | 0.12 | 0.18 | 0.21 | 0.24 | 0.33 | 0.22 | 0.07 | 0.53 | ||
upper-half | 0.15 | 0.21 | 0.24 | 0.27 | 0.36 | 0.24 | 0.08 | 2.48 |
Radar Variables | BB Positions | Statistical Parameters | |||||||
---|---|---|---|---|---|---|---|---|---|
Longmen | Nagqu | ||||||||
MD | AV | STD | SK | MD | AV | STD | SK | ||
CR/MRR (dBZ) | bottom | 11.4/17.3 | 11.7/16.6 | 6.5/6.9 | −0.1/−0.6 | 9.7/15.9 | 9.6/15.4 | 9.1/8.9 | −0.3/−0.6 |
center | 12.8/20.4 | 13.2/19.4 | 6.4/7.0 | −0.3/−0.6 | 12.0/19.4 | 12.1/18.6 | 8.7/9.1 | −0.3/−0.7 | |
top | 5.5/14.8 | 6.0/14.9 | 5.7/5.4 | −0.06/−0.2 | 5.8/13.3 | 5.7/12.8 | 8.4/8.2 | −0.4/−0.6 | |
−7.5/−4.6 | −7.5/−4.5 | 3.1/3.3 | 0.2/0.2 | −6.4/−6.2 | −6.4/−5.9 | 4.0/4.6 | 0.03/0.5 | ||
1.8/3.0 | 1.9/2.8 | 1.9/2.2 | 0.8/−0.6 | 2.4/3.5 | 2.4/3.2 | 3.0/3.5 | 0.6/−0.3 | ||
CR/MRR (m·s−1) | bottom | −6.5/−6.3 | −6.2/−6.1 | 1.6/1.8 | 0.4/0.3 | −5.0/−4.5 | −4.9/−4.5 | 1.8/1.6 | 0.4/−0.4 |
center | −4.3/−4.0 | −4.2/−3.9 | 1.1/1.1 | 0.3/0.02 | −3.5/−2.8 | −3.5/−2.9 | 1.3/1.1 | 0.2/−0.8 | |
top | −1.8/−2.5 | −1.7/−2.4 | 0.6/0.8 | −0.8/−0.7 | −1.5/−1.8 | −1.7/−1.9 | 0.8/0.9 | −0.7/−2.1 | |
2.6 /1.4 | 2.5/1.4 | 1.0/0.9 | −0.4/−0.3 | 1.8/1.0 | 1.9/1.0 | 1.2/1.0 | −0.2/−0.8 | ||
2.0/2.2 | 2.0/2.2 | 0.9/1.2 | −0.07/−0.1 | 1.3/1.8 | 1.4/1.6 | 1.1/1. | −0.8/−0.1 | ||
CR (m·s−1) | bottom | 1.2 | 1.2 | 0.2 | −0.3 | 1.1 | 1.0 | 0.3 | −0.1 |
center | 0.6 | 0.6 | 0.1 | 0.5 | 0.5 | 0.5 | 0.2 | 0.5 | |
top | 0.3 | 0.3 | 0.1 | 3.9 | 0.3 | 0.4 | 0.2 | 2.4 | |
−0.3 | −0.3 | 0.1 | 0.6 | −0.2 | −0.2 | 0.2 | 0.8 | ||
−0.6 | −0.6 | 0.2 | 0.1 | −0.6 | −0.6 | 0.3 | 0.3 | ||
CR (dB) | bottom | −2.0 | −21.8 | 2.0 | 2.2 | −25.0 | −24.4 | 3.4 | 2.2 |
center | −11.0 | −11.0 | 1.6 | −1.4 | −13.0 | −14.0 | 2.7 | −1.6 | |
top | −20.0 | −20.0 | 1.8 | 0.8 | −24.0 | −23.8 | 2.3 | 1.3 | |
−9.8 | −10.4 | 2.2 | 0.8 | −10.8 | −9.2 | 3.1 | 1.1 | ||
12.7 | 11.9 | 2.4 | −2.4 | 12.1 | 9.9 | 4.0 | −1.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Zheng, J.; Zeng, Z.; Che, Y.; Zheng, M.; Li, J. A Comparative Study on the Vertical Structures and Microphysical Properties of Stratiform Precipitation over South China and the Tibetan Plateau. Remote Sens. 2021, 13, 2897. https://doi.org/10.3390/rs13152897
He J, Zheng J, Zeng Z, Che Y, Zheng M, Li J. A Comparative Study on the Vertical Structures and Microphysical Properties of Stratiform Precipitation over South China and the Tibetan Plateau. Remote Sensing. 2021; 13(15):2897. https://doi.org/10.3390/rs13152897
Chicago/Turabian StyleHe, Jingshu, Jiafeng Zheng, Zhengmao Zeng, Yuzhang Che, Min Zheng, and Jianjie Li. 2021. "A Comparative Study on the Vertical Structures and Microphysical Properties of Stratiform Precipitation over South China and the Tibetan Plateau" Remote Sensing 13, no. 15: 2897. https://doi.org/10.3390/rs13152897
APA StyleHe, J., Zheng, J., Zeng, Z., Che, Y., Zheng, M., & Li, J. (2021). A Comparative Study on the Vertical Structures and Microphysical Properties of Stratiform Precipitation over South China and the Tibetan Plateau. Remote Sensing, 13(15), 2897. https://doi.org/10.3390/rs13152897