Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = bone healing and wound repair activity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1258 KiB  
Review
Design and Applications of Extracellular Matrix Scaffolds in Tissue Engineering and Regeneration
by Sylvia Mangani, Marios Vetoulas, Katerina Mineschou, Konstantinos Spanopoulos, Maria dM. Vivanco, Zoi Piperigkou and Nikos K. Karamanos
Cells 2025, 14(14), 1076; https://doi.org/10.3390/cells14141076 - 15 Jul 2025
Viewed by 1334
Abstract
Tissue engineering is a growing field with multidisciplinary players in cell biology, engineering, and medicine, aiming to maintain, restore, or enhance functions of tissues and organs. The extracellular matrix (ECM) plays fundamental roles in tissue development, maintenance, and repair, providing not only structural [...] Read more.
Tissue engineering is a growing field with multidisciplinary players in cell biology, engineering, and medicine, aiming to maintain, restore, or enhance functions of tissues and organs. The extracellular matrix (ECM) plays fundamental roles in tissue development, maintenance, and repair, providing not only structural support, but also critical biochemical and biomechanical cues that regulate cell behavior and signaling. Although its specific composition varies across different tissue types and developmental stages, matrix molecules influence various cell functional properties in every tissue. Given the importance of ECM in morphogenesis, tissue homeostasis, and regeneration, ECM-based bioscaffolds, developed through tissue engineering approaches, have emerged as pivotal tools for recreating the native cellular microenvironment. The aim of this study is to present the main categories of these scaffolds (i.e., natural, synthetic, and hybrid), major fabrication techniques (i.e., tissue decellularization and multidimensional bioprinting), while highlighting the advantages and disadvantages of each category, focusing on biological activity and mechanical performance. Scaffold properties, such as mechanical strength, elasticity, biocompatibility, and biodegradability are essential to their function and integration into host tissues. Applications of ECM-based bioscaffolds span a range of engineering and regenerative strategies, including cartilage, bone, cardiac tissue engineering, and skin wound healing. Despite promising advances, challenges remain in standardization, scalability, and immune response modulation, with future directions directed towards improving ECM-mimetic platforms. Full article
(This article belongs to the Special Issue Role of Extracellular Matrix in Cancer and Disease)
Show Figures

Figure 1

14 pages, 2539 KiB  
Article
Sinusoidal Extremely Low-Frequency Electromagnetic Stimulation (ELF-EMS) Promotes Angiogenesis In Vitro
by Lena Perez Font, Amanda Moya-Gomez, Hannelore Kemps, Ivo Lambrichts, Jean-Michel Rigo, Bert Brône and Annelies Bronckaers
Biomedicines 2025, 13(6), 1490; https://doi.org/10.3390/biomedicines13061490 - 17 Jun 2025
Viewed by 505
Abstract
Background/Objectives: Angiogenesis is the multistep process of the formation of new blood vessels. It is beneficial in scenarios that require tissue repair and regeneration, such as wound healing, bone fracture repair, and recovery from ischemic injuries like stroke, where new blood vessel [...] Read more.
Background/Objectives: Angiogenesis is the multistep process of the formation of new blood vessels. It is beneficial in scenarios that require tissue repair and regeneration, such as wound healing, bone fracture repair, and recovery from ischemic injuries like stroke, where new blood vessel formation restores oxygen and nutrient supply to damaged areas. Extremely low-frequency electromagnetic stimulation (ELF-EMS), which involves electromagnetic fields in the frequency range of 0–300 Hz, have been shown to reduce ischemic stroke volume by improving cerebral blood flow and recovery effects that are dependent on eNOS. Based on previous results, we herein explore the effects of ELF-EMS treatment (13.5 mT/10 and 60 Hz) on the activation of angiogenic processes in vitro in homeostatic conditions. Methods: Using human microvascular endothelial cells (HMEC-1), we studied cell proliferation, migration, and tube formation in vitro, as well as nitric oxide production and the effect of calcium and nitric oxide (NO) on these processes. Moreover, blood vessel formation was studied using a chicken chorioallantoic membrane (CAM) assay. Results: Our results showed that ELF-EMS increases proliferation, tube formation, and both the migration and transmigration of these cells, the latter of which was mediated via NO. In turn, calcium inhibition decreased ELF-EMF-induced NO production. Furthermore, ELF-EMS significantly increased blood vessel formation in the CAM assay. Conclusions: Our results indicated that ELF-EMS exposure (13.5 mT/10 and 60 Hz) significantly induces angiogenesis in vitro and in ovo, underscoring its potential application in the treatment of conditions characterized by insufficient blood supply. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Graphical abstract

15 pages, 2127 KiB  
Article
Impact of Vascular Endothelial Growth Factor on the Shape, Survival, and Osteogenic Transformation of Gingiva-Derived Stem Cell Spheroids
by Ji-Eun Lee, Somyeong Hwa, Hee-Ra Lee, Ju-Hwan Kim, Hyun-Jin Lee and Jun-Beom Park
Medicina 2024, 60(12), 2108; https://doi.org/10.3390/medicina60122108 - 23 Dec 2024
Cited by 1 | Viewed by 1113
Abstract
Background and Objectives: Vascular endothelial growth factor (VEGF) is a protein which stimulates the formation of new blood vessels, playing a crucial role in processes such as wound healing and tumor growth. Methods: This study investigated the effects of VEGF on [...] Read more.
Background and Objectives: Vascular endothelial growth factor (VEGF) is a protein which stimulates the formation of new blood vessels, playing a crucial role in processes such as wound healing and tumor growth. Methods: This study investigated the effects of VEGF on cell viability and osteogenic differentiation in mesenchymal stem cell (MSC) spheroids. Stem cell spheroids were fabricated using concave microwells and cultured with VEGF at concentrations of 0, 0.01, 0.1, 1, and 10 ng/mL. Morphological assessments were conducted on days 1, 3, 5, and 7, while cell viability was evaluated using the LIVE/DEAD assay and Cell Counting Kit-8. Alkaline phosphatase activity (ALP) and calcium deposition were measured to assess osteogenic differentiation, and qPCR was used to analyze osteogenic marker expression. Results: The spheroids maintained their shape across all VEGF concentrations, with the largest diameter being at 0.01 ng/mL on day 1, which decreased over time. Cell viability was highest at 0.01 ng/mL VEGF, while calcium deposition peaked at 0.1 ng/mL. Osteogenic markers, including RUNX2, osteocalcin, and COL1A1, showed significant upregulation at 1 ng/mL VEGF. Conclusions: These results suggest that VEGF enhances early osteogenic differentiation in MSC spheroids, indicating its potential for bone repair and tissue regeneration. VEGF could be applied in clinical settings for bone healing, fracture repair, and regenerative dentistry treatments. Full article
(This article belongs to the Section Dentistry and Oral Health)
Show Figures

Figure 1

46 pages, 4934 KiB  
Review
Silver Nanoparticles in Therapeutics and Beyond: A Review of Mechanism Insights and Applications
by Furkan Eker, Hatice Duman, Emir Akdaşçi, Anna Maria Witkowska, Mikhael Bechelany and Sercan Karav
Nanomaterials 2024, 14(20), 1618; https://doi.org/10.3390/nano14201618 - 10 Oct 2024
Cited by 18 | Viewed by 6779
Abstract
Silver nanoparticles (NPs) have become highly promising agents in the field of biomedical science, offering wide therapeutic potential due to their unique physicochemical properties. The unique characteristics of silver NPs, such as their higher surface-area-to-volume ratio, make them ideal for a variety of [...] Read more.
Silver nanoparticles (NPs) have become highly promising agents in the field of biomedical science, offering wide therapeutic potential due to their unique physicochemical properties. The unique characteristics of silver NPs, such as their higher surface-area-to-volume ratio, make them ideal for a variety of biological applications. They are easily processed thanks to their large surface area, strong surface plasmon resonance (SPR), stable nature, and multifunctionality. With an emphasis on the mechanisms of action, efficacy, and prospective advantages of silver NPs, this review attempts to give a thorough overview of the numerous biological applications of these particles. The utilization of silver NPs in diagnostics, such as bioimaging and biosensing, as well as their functions in therapeutic interventions such as antimicrobial therapies, cancer therapy, diabetes treatment, bone repair, and wound healing, are investigated. The underlying processes by which silver NPs exercise their effects, such as oxidative stress induction, apoptosis, and microbial cell membrane rupture, are explored. Furthermore, toxicological concerns and regulatory issues are discussed, as well as the present difficulties and restrictions related to the application of silver NPs in medicine. Full article
Show Figures

Figure 1

30 pages, 1638 KiB  
Review
Silymarin and Inflammation: Food for Thoughts
by Peter F. Surai, Anton Surai and Katie Earle-Payne
Antioxidants 2024, 13(1), 98; https://doi.org/10.3390/antiox13010098 - 14 Jan 2024
Cited by 26 | Viewed by 8569
Abstract
Inflammation is a vital defense mechanism, creating hostile conditions for pathogens, preventing the spread of tissue infection and repairing damaged tissues in humans and animals. However, when inflammation resolution is delayed or compromised as a result of its misregulation, the process proceeds from [...] Read more.
Inflammation is a vital defense mechanism, creating hostile conditions for pathogens, preventing the spread of tissue infection and repairing damaged tissues in humans and animals. However, when inflammation resolution is delayed or compromised as a result of its misregulation, the process proceeds from the acute phase to chronic inflammation, leading to the development of various chronic illnesses. It is proven that redox balance disturbances and oxidative stress are among major factors inducing NF-κB and leading to over-inflammation. Therefore, the anti-inflammatory properties of various natural antioxidants have been widely tested in various in vitro and in vivo systems. Accumulating evidence indicates that silymarin (SM) and its main constituent silibinin/silybin (SB) have great potential as an anti-inflammation agent. The main anti-inflammatory mechanism of SM/SB action is attributed to the inhibition of TLR4/NF-κB-mediated signaling pathways and the downregulated expression of pro-inflammatory mediators, including TNF-α, IL-1β, IL-6, IL-12, IL-23, CCL4, CXCL10, etc. Of note, in the same model systems, SM/SB was able to upregulate anti-inflammatory cytokines (IL-4, IL-10, IL-13, TGF-β, etc.) and lipid mediators involved in the resolution of inflammation. The inflammatory properties of SM/SB were clearly demonstrated in model systems based on immune (macrophages and monocytes) and non-immune (epithelial, skin, bone, connective tissue and cancer) cells. At the same time, the anti-inflammatory action of SM/SB was confirmed in a number of in vivo models, including toxicity models, nonalcoholic fatty liver disease, ischemia/reperfusion models, stress-induced injuries, ageing and exercising models, wound healing and many other relevant model systems. It seems likely that the anti-inflammatory activities of SM/SB are key elements on the health-promoting properties of these phytochemicals. Full article
(This article belongs to the Special Issue Redox Homeostasis in Poultry/Animal Production)
Show Figures

Figure 1

14 pages, 4057 KiB  
Article
Acellular Biomaterials Associated with Autologous Bone Marrow-Derived Mononuclear Stem Cells Improve Wound Healing through Paracrine Effects
by Isio Carvalho de Souza, Aline Luri Takejima, Rossana Baggio Simeoni, Luize Kremer Gamba, Victoria Stadler Tasca Ribeiro, Katia Martins Foltz, Lucia de Noronha, Meila Bastos de Almeida, Jose Rocha Faria Neto, Katherine Athayde Teixeira de Carvalho, Paulo Cesar Lock da Silveira, Ricardo Aurino Pinho, Julio Cesar Francisco and Luiz César Guarita-Souza
Biomedicines 2023, 11(4), 1003; https://doi.org/10.3390/biomedicines11041003 - 24 Mar 2023
Cited by 5 | Viewed by 2157
Abstract
Wound healing is a complex process of repair that involves the interaction between different cell types and involves coordinated interactions between intracellular and extracellular signaling. Bone Marrow Mesenchymal Stem Cells (BMSCs) based and acellular amniotic membrane (AM) therapeutic strategies with the potential for [...] Read more.
Wound healing is a complex process of repair that involves the interaction between different cell types and involves coordinated interactions between intracellular and extracellular signaling. Bone Marrow Mesenchymal Stem Cells (BMSCs) based and acellular amniotic membrane (AM) therapeutic strategies with the potential for treatment and regeneration of tissue. We aimed to evaluate the involvement of paracrine effects in tissue repair after the flap skin lesion rat model. In the full-thickness flap skin experiment of forty Wistar rats: A total of 40 male Wistar rats were randomized into four groups: group I: control (C; n = 10), with full-thickness lesions on the back, without (BMSCs) or AM (n = 10); group II: injected (BMSCs; n = 10); group III: covered by AM; group IV–injected (AM + BMSCs; n = 10). Cytokine levels, IL-1, and IL-10 assay kits, superoxide dismutase (SOD), glutathione reductase (GRs) and carbonyl activity levels were measured by ELISA 28th day, and TGF-β was evaluated by immunohistochemical, the expression collagen expression was evaluated by Picrosirius staining. Our results showed that the IL-1 interleukin was higher in the control group, and the IL-10 presented a higher mean when compared to the control group. The groups with BMSCs and AM showed the lowest expression levels of TGF-β. SOD, GRs, and carbonyl activity analysis showed a predominance in groups that received treatment from 80%. The collagen fiber type I was predominant in all groups; however, the AM + BMSCs group obtained a higher average when compared to the control group. Our findings suggest that the AM+ BMSCs promote skin wound healing, probably owing to their paracrine effect attributed to the promotion of new collagen for tissue repair. Full article
(This article belongs to the Section Biomedical Engineering and Materials)
Show Figures

Figure 1

11 pages, 1859 KiB  
Article
Microdialysis Reveals Anti-Inflammatory Effects of Sulfated Glycosaminoglycanes in the Early Phase of Bone Healing
by Sabine Schulze, Christin Neuber, Stephanie Möller, Jens Pietzsch, Klaus-Dieter Schaser and Stefan Rammelt
Int. J. Mol. Sci. 2023, 24(3), 2077; https://doi.org/10.3390/ijms24032077 - 20 Jan 2023
Cited by 2 | Viewed by 1974
Abstract
Although chronic inflammation inhibits bone healing, the healing process is initiated by an inflammatory phase. In a well-tuned sequence of molecular events, pro-inflammatory cytokines are secreted to orchestrate the inflammation response to injury and the recruitment of progenitor cells. These events in turn [...] Read more.
Although chronic inflammation inhibits bone healing, the healing process is initiated by an inflammatory phase. In a well-tuned sequence of molecular events, pro-inflammatory cytokines are secreted to orchestrate the inflammation response to injury and the recruitment of progenitor cells. These events in turn activate the secretion of anti-inflammatory signaling molecules and attract cells and mediators that antagonize the inflammation and initiate the repair phase. Sulfated glycosaminoglycanes (sGAG) are known to interact with cytokines, chemokines and growth factors and, thus, alter the availability, duration and impact of those mediators on the local molecular level. sGAG-coated polycaprolactone-co-lactide (PCL) scaffolds were inserted into critical-size femur defects in adult male Wistar rats. The femur was stabilized with a plate, and the defect was filled with either sGAG-containing PCL scaffolds or autologous bone (positive control). Wound fluid samples obtained by microdialysis were characterized regarding alterations of cytokine concentrations over the first 24 h after surgery. The analyses revealed the inhibition of the pro-inflammatory cytokines IL-1β and MIP-2 in the sGAG-treated groups compared to the positive control. A simultaneous increase of IL-6 and TNF-α indicated advanced regenerative capacity of sGAG, suggesting their potential to improve bone healing. Full article
Show Figures

Figure 1

18 pages, 3605 KiB  
Article
Pre-Conditioning with IFN-γ and Hypoxia Enhances the Angiogenic Potential of iPSC-Derived MSC Secretome
by Suya Wang, Felix Umrath, Wanjing Cen, António José Salgado, Siegmar Reinert and Dorothea Alexander
Cells 2022, 11(6), 988; https://doi.org/10.3390/cells11060988 - 14 Mar 2022
Cited by 28 | Viewed by 4243
Abstract
Induced pluripotent stem cell (iPSC) derived mesenchymal stem cells (iMSCs) represent a promising source of progenitor cells for approaches in the field of bone regeneration. Bone formation is a multi-step process in which osteogenesis and angiogenesis are both involved. Many reports show that [...] Read more.
Induced pluripotent stem cell (iPSC) derived mesenchymal stem cells (iMSCs) represent a promising source of progenitor cells for approaches in the field of bone regeneration. Bone formation is a multi-step process in which osteogenesis and angiogenesis are both involved. Many reports show that the secretome of mesenchymal stromal stem cells (MSCs) influences the microenvironment upon injury, promoting cytoprotection, angiogenesis, and tissue repair of the damaged area. However, the effects of iPSC-derived MSCs secretome on angiogenesis have seldom been investigated. In the present study, the angiogenic properties of IFN-γ pre-conditioned iMSC secretomes were analyzed. We detected a higher expression of the pro-angiogenic genes and proteins of iMSCs and their secretome under IFN-γ and hypoxic stimulation (IFN-H). Tube formation and wound healing assays revealed a higher angiogenic potential of HUVECs in the presence of IFN-γ conditioned iMSC secretome. Sprouting assays demonstrated that within Coll/HA scaffolds, HUVECs spheroids formed significantly more and longer sprouts in the presence of IFN-γ conditioned iMSC secretome. Through gene expression analyses, pro-angiogenic genes (FLT-1, KDR, MET, TIMP-1, HIF-1α, IL-8, and VCAM-1) in HUVECs showed a significant up-regulation and down-regulation of two anti-angiogenic genes (TIMP-4 and IGFBP-1) compared to the data obtained in the other groups. Our results demonstrate that the iMSC secretome, pre-conditioned under inflammatory and hypoxic conditions, induced the highest angiogenic properties of HUVECs. We conclude that pre-activated iMSCs enhance their efficacy and represent a suitable cell source for collagen/hydroxyapatite with angiogenic properties. Full article
(This article belongs to the Special Issue Enhancing Mesenchymal Stem Cells (MSCs) for Therapeutic Purposes)
Show Figures

Figure 1

11 pages, 1050 KiB  
Review
Fine Regulation during Wound Healing by Mast Cells, a Physiological Role Not Yet Clarified
by Stefano Bacci
Int. J. Mol. Sci. 2022, 23(3), 1820; https://doi.org/10.3390/ijms23031820 - 5 Feb 2022
Cited by 47 | Viewed by 5033
Abstract
Mast cells (MCs) are bone marrow-derived cells capable of secreting many active molecules, ranging from the mediators stored in specific granules, some of which have been known about for several decades (histamine, heparin), to small molecules produced immediately upon stimulation (membrane lipid derivatives, [...] Read more.
Mast cells (MCs) are bone marrow-derived cells capable of secreting many active molecules, ranging from the mediators stored in specific granules, some of which have been known about for several decades (histamine, heparin), to small molecules produced immediately upon stimulation (membrane lipid derivatives, nitric oxide), to a host of constitutively secreted, multifunctional cytokines. With the aid of a wide array of mediators, the activated MCs control the key events of inflammation and therefore participate in the regulation of local immune response. On the basis of the structure, origin, principal subtypes, localization and function of these cells, their involvement in injury repair is therefore to be considered in acute and chronic conditions, respectively. The importance of MCs in regulating the healing processes is underscored by the proposed roles of a surplus or a deficit of their mediators in the formation of exuberant granulation tissue (such as keloids and hypertrophic scars), the delayed closure or dehiscence of wounds and the transition of acute to chronic inflammation. Full article
(This article belongs to the Special Issue Focus on Wound Healing)
Show Figures

Figure 1

20 pages, 1416 KiB  
Review
Current Overview on Therapeutic Potential of Vitamin D in Inflammatory Lung Diseases
by Muhammad Afzal, Imran Kazmi, Fahad A. Al-Abbasi, Sultan Alshehri, Mohammed M. Ghoneim, Syed Sarim Imam, Muhammad Shahid Nadeem, Maryam Hassan Al-Zahrani, Sami I. Alzarea and Ali Alquraini
Biomedicines 2021, 9(12), 1843; https://doi.org/10.3390/biomedicines9121843 - 6 Dec 2021
Cited by 9 | Viewed by 5278
Abstract
Inflammatory lung disorders (ILDs) are one of the world’s major reasons for fatalities and sickness, impacting millions of individuals of all ages and constituting a severe and pervasive health hazard. Asthma, lung cancer, bronchiectasis, pulmonary fibrosis acute respiratory distress syndrome, and COPD all [...] Read more.
Inflammatory lung disorders (ILDs) are one of the world’s major reasons for fatalities and sickness, impacting millions of individuals of all ages and constituting a severe and pervasive health hazard. Asthma, lung cancer, bronchiectasis, pulmonary fibrosis acute respiratory distress syndrome, and COPD all include inflammation as a significant component. Microbe invasions, as well as the damage and even death of host cells, can cause and sustain inflammation. To counteract the negative consequences of irritants, the airways are equipped with cellular and host defense immunological systems that block the cellular entrance of these irritants or eliminate them from airway regions by triggering the immune system. Failure to activate the host defense system will trigger chronic inflammatory cataracts, leading to permanent lung damage. This damage makes the lungs more susceptible to various respiratory diseases. There are certain restrictions of the available therapy for lung illnesses. Vitamins are nutritional molecules that are required for optimal health but are not produced by the human body. Cholecalciferol (Vitamin D) is classified as a vitamin, although it is a hormone. Vitamin D is thought to perform a function in bone and calcium homeostasis. Recent research has found that vitamin D can perform a variety of cellular processes, including cellular proliferation; differentiation; wound repair; healing; and regulatory systems, such as the immune response, immunological, and inflammation. The actions of vitamin D on inflammatory cells are dissected in this review, as well as their clinical significance in respiratory illnesses. Full article
(This article belongs to the Special Issue Vitamin D in Health and Disease)
Show Figures

Figure 1

16 pages, 4500 KiB  
Review
Pearl Powder—An Emerging Material for Biomedical Applications: A Review
by Xian Jun Loh, David James Young, Hongchen Guo, Liang Tang, Yunlong Wu, Guorui Zhang, Changming Tang and Huajun Ruan
Materials 2021, 14(11), 2797; https://doi.org/10.3390/ma14112797 - 24 May 2021
Cited by 23 | Viewed by 9425
Abstract
Pearl powder is a well-known traditional Chinese medicine for a variety of indications from beauty care to healthcare. While used for over a thousand years, there has yet to be an in-depth understanding and review in this area. The use of pearl powder [...] Read more.
Pearl powder is a well-known traditional Chinese medicine for a variety of indications from beauty care to healthcare. While used for over a thousand years, there has yet to be an in-depth understanding and review in this area. The use of pearl powder is particularly growing in the biomedical area with various benefits reported due to the active ingredients within the pearl matrix itself. In this review, we focus on the emerging biomedical applications of pearl powder, touching on applications of pearl powder in wound healing, bone repairing, treatment of skin conditions, and other health indications. Full article
Show Figures

Figure 1

19 pages, 5751 KiB  
Review
Strategies to Use Nanofiber Scaffolds as Enzyme-Based Biocatalysts in Tissue Engineering Applications
by Taha Umair Wani, Anjum Hamid Rather, Rumysa Saleem Khan, Mushtaq A. Beigh, Mira Park, Bishweshwar Pant and Faheem A. Sheikh
Catalysts 2021, 11(5), 536; https://doi.org/10.3390/catal11050536 - 22 Apr 2021
Cited by 9 | Viewed by 3051
Abstract
Nanofibers are considered versatile materials with remarkable potential in tissue engineering and regeneration. In addition to their extracellular matrix-mimicking properties, nanofibers can be functionalized with specific moieties (e.g., antimicrobial nanoparticles, ceramics, bioactive proteins, etc.) to improve their overall performance. A novel approach in [...] Read more.
Nanofibers are considered versatile materials with remarkable potential in tissue engineering and regeneration. In addition to their extracellular matrix-mimicking properties, nanofibers can be functionalized with specific moieties (e.g., antimicrobial nanoparticles, ceramics, bioactive proteins, etc.) to improve their overall performance. A novel approach in this regard is the use of enzymes immobilized onto nanofibers to impart biocatalytic activity. These nanofibers are capable of carrying out the catalysis of various biological processes that are essential in the healing process of tissue. In this review, we emphasize the use of biocatalytic nanofibers in various tissue regeneration applications. Biocatalytic nanofibers can be used for wound edge or scar matrix digestion, which reduces the hindrance for cell migration and proliferation, hence displaying applications in fast tissue repair, e.g., spinal cord injury. These nanofibers have potential applications in bone regeneration, mediating osteogenic differentiation, biomineralization, and matrix formation through direct enzyme activity. Moreover, enzymes can be used to undertake efficient crosslinking and fabrication of nanofibers with better physicochemical properties and tissue regeneration potential. Full article
(This article belongs to the Section Biocatalysis)
Show Figures

Graphical abstract

31 pages, 9184 KiB  
Article
Costimulatory Effect of Rough Calcium Phosphate Coating and Blood Mononuclear Cells on Adipose-Derived Mesenchymal Stem Cells In Vitro as a Model of In Vivo Tissue Repair
by Igor A. Khlusov, Larisa S. Litvinova, Valeria V. Shupletsova, Olga G. Khaziakhmatova, Vladimir V. Malashchenko, Kristina A. Yurova, Egor O. Shunkin, Vasilii V. Krivosheev, Ekaterina D. Porokhova, Anastasiia E. Sizikova, Linara A. Safiullina, Elena V. Legostaeva, Ekaterina G. Komarova and Yurii P. Sharkeev
Materials 2020, 13(19), 4398; https://doi.org/10.3390/ma13194398 - 2 Oct 2020
Cited by 18 | Viewed by 3319
Abstract
Calcium phosphate (CaP) materials do not always induce ectopic vascularization and bone formation; the reasons remain unclear, and there are active discussions of potential roles for post-implantation hematoma, circulating immune and stem cells, and pericytes, but studies on adipose-derived stem cells (AMSCs) in [...] Read more.
Calcium phosphate (CaP) materials do not always induce ectopic vascularization and bone formation; the reasons remain unclear, and there are active discussions of potential roles for post-implantation hematoma, circulating immune and stem cells, and pericytes, but studies on adipose-derived stem cells (AMSCs) in this context are lacking. The rough (average surface roughness Ra = 2–5 µm) scaffold-like CaP coating deposited on pure titanium plates by the microarc oxidation method was used to investigate its subcutaneous vascularization in CBA/CaLac mice and in vitro effect on cellular and molecular crosstalk between human blood mononuclear cells (hBMNCs) and AMSCs (hAMSCs). Postoperative hematoma development on the CaP surface lasting 1–3 weeks may play a key role in the microvessel elongation and invasion into the CaP relief at the end of the 3rd week of injury and BMNC migration required for enhanced wound healing in mice. Satisfactory osteogenic and chondrogenic differentiation but poor adipogenic differentiation of hAMSCs on the rough CaP surface were detected in vitro by differential cell staining. The fractions of CD73+ (62%), CD90+ (0.24%), and CD105+ (0.41%) BMNCs may be a source of autologous circulating stem/progenitor cells for the subcutis reparation, but allogenic hBMNC participation is mainly related to the effects of CD4+ T cells co-stimulated with CaP coating on the in vitro recruitment of hAMSCs, their secretion of angiogenic and osteomodulatory molecules, and the increase in osteogenic features within the period of in vivo vascularization. Cellular and molecular crosstalk between BMNCs and AMSCs is a model of effective subcutis repair. Rough CaP surface enhanced angio- and osteogenic signaling between cells. We believe that preconditioning and/or co-transplantation of hAMSCs with hBMNCs may broaden their potential in applications related to post-implantation tissue repair and bone bioengineering caused by microarc CaP coating. Full article
(This article belongs to the Special Issue Recent Advances in Biocoatings)
Show Figures

Graphical abstract

17 pages, 3423 KiB  
Article
Food for Bone: Evidence for a Role for Delta-Tocotrienol in the Physiological Control of Osteoblast Migration
by Lavinia Casati, Francesca Pagani, Roberto Maggi, Francesco Ferrucci and Valeria Sibilia
Int. J. Mol. Sci. 2020, 21(13), 4661; https://doi.org/10.3390/ijms21134661 - 30 Jun 2020
Cited by 14 | Viewed by 3452
Abstract
Bone remodeling and repair require osteogenic cells to reach the sites that need to be rebuilt, indicating that stimulation of osteoblast migration could be a promising osteoanabolic strategy. We showed that purified δ-tocotrienol (δ-TT, 10 μg/mL), isolated from commercial palm oil (Elaeis [...] Read more.
Bone remodeling and repair require osteogenic cells to reach the sites that need to be rebuilt, indicating that stimulation of osteoblast migration could be a promising osteoanabolic strategy. We showed that purified δ-tocotrienol (δ-TT, 10 μg/mL), isolated from commercial palm oil (Elaeis guineensis) fraction, stimulates the migration of both MC3T3-E1 osteoblast-like cells and primary human bone marrow mesenchymal stem cells (BMSC) as detected by wound healing assay or Boyden chamber assay respectively. The ability of δ-TT to promote MC3T3-E1 cells migration is dependent on Akt phosphorylation detected by Western blotting and involves Wnt/β-catenin signalling pathway activation. In fact, δ-TT increased β-catenin transcriptional activity, measured using a Nano luciferase assay and pretreatment with procaine (2 µM), an inhibitor of the Wnt/β-catenin signalling pathway, reducing the wound healing activity of δ-TT on MC3T3-E1 cells. Moreover, δ-TT treatment increased the expression of β-catenin specific target genes, such as Osteocalcin and Bone Morphogenetic Protein-2, involved in osteoblast differentiation and migration, and increased alkaline phosphatase and collagen content, osteoblast differentiation markers. The ability of δ-TT to enhance the recruitment of BMSC, and to promote MC3T3-E1 differentiation and migratory behavior, indicates that δ-TT could be considered a promising natural anabolic compound. Full article
(This article belongs to the Special Issue Role of Nutraceuticals in Metabolic and Gastrointestinal Disorders)
Show Figures

Graphical abstract

23 pages, 602 KiB  
Review
PPARβ/δ: Linking Metabolism to Regeneration
by Ajit Magadum and Felix B. Engel
Int. J. Mol. Sci. 2018, 19(7), 2013; https://doi.org/10.3390/ijms19072013 - 10 Jul 2018
Cited by 86 | Viewed by 9733
Abstract
In contrast to the general belief that regeneration is a rare event, mainly occurring in simple organisms, the ability of regeneration is widely distributed in the animal kingdom. Yet, the efficiency and extent of regeneration varies greatly. Humans can recover from blood loss [...] Read more.
In contrast to the general belief that regeneration is a rare event, mainly occurring in simple organisms, the ability of regeneration is widely distributed in the animal kingdom. Yet, the efficiency and extent of regeneration varies greatly. Humans can recover from blood loss as well as damage to tissues like bone and liver. Yet damage to the heart and brain cannot be reversed, resulting in scaring. Thus, there is a great interest in understanding the molecular mechanisms of naturally occurring regeneration and to apply this knowledge to repair human organs. During regeneration, injury-activated immune cells induce wound healing, extracellular matrix remodeling, migration, dedifferentiation and/or proliferation with subsequent differentiation of somatic or stem cells. An anti-inflammatory response stops the regenerative process, which ends with tissue remodeling to achieve the original functional state. Notably, many of these processes are associated with enhanced glycolysis. Therefore, peroxisome proliferator-activated receptor (PPAR) β/δ—which is known to be involved for example in lipid catabolism, glucose homeostasis, inflammation, survival, proliferation, differentiation, as well as mammalian regeneration of the skin, bone and liver—appears to be a promising target to promote mammalian regeneration. This review summarizes our current knowledge of PPARβ/δ in processes associated with wound healing and regeneration. Full article
(This article belongs to the Special Issue PPARs in Cellular and Whole Body Energy Metabolism)
Show Figures

Figure 1

Back to TopTop