Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = breather solitons

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1168 KiB  
Article
Analytical Solitary Wave Solutions of Fractional Tzitzéica Equation Using Expansion Approach: Theoretical Insights and Applications
by Wael W. Mohammed, Mst. Munny Khatun, Mohamed S. Algolam, Rabeb Sidaoui and M. Ali Akbar
Fractal Fract. 2025, 9(7), 438; https://doi.org/10.3390/fractalfract9070438 - 3 Jul 2025
Cited by 1 | Viewed by 301
Abstract
In this study, we investigate the fractional Tzitzéica equation, a nonlinear evolution equation known for modeling complex phenomena in various scientific domains such as solid-state physics, crystal dislocation, electromagnetic waves, chemical kinetics, quantum field theory, and nonlinear optics. Using the (G′/ [...] Read more.
In this study, we investigate the fractional Tzitzéica equation, a nonlinear evolution equation known for modeling complex phenomena in various scientific domains such as solid-state physics, crystal dislocation, electromagnetic waves, chemical kinetics, quantum field theory, and nonlinear optics. Using the (G′/G, 1/G)-expansion approach, we derive different categories of exact solutions, like hyperbolic, trigonometric, and rational functions. The beta fractional derivative is used here to generalize the classical idea of the derivative, which preserves important principles. The derived solutions with broader nonlinear wave structures are periodic waves, breathers, peakons, W-shaped solitons, and singular solitons, which enhance our understanding of nonlinear wave dynamics. In relation to these results, the findings are described by showing the solitons’ physical behaviors, their stabilities, and dispersions under fractional parameters in the form of contour plots and 2D and 3D graphs. Comparisons with earlier studies underscore the originality and consistency of the (G′/G, 1/G)-expansion approach in addressing fractional-order evolution equations. It contributes new solutions to analytical problems of fractional nonlinear integrable systems and helps understand the systems’ dynamic behavior in a wider scope of applications. Full article
Show Figures

Figure 1

25 pages, 13071 KiB  
Article
Optimizing Optical Fiber Communications: Bifurcation Analysis and Soliton Dynamics in the Quintic Kundu–Eckhaus Model
by Abdelhamid Mohammed Djaouti, Md. Mamunur Roshid, Harun-Or Roshid and Ashraf Al-Quran
Fractal Fract. 2025, 9(6), 334; https://doi.org/10.3390/fractalfract9060334 - 23 May 2025
Viewed by 506
Abstract
This paper investigates the bifurcation dynamics and optical soliton solutions of the integrable quintic Kundu–Eckhaus (QKE) equation with an M-fractional derivative. By adding quintic nonlinearity and higher-order dispersion, this model expands on the nonlinear Schrödinger equation, which makes it especially applicable in explaining [...] Read more.
This paper investigates the bifurcation dynamics and optical soliton solutions of the integrable quintic Kundu–Eckhaus (QKE) equation with an M-fractional derivative. By adding quintic nonlinearity and higher-order dispersion, this model expands on the nonlinear Schrödinger equation, which makes it especially applicable in explaining the propagation of high-power optical waves in fiber optics. To comprehend the behavior of the connected dynamical system, we categorize its equilibrium points, determine and analyze its Hamiltonian structure, and look at phase diagrams. Moreover, integrating along periodic trajectories yields soliton solutions. We achieve this by using the simplest equation approach and the modified extended Tanh method, which allow for a thorough investigation of soliton structures in the fractional QKE model. The model provides useful implications for reducing internet traffic congestion by including fractional temporal dynamics, which enables directed flow control to avoid bottlenecks. Periodic breather waves, bright and dark kinky periodic waves, periodic lump solitons, brilliant-dark double periodic waves, and multi-kink-shaped waves are among the several soliton solutions that are revealed by the analysis. The establishment of crucial parameter restrictions for soliton existence further demonstrates the usefulness of these solutions in optimizing optical communication systems. The theoretical results are confirmed by numerical simulations, highlighting their importance for practical uses. Full article
(This article belongs to the Section Mathematical Physics)
Show Figures

Figure 1

31 pages, 3063 KiB  
Article
Exploring Solitary Wave Solutions of the Generalized Integrable Kadomtsev–Petviashvili Equation via Lie Symmetry and Hirota’s Bilinear Method
by Beenish, Maria Samreen and Fehaid Salem Alshammari
Symmetry 2025, 17(5), 710; https://doi.org/10.3390/sym17050710 - 6 May 2025
Cited by 2 | Viewed by 464
Abstract
This study sought to deepen our understanding of the dynamical properties of the newly extended (3+1)-dimensional integrable Kadomtsev–Petviashvili (KP) equation, which models the behavior of ion acoustic waves in plasmas and nonlinear optics. This paper aimed to perform [...] Read more.
This study sought to deepen our understanding of the dynamical properties of the newly extended (3+1)-dimensional integrable Kadomtsev–Petviashvili (KP) equation, which models the behavior of ion acoustic waves in plasmas and nonlinear optics. This paper aimed to perform Lie symmetry analysis and derive lump, breather, and soliton solutions using the extended hyperbolic function method and the generalized logistic equation method. It also analyzed the dynamical system using chaos detection techniques such as the Lyapunov exponent, return maps, and the fractal dimension. Initially, we focused on constructing lump and breather soliton solutions by employing Hirota’s bilinear method. Secondly, employing Lie symmetry analysis, symmetry generators were utilized to satisfy the Lie invariance conditions. This approach revealed a seven-dimensional Lie algebra for the extended (3+1)-dimensional integrable KP equation, incorporating translational symmetry (including dilation or scaling) as well as translations in space and time, which were linked to the conservation of energy. The analysis demonstrated that this formed an optimal sub-algebraic system via similarity reductions. Subsequently, a wave transformation method was applied to reduce the governing system to ordinary differential equations, yielding a wide array of exact solitary wave solutions. The extended hyperbolic function method and the generalized logistic equation method were employed to solve the ordinary differential equations and explore closed-form analytical solitary wave solutions for the diffusive system under consideration. Among the results obtained were various soliton solutions. When plotting the results of all the solutions, we obtained bright, dark, kink, anti-kink, peak, and periodic wave structures. The outcomes are illustrated using 2D, 3D, and contour plots. Finally, upon introducing the perturbation term, the system’s behavior was analyzed using chaos detection techniques such as the Lyapunov exponent, return maps, and the fractal dimension. The results contribute to a deeper understanding of the dynamic properties of the extended KP equation in fluid mechanics. Full article
(This article belongs to the Special Issue Advances in Nonlinear Systems and Symmetry/Asymmetry)
Show Figures

Figure 1

15 pages, 4808 KiB  
Article
Unveiling the Transformative Power: Exploring the Nonlocal Potential Approach in the (3 + 1)-Dimensional Yu–Toda–Sasa–Fukuyama Equation
by Enas Y. Abu El Seoud, Ahmed S. Rashed and Samah M. Mabrouk
Axioms 2025, 14(4), 298; https://doi.org/10.3390/axioms14040298 - 15 Apr 2025
Viewed by 307
Abstract
This paper focuses on the investigation of the Yu–Toda–Sasa–Fukuyama (YTSF) equation in its three-dimensional form. Based on the well-known Euler operator, a set of seven non-singular local multipliers is explored. Using these seven non-singular multipliers, the corresponding local conservation laws are derived. Additionally, [...] Read more.
This paper focuses on the investigation of the Yu–Toda–Sasa–Fukuyama (YTSF) equation in its three-dimensional form. Based on the well-known Euler operator, a set of seven non-singular local multipliers is explored. Using these seven non-singular multipliers, the corresponding local conservation laws are derived. Additionally, an auxiliary potential-related system of partial differential equations (PDEs) is constructed. This study delves into nonlocal systems, which reveal numerous intriguing exact solutions of the YTSF equation. The nonlinear systems exhibit stable structures such as kink solitons, representing transitions, and breather or multi-solitons, modeling localized energy packets and complex interactions. These are employed in materials science, optics, communications, and plasma. Additionally, patterns such as parabolic backgrounds with ripples inform designs involving structured or varying media such as waveguides. Full article
(This article belongs to the Special Issue Difference, Functional, and Related Equations, 2nd Edition)
Show Figures

Figure 1

10 pages, 2816 KiB  
Article
Soliton Molecules, Multi-Lumps and Hybrid Solutions in Generalized (2 + 1)-Dimensional Date–Jimbo–Kashiwara–Miwa Equation in Fluid Mechanics
by Wei Zhu, Hai-Fang Song, Wan-Li Wang and Bo Ren
Symmetry 2025, 17(4), 538; https://doi.org/10.3390/sym17040538 - 1 Apr 2025
Viewed by 372
Abstract
The generalized (2 + 1)-dimensional Date–Jimbo–Kashiwara–Miwa (gDJKM) equation, which can be used to describe some phenomena in fluid mechanics, is investigated based on the multi-soliton solution. Soliton molecules of the gDJKM equation are given by the velocity resonance mechanism. A soliton molecule containing [...] Read more.
The generalized (2 + 1)-dimensional Date–Jimbo–Kashiwara–Miwa (gDJKM) equation, which can be used to describe some phenomena in fluid mechanics, is investigated based on the multi-soliton solution. Soliton molecules of the gDJKM equation are given by the velocity resonance mechanism. A soliton molecule containing three solitons is portrayed at different times. The invariance of the relative positions of three solitons confirms that they form a soliton molecule. Multi-order lumps are obtained by applying the long-wave limit method in the multi-soliton. By analyzing the dynamics of one-order and two-order lumps, the energy concentration and localization property for lump waves are displayed. In the meanwhile, a multi-soliton can transform into multi-order breathers by the complex conjugation relations of parameters. The interaction among lumps, breathers and soliton molecules can be constructed by combining the above comprehensive analysis. The interaction between a one-order lump and a soliton molecule is an elastic collision, which can be observed through investigating evolutionary processes. The results obtained in this paper are useful for explaining certain nonlinear phenomena in fluid dynamics. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

13 pages, 3037 KiB  
Article
The Multi-Soliton Solutions for the (2+1)-Dimensional Caudrey–Dodd–Gibbon–Kotera–Sawada Equation
by Li-Jun Xu, Zheng-Yi Ma, Jin-Xi Fei, Hui-Ling Wu and Li Cheng
Mathematics 2025, 13(2), 236; https://doi.org/10.3390/math13020236 - 12 Jan 2025
Cited by 1 | Viewed by 1011
Abstract
The (2+1)-dimensional integrable Caudrey–Dodd–Gibbon–Kotera–Sawada equation is a higher-order generalization of the Kadomtsev–Petviashvili equation, which can be applied in some physical branches such as the nonlinear dispersive phenomenon. In this paper, we first present the bilinear form for this equation after constructing one Bäcklund [...] Read more.
The (2+1)-dimensional integrable Caudrey–Dodd–Gibbon–Kotera–Sawada equation is a higher-order generalization of the Kadomtsev–Petviashvili equation, which can be applied in some physical branches such as the nonlinear dispersive phenomenon. In this paper, we first present the bilinear form for this equation after constructing one Bäcklund transformation. As a result, the one-soliton solution, two-soliton solution, and three-soliton solution are shown successively and the corresponding soliton structures are constructed. These solitons and their interactions illustrate that the obtained solutions have powerful applications. Full article
Show Figures

Figure 1

24 pages, 2990 KiB  
Article
Shallow-Water Wave Dynamics: Butterfly Waves, X-Waves, Multiple-Lump Waves, Rogue Waves, Stripe Soliton Interactions, Generalized Breathers, and Kuznetsov–Ma Breathers
by Sarfaraz Ahmed, Ujala Rehman, Jianbo Fei, Muhammad Irslan Khalid and Xiangsheng Chen
Fractal Fract. 2025, 9(1), 31; https://doi.org/10.3390/fractalfract9010031 - 8 Jan 2025
Cited by 4 | Viewed by 1114
Abstract
A nonlinear (3+1)-dimensional nonlinear Geng equation that can be utilized to explain the dynamics of shallow-water waves in fluids is given special attention. Various wave solutions are produced with the aid of the Hirota bilinear and Cole–Hopf transformation [...] Read more.
A nonlinear (3+1)-dimensional nonlinear Geng equation that can be utilized to explain the dynamics of shallow-water waves in fluids is given special attention. Various wave solutions are produced with the aid of the Hirota bilinear and Cole–Hopf transformation techniques. By selecting the appropriate polynomial function and implementing the distinct transformations in bilinear form, bright lump waves, dark lump waves, and rogue waves (RWs) are generated. A positive quadratic transformation and cosine function are combined in Hirota bilinear form to evaluate the RW solutions. Typically, RWs have crests that are noticeably higher than those of surrounding waves. These waves are also known as killer, freak, or monster waves. The lump periodic solutions (LPSs) are obtained using a combination of the cosine and positive quadratic functions. The lump-one stripe solutions are computed by using a mix of positive quadratic and exponential transformations to the governing equation. The lump two-stripe solutions are obtained by using a mix of positive quadratic and exponential transformations to the governing equation. The interactional solutions of lump, kink, and periodic wave solutions are obtained. Additionally, mixed solutions with butterfly waves, X-waves and lump waves are computed. The Ma breather (MB), Kuznetsov–Ma breather (KMB), and generalized breathers GBs are generated. Furthermore, solitary wave solution is obtained and a relation for energy of the wave via ansatz function technique. Full article
Show Figures

Figure 1

17 pages, 4679 KiB  
Article
Exploration of Soliton Solutions to the Special Korteweg–De Vries Equation with a Stability Analysis and Modulation Instability
by Abdulrahman Alomair, Abdulaziz S. Al Naim and Ahmet Bekir
Mathematics 2025, 13(1), 54; https://doi.org/10.3390/math13010054 - 27 Dec 2024
Cited by 4 | Viewed by 999
Abstract
This work is concerned with Hirota bilinear, expa function, and Sardar sub-equation methods to find the breather-wave, 1-Soliton, 2-Soliton, three-wave, and new periodic-wave results and some exact solitons of the special (1 + 1)-dimensional Korteweg–de Vries (KdV) equation. The model of concern [...] Read more.
This work is concerned with Hirota bilinear, expa function, and Sardar sub-equation methods to find the breather-wave, 1-Soliton, 2-Soliton, three-wave, and new periodic-wave results and some exact solitons of the special (1 + 1)-dimensional Korteweg–de Vries (KdV) equation. The model of concern is a partial differential equation that is used as a mathematical model of waves on shallow water surfaces. The results are attained as well as verified by Mathematica and Maple softwares. Some of the obtained solutions are represented in three-dimensional (3-D) and contour plots through the Mathematica tool. A stability analysis is performed to verify that the results are precise as well as accurate. Modulation instability is also performed for the steady-state solutions to the governing equation. The solutions are useful for the development of corresponding equations. This work shows that the methods used are simple and fruitful for investigating the results for other nonlinear partial differential models. Full article
(This article belongs to the Special Issue Exact Solutions and Numerical Solutions of Differential Equations)
Show Figures

Figure 1

13 pages, 6271 KiB  
Article
Bound States and Particle Production by Breather-Type Background Field Configurations
by Abhishek Rout and Brett Altschul
Symmetry 2024, 16(12), 1571; https://doi.org/10.3390/sym16121571 - 24 Nov 2024
Cited by 1 | Viewed by 687
Abstract
We investigate the interaction of fermion fields with oscillating domain walls, inspired by breather-type solutions of the sine-Gordon equation, a nonlinear system of fundamental importance. Our study focuses on the fermionic bound states and particle production induced by a time-dependent scalar background field. [...] Read more.
We investigate the interaction of fermion fields with oscillating domain walls, inspired by breather-type solutions of the sine-Gordon equation, a nonlinear system of fundamental importance. Our study focuses on the fermionic bound states and particle production induced by a time-dependent scalar background field. The fermions couple to two domain walls undergoing harmonic motion, and we explore the resulting dynamics of the fermionic wave functions. We demonstrate that while fermions initially form bound states around the domain walls, the energy provided by the oscillatory motion of the scalar field induces an outward flux of fermions and antifermions, leading to particle production and eventual flux propagation toward spatial infinity. Through numerical simulations, we observe that the fermion density exhibits quasiperiodic behavior, with partial recurrences of the bound state configurations after each oscillation period. However, the fermion wave functions do not remain localized, and over time, the density decreases as more particles escape the vicinity of the domain walls. Our results highlight that the sine-Gordon-like breather background, when coupled non-supersymmetrically to fermions, does not preserve integrability or stability, with the oscillations driving a continuous energy transfer into the fermionic modes. This study sheds light on the challenges of maintaining steady-state fermion solutions in time-dependent topological backgrounds and offers insights into particle production mechanisms in nonlinear dynamical systems with oscillating solitons. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

18 pages, 37584 KiB  
Article
Breather Bound States in a Parametrically Driven Magnetic Wire
by Camilo José Castro, Ignacio Ortega-Piwonka, Boris A. Malomed, Deterlino Urzagasti, Liliana Pedraja-Rejas, Pablo Díaz and David Laroze
Symmetry 2024, 16(12), 1565; https://doi.org/10.3390/sym16121565 - 22 Nov 2024
Viewed by 925
Abstract
We report the results of a systematic investigation of localized dynamical states in the model of a one-dimensional magnetic wire, which is based on the Landau–Lifshitz–Gilbert (LLG) equation. The dissipative term in the LLG equation is compensated by the parametric drive imposed by [...] Read more.
We report the results of a systematic investigation of localized dynamical states in the model of a one-dimensional magnetic wire, which is based on the Landau–Lifshitz–Gilbert (LLG) equation. The dissipative term in the LLG equation is compensated by the parametric drive imposed by the external AC magnetic field, which is uniformly applied perpendicular to the rectilinear wire. The existence and stability of the localized states is studied in the plane of the relevant control parameters, namely, the amplitude of the driving term and the detuning of its frequency from the parametric resonance. With the help of systematically performed simulations of the LLG equation, the existence and stability areas are identified in the parameter plane for several species of the localized states: stationary single- and two-soliton modes, single and double breathers, drifting double breathers with spontaneously broken inner symmetry, and multisoliton complexes. Multistability occurs in this system. The breathers emit radiation waves (which explains their drift caused by the spontaneous symmetry breaking, as it breaks the balance between the recoil from the waves emitted to left and right), while the multisoliton complexes exhibit cycles of periodic transitions between three-, five-, and seven-soliton configurations. Dynamical characteristics of the localized states are systematically calculated too. These include, in particular, the average velocity of the asymmetric drifting modes, and the largest Lyapunov exponent, whose negative and positive values imply that the intrinsic dynamics of the respective modes is regular or chaotic, respectively. Full article
(This article belongs to the Special Issue Nonlinear Science and Numerical Simulation with Symmetry)
Show Figures

Figure 1

14 pages, 1145 KiB  
Article
Superposition and Interaction Dynamics of Complexitons, Breathers, and Rogue Waves in a Landau–Ginzburg–Higgs Model for Drift Cyclotron Waves in Superconductors
by Hicham Saber, Muntasir Suhail, Amer Alsulami, Khaled Aldwoah, Alaa Mustafa and Mohammed Hassan
Axioms 2024, 13(11), 763; https://doi.org/10.3390/axioms13110763 - 4 Nov 2024
Cited by 3 | Viewed by 1066
Abstract
This article implements the Hirota bilinear (HB) transformation technique to the Landau–Ginzburg–Higgs (LGH) model to explore the nonlinear evolution behavior of the equation, which describes drift cyclotron waves in superconductivity. Utilizing the Cole–Hopf transform, the HB equation is derived, and symbolic manipulation combined [...] Read more.
This article implements the Hirota bilinear (HB) transformation technique to the Landau–Ginzburg–Higgs (LGH) model to explore the nonlinear evolution behavior of the equation, which describes drift cyclotron waves in superconductivity. Utilizing the Cole–Hopf transform, the HB equation is derived, and symbolic manipulation combined with various auxiliary functions (AFs) are employed to uncover a diverse set of analytical solutions. The study reveals novel results, including multi-wave complexitons, breather waves, rogue waves, periodic lump solutions, and their interaction phenomena. Additionally, a range of traveling wave solutions, such as dark, bright, periodic waves, and kink soliton solutions, are developed using an efficient expansion technique. The nonlinear dynamics of these solutions are illustrated through 3D and contour maps, accompanied by detailed explanations of their physical characteristics. Full article
Show Figures

Figure 1

18 pages, 313 KiB  
Review
Progresses on Some Open Problems Related to Infinitely Many Symmetries
by Senyue Lou
Mathematics 2024, 12(20), 3224; https://doi.org/10.3390/math12203224 - 15 Oct 2024
Cited by 3 | Viewed by 1140
Abstract
The quest to reveal the physical essence of the infinitely many symmetries and/or conservation laws that are intrinsic to integrable systems has historically posed a significant challenge at the confluence of physics and mathematics. This scholarly investigation delves into five open problems related [...] Read more.
The quest to reveal the physical essence of the infinitely many symmetries and/or conservation laws that are intrinsic to integrable systems has historically posed a significant challenge at the confluence of physics and mathematics. This scholarly investigation delves into five open problems related to these boundless symmetries within integrable systems by scrutinizing their multi-wave solutions, employing a fresh analytical methodology. For a specified integrable system, there exist various categories of n-wave solutions, such as the n-soliton solutions, multiple breathers, complexitons, and the n-periodic wave solutions (the algebro-geometric solutions with genus n), wherein n denotes an arbitrary integer that can potentially approach infinity. Each subwave comprising the n-wave solution may possess free parameters, including center parameters ci, width parameters (wave number) ki, and periodic parameters (the Riemann parameters) mi. It is evident that these solutions are translation invariant with respect to all these free parameters. We postulate that the entirety of the recognized infinitely many symmetries merely constitute linear combinations of these finite wave parameter translation symmetries. This conjecture appears to hold true for all integrable systems with n-wave solutions. The conjecture intimates that the currently known infinitely many symmetries is not exhaustive, and an indeterminate number of symmetries remain to be discovered. This conjecture further indicates that by imposing an infinite array of symmetry constraints, it becomes feasible to derive exact multi-wave solutions. By considering the renowned Korteweg–de Vries (KdV) equation and the Burgers equation as simple examples, the conjecture is substantiated for the n-soliton solutions. It is unequivocal that any linear combination of the wave parameter translation symmetries retains its status as a symmetry associated with the particular solution. This observation suggests that by introducing a ren-variable and a ren-symmetric derivative, which serve as generalizations of the Grassmann variable and the super derivative, it may be feasible to unify classical integrable systems, supersymmetric integrable systems, and ren-symmetric integrable systems within a cohesive hierarchical framework. Notably, a ren-symmetric integrable Burgers hierarchy is explicitly derived. Both the supersymmetric and the classical integrable hierarchies are encompassed within the ren-symmetric integrable hierarchy. The results of this paper will make further progresses in nonlinear science: to find more infinitely many symmetries, to establish novel methods to solve nonlinear systems via symmetries, to find more novel exact solutions and new physics, and to open novel integrable theories such as the ren-symmetric integrable systems and the possible relations to fractional integrable systems. Full article
(This article belongs to the Special Issue Soliton Theory and Integrable Systems in Mathematical Physics)
15 pages, 2834 KiB  
Article
Solitons, Lumps, Breathers, and Interaction Phenomena for a (2+1)-Dimensional Variable-Coefficient Extended Shallow-Water Wave Equation
by Tianwei Qiu, Zhen Wang, Xiangyu Yang, Guangmei Wei and Fangsen Cui
Mathematics 2024, 12(19), 3054; https://doi.org/10.3390/math12193054 - 29 Sep 2024
Cited by 4 | Viewed by 1174
Abstract
In this paper, soliton solutions, lump solutions, breather solutions, and lump-solitary wave solutions of a (2+1)-dimensional variable-coefficient extended shallow-water wave (vc-eSWW) equation are obtained based on its bilinear form. By calculating the vector field of the potential function, the interaction between lump waves [...] Read more.
In this paper, soliton solutions, lump solutions, breather solutions, and lump-solitary wave solutions of a (2+1)-dimensional variable-coefficient extended shallow-water wave (vc-eSWW) equation are obtained based on its bilinear form. By calculating the vector field of the potential function, the interaction between lump waves and solitary waves is studied in detail. Lumps can emerge from the solitary wave and are semi-localized in time. The analytical solutions may enrich our understanding of the nature of shallow-water waves. Full article
Show Figures

Figure 1

17 pages, 2059 KiB  
Article
Lump, Breather, Ma-Breather, Kuznetsov–Ma-Breather, Periodic Cross-Kink and Multi-Waves Soliton Solutions for Benney–Luke Equation
by Miguel Vivas-Cortez, Sajawal Abbas Baloch, Muhammad Abbas, Moataz Alosaimi and Guo Wei
Symmetry 2024, 16(6), 747; https://doi.org/10.3390/sym16060747 - 15 Jun 2024
Cited by 3 | Viewed by 1484
Abstract
The goal of this research is to utilize some ansatz forms of solutions to obtain novel forms of soliton solutions for the Benney–Luke equation. It is a mathematically valid approximation that describes the propagation of two-way water waves in the presence of surface [...] Read more.
The goal of this research is to utilize some ansatz forms of solutions to obtain novel forms of soliton solutions for the Benney–Luke equation. It is a mathematically valid approximation that describes the propagation of two-way water waves in the presence of surface tension. By using ansatz forms of solutions, with an appropriate set of parameters, the lump soliton, periodic cross-kink waves, multi-waves, breather waves, Ma-breather, Kuznetsov–Ma-breather, periodic waves and rogue waves solutions can be obtained. Breather waves are confined, periodic, nonlinear wave solutions that preserve their amplitude and shape despite alternating between compression and expansion. For some integrable nonlinear partial differential equations, a lump soliton is a confined, stable solitary wave solution. Rogue waves are unusually powerful and sharp ocean surface waves that deviate significantly from the surrounding wave pattern. They pose a threat to maritime safety. They typically show up in solitary, seemingly random circumstances. Periodic cross-kink waves are a particular type of wave pattern that has frequent bends or oscillations that cross at right angles. These waves provide insights into complicated wave dynamics and arise spontaneously in a variety of settings. In order to predict the wave dynamics, certain 2D, 3D and contour profiles are also analyzed. Since these recently discovered solutions contain certain arbitrary constants, they can be used to describe the variation in the qualitative characteristics of wave phenomena. Full article
(This article belongs to the Special Issue Symmetry in Nonlinear Partial Differential Equations and Rogue Waves)
Show Figures

Figure 1

25 pages, 11760 KiB  
Article
Regular, Beating and Dilogarithmic Breathers in Biased Photorefractive Crystals
by Carlos Alberto Betancur-Silvera, Aurea Espinosa-Cerón, Boris A. Malomed and Jorge Fujioka
Axioms 2024, 13(5), 338; https://doi.org/10.3390/axioms13050338 - 20 May 2024
Viewed by 1172
Abstract
The propagation of light beams in photovoltaic pyroelectric photorefractive crystals is modelled by a specific generalization of the nonlinear Schrödinger equation (GNLSE). We use a variational approximation (VA) to predict the propagation of solitary-wave inputs in the crystals, finding that the VA equations [...] Read more.
The propagation of light beams in photovoltaic pyroelectric photorefractive crystals is modelled by a specific generalization of the nonlinear Schrödinger equation (GNLSE). We use a variational approximation (VA) to predict the propagation of solitary-wave inputs in the crystals, finding that the VA equations involve a dilogarithm special function. The VA predicts that solitons and breathers exist, and the Vakhitov–Kolokolov criterion predicts that the solitons are stable solutions. Direct simulations of the underlying GNLSE corroborates the existence of such stable modes. The numerical solutions produce both regular breathers and ones featuring beats (long-period modulations of fast oscillations). In the latter case, the Fourier transform of amplitude oscillations reveals a nearly discrete spectrum characterizing the beats dynamics. Numerical solutions of another type demonstrate the spontaneous splitting of the input pulse in two or several secondary ones. Full article
(This article belongs to the Special Issue Nonlinear Schrödinger Equations)
Show Figures

Figure 1

Back to TopTop