Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = blended winglet

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 35400 KB  
Article
Aerodynamic Effects of a Blended Multi-Winglet on an Airliner in Subsonic and Transonic Regimes
by Erina Kobayashi, Kazuhisa Chiba, Wataru Yamazaki and Masahiro Kanazaki
Biomimetics 2025, 10(8), 522; https://doi.org/10.3390/biomimetics10080522 - 10 Aug 2025
Viewed by 1316
Abstract
This study investigates the aerodynamic performance of a blended multi-winglet configuration installed on the wingtip of a transonic commercial aircraft, focusing on both subsonic and transonic regimes. Conventional single winglets are typically optimized to reduce induced drag during cruise, but multi-winglets have the [...] Read more.
This study investigates the aerodynamic performance of a blended multi-winglet configuration installed on the wingtip of a transonic commercial aircraft, focusing on both subsonic and transonic regimes. Conventional single winglets are typically optimized to reduce induced drag during cruise, but multi-winglets have the potential to enhance lift during takeoff and landing. However, their effectiveness in transonic conditions remains insufficiently explored. In this work, a reference Boeing 767 blended winglet was divided into three distinct elements, each retaining the original wingtip airfoil. Computational simulations were conducted to compare single- and multi-winglet configurations under cruise conditions. Additional analyses were performed at subsonic speeds to evaluate lift performance. Under transonic conditions, the multi-winglet configuration exhibited a 1.4% increase in total drag due to a greater projected frontal area. However, it achieved reduced induced drag, attributed to the rearmost winglet’s negative cant angle, which suppresses vortex formation by inhibiting upward airflow. In subsonic flight, lift improved by up to 1.3% due to accelerated flow over the upper surface, enhanced by smaller leading-edge radii and air acceleration through inter-winglet gaps. These findings suggest that multi-winglets outperform single winglets in reducing induced drag during cruise and enhancing lift during takeoff and landing. Full article
(This article belongs to the Section Biomimetic Design, Constructions and Devices)
Show Figures

Figure 1

12 pages, 2401 KB  
Proceeding Paper
Winglet Design for Class I Mini UAV—Aerodynamic and Performance Optimization
by Eleftherios Nikolaou, Eleftherios Karatzas, Spyridon Kilimtzidis and Vassilis Kostopoulos
Eng. Proc. 2025, 90(1), 111; https://doi.org/10.3390/engproc2025090111 - 7 May 2025
Cited by 1 | Viewed by 1308
Abstract
The aerodynamic performance of an aircraft can be enhanced by incorporating wingtip devices, or winglets, which primarily reduce lift-induced drag created by wingtip vortices. This study outlines an optimization procedure for implementing winglets on a Class I fixed-wing mini-UAV to maximize aerodynamic efficiency [...] Read more.
The aerodynamic performance of an aircraft can be enhanced by incorporating wingtip devices, or winglets, which primarily reduce lift-induced drag created by wingtip vortices. This study outlines an optimization procedure for implementing winglets on a Class I fixed-wing mini-UAV to maximize aerodynamic efficiency and performance. After the Conceptual and Preliminary design phases, a baseline UAV was developed without winglets, adhering to specific layout constraints (e.g., wingspan, length). Various winglet designs—plate and blended types with differing heights, cant angles, and sweep angles—were then created and assessed. A Computational Fluid Dynamics (CFD) analysis was conducted to evaluate the flow around both the winglet-free UAV and configurations with each winglet design. The simulations employed Reynolds-Averaged Navier-Stokes (RANS) equations coupled with the Spalart-Allmaras turbulence model, targeting the optimal winglet configuration for enhanced aerodynamic characteristics during cruise. Charts of lift, drag, pitching moment coefficients, and lift-to-drag ratios are presented, alongside flow contours illustrating vortex characteristics for both baseline and optimized configurations. Additionally, dynamic stability analyses examined how winglets impact the UAV’s stability and control. The results demonstrated a significant improvement in aerodynamic coefficients (CLmax, L/Dmax, CLa, Cma), leading to an increase in both range and endurance. Full article
Show Figures

Figure 1

17 pages, 5397 KB  
Article
Computational Analysis of Blended Winglet Designs to Reduce the Wake Turbulence on the Airbus A380 Wingtip
by Joseph Ciano Pinto, Siva Marimuthu, Parvathy Rajendran, Manikandan Natarajan and Rajadurai Murugesan
Eng 2025, 6(4), 68; https://doi.org/10.3390/eng6040068 - 29 Mar 2025
Cited by 1 | Viewed by 3460
Abstract
The aviation sector faces a significant challenge in balancing the rising demand for air travel with the need to reduce its environmental impact. Because air travel accounts for approximately 2.5% of global carbon emissions, there is a need to find sustainable solutions to [...] Read more.
The aviation sector faces a significant challenge in balancing the rising demand for air travel with the need to reduce its environmental impact. Because air travel accounts for approximately 2.5% of global carbon emissions, there is a need to find sustainable solutions to reduce its environmental impact. Improving aerodynamic performance is a crucial area for reducing fuel consumption and emissions. Nowadays, more focus is given to commercial aviation, which contributes to global aviation emissions. The A380 is the largest passenger aircraft in the world at the moment. It was observed in real life that the wake turbulence from the A380 led to a sudden loss of the Challenger aircraft’s control and a rapid descent of more than 10,000 feet. This Challenger incident is a wake-up call to address the A380’s wake turbulence. Hence, this research focuses on designing and analysing blended winglets for the Airbus A380 to reduce wake turbulence. With the use of modern computational fluid dynamics tools, the current A380 winglets’ performance was evaluated to identify the level of lift, drag and wake vortex patterns. To address these challenges, the performance of newly designed blended winglets with different cant angles, i.e., 0, 15, 45 and 80, was analysed computationally using the K-ω SST turbulent model in the software ANSYS Fluent 2024 R1. It resulted in a decrease in the wake vortex size accompanied by a 1.724% decrease in drag. This research project evidenced that addressing the wake turbulence issue on a large aircraft could improve aerodynamic performance and thus contribute towards sustainable aviation. Full article
Show Figures

Figure 1

24 pages, 30756 KB  
Article
Computational Investigations for the Feasibility of Passive Flow Control Devices for Enhanced Aerodynamics of Small-Scale UAVs
by Ali Arshad and Vadims Kovaļčuks
Aerospace 2024, 11(6), 473; https://doi.org/10.3390/aerospace11060473 - 13 Jun 2024
Cited by 3 | Viewed by 2222
Abstract
The 4R-UAV project aims to develop aerodynamically efficient and environmentally friendly UAVs based on the 4R Circular Economy principle. In this study, the feasibility of the application of PFCDs (Passive Flow Control Devices) was investigated for the small-scale low-speed 4R-UAV wing. The application [...] Read more.
The 4R-UAV project aims to develop aerodynamically efficient and environmentally friendly UAVs based on the 4R Circular Economy principle. In this study, the feasibility of the application of PFCDs (Passive Flow Control Devices) was investigated for the small-scale low-speed 4R-UAV wing. The application of PFCDs for small-scale UAV wings is relatively unexplored. Two PFCD types, i.e., MVGs (Micro Vortex Generators) and winglets, were considered for the investigations. In the stepwise investigations, the aerodynamic performance of the MVGs and the winglets was analyzed for the short-span 4R-UAV wing, which was developed from the aerodynamically optimized airfoil SG6043mod. MVGs enhanced the wings near stall properties (especially maximum lift coefficient) and contributed to the delayed wing stall of up to 2°. MVGs manifested the main aerodynamic advantage, which was achieved at the higher angles of attack. Winglets, on the other hand, were found to be extremely effective in cruise conditions with improved pre-stall characteristics. Extensive investigations on winglets were carried out by designing six winglet configurations for the 4R-UAV wing. Blended-type winglets performed well and enhanced pre-stall properties by decreasing the drag (up to 10%) of the wing. The main performance improvement was found in the early angles of attack. In the final step, the combined effect of the integrated PFCDs was analyzed. The final wing (integrated MVGs and winglets) also exhibited enhanced performance with nearly 6% increased lift-to-drag ratio in cruise conditions. The limited aerodynamic advantage achieved from the PFCDs in small-scale UAV applications can be useful in specific (civil or military) missions. Further verifications are planned in the future by means of experimental and flight testing. Full article
Show Figures

Figure 1

20 pages, 11247 KB  
Article
Lateral-Directional Aerodynamic Optimization of a Tandem Wing UAV Using CFD Analyses
by Ivan Kostić, Aleksandar Simonović, Olivera Kostić, Dušan Ivković and Dragoljub Tanović
Aerospace 2024, 11(3), 223; https://doi.org/10.3390/aerospace11030223 - 13 Mar 2024
Cited by 2 | Viewed by 4654
Abstract
This paper presents the second stage of a tandem fixed-wing unmanned aerial vehicle (UAV) aerodynamic development. In the initial stage, the UAV was optimized by analyzing its characteristics only in symmetrical flight conditions. Posted requirements were that both wings should produce relevant positive [...] Read more.
This paper presents the second stage of a tandem fixed-wing unmanned aerial vehicle (UAV) aerodynamic development. In the initial stage, the UAV was optimized by analyzing its characteristics only in symmetrical flight conditions. Posted requirements were that both wings should produce relevant positive lift, the initial stall must occur on the front wing first, the center of pressure should be close to the center of gravity, and longitudinal static stability should be in the optimum range. Computational fluid dynamic (CFD) analyses were performed, where the applied calculation model was derived from the authors’ previous successful projects. The eighth version TW V8 has satisfied all longitudinal requirements. Lateral-directional CFD analyses of V8 showed that the ratio of the lateral and directional stability at the nominal cruising regime was optimal, but both lateral and directional static stabilities were too high. On further development versions, the lower vertical tail was eliminated, a negative dihedral was implemented on the front wing, and four inverted blended winglets were added. Version TW V14 has largely improved lateral and directional stability characteristics, while their optimum ratio at the cruising regime was preserved. Longitudinal characteristics were also well preserved. Maximum lift coefficient and lift-to-drag ratio were increased, compared to the V8. Full article
(This article belongs to the Special Issue Aerodynamic Numerical Optimization in UAV Design)
Show Figures

Figure 1

18 pages, 7928 KB  
Article
Automation of Winglet Wings Geometry Generation for Its Application in TORNADO
by Ángel Antonio Rodríguez-Sevillano, Rafael Bardera-Mora, Alejandra López-Cuervo-Alcaraz, Daniel Anguita-Mazón, Juan Carlos Matías-García, Estela Barroso-Barderas and Jaime Fernández-Antón
Algorithms 2023, 16(9), 439; https://doi.org/10.3390/a16090439 - 12 Sep 2023
Viewed by 2803
Abstract
The paper outlines an algorithm for the rapid aerodynamic evaluation of winglet geometries using the TORNADO Vortex Lattice Method. It is a very useful tool to obtain a first approximation of the aerodynamic properties and for performing an optimization of the geometry design. [...] Read more.
The paper outlines an algorithm for the rapid aerodynamic evaluation of winglet geometries using the TORNADO Vortex Lattice Method. It is a very useful tool to obtain a first approximation of the aerodynamic properties and for performing an optimization of the geometry design. The TORNADO tool is used to systematically calculate the aerodynamic characteristics of various wings with wingtip devices. The fast response of the aerodynamic models allows obtaining a set of results in a remarkably short time. Therefore, the development of an algorithm to generate wing geometries with great ease and complex shapes is of vital importance for the mentioned optimization process. The basic outline of the algorithm, the equations defining the wing geometries, and the results for unconventional wingtip devices, such as blended winglets and spiroid winglets, are presented. Finally, this algorithm allows designing a procedure to study the improvement of aerodynamic properties (lift, induced drag, and moment). Some examples are included to illustrate the capabilities of the algorithm. Full article
Show Figures

Figure 1

21 pages, 7232 KB  
Article
Passive Control of Boundary Layer on Wing: Numerical and Experimental Study of Two Configurations of Wing Surface Modification in Cruise and Landing Speed
by Dionysios G. Karkoulias, Panagiota-Vasiliki N. Bourdousi and Dionissios P. Margaris
Computation 2023, 11(3), 67; https://doi.org/10.3390/computation11030067 - 22 Mar 2023
Cited by 3 | Viewed by 3711
Abstract
Minimizing the carbon footprint of the aviation industry is of critical importance for the forthcoming years, allowing the mitigation of climate change through fossil fuel economy. Significant progress toward this goal can be achieved through the aerodynamic optimization of wing surfaces. In a [...] Read more.
Minimizing the carbon footprint of the aviation industry is of critical importance for the forthcoming years, allowing the mitigation of climate change through fossil fuel economy. Significant progress toward this goal can be achieved through the aerodynamic optimization of wing surfaces. In a previous study, a custom-designed wing equipped with an Eppler 420 airfoil, including an appendant custom-designed blended winglet, was developed and studied in flight conditions. The present paper researches potential improvements to the aerodynamic behavior of this wing by attempting to regenerate the boundary layer. The main goal was to achieve passive control of the boundary layer, which would be approached by means of two different configurations. In the first case, dimples were added at the points where the separation of the boundary layer was expected, for the majority of the wing surface; in the second case, bumps of the same diameter were added at the same points. Both wings were studied in two different Reynolds (Re) numbers and five angles of attack (AoA). The computational fluid dynamics (CFD) simulations were implemented using a pressure-based solver, the spatial discretization was conducted with a second-order upwind scheme, and the k-omega SST (k-ω SST) turbulence model was applied by utilizing the pseudo-transient method. The experimental procedure was conducted in an open-type subsonic flow wind tunnel, for Reynolds 86,000, with 3D-printed models of the wings having undergone suitable surface treatment. The numerical and experimental results converged, showing a degradation in the wing’s aerodynamic performance when bumps were implemented, as well as a slight improvement for the configuration with dimples. Full article
Show Figures

Graphical abstract

24 pages, 10256 KB  
Article
Computational Fluid Dynamics Study of Wing in Air Flow and Air–Solid Flow Using Three Different Meshing Techniques and Comparison with Experimental Results in Wind Tunnel
by Dionysios G. Karkoulias, Evangelos D. Tzoganis, Anastasios G. Panagiotopoulos, Spyridon-Giaroslav D. Acheimastos and Dionissios P. Margaris
Computation 2022, 10(3), 34; https://doi.org/10.3390/computation10030034 - 23 Feb 2022
Cited by 25 | Viewed by 14051
Abstract
The main purpose of this work is to simulate the flow of air and solid particles over a wildfire and to investigate the single and multiphase flow over the surface of a custom-designed wing with an Eppler-420 airfoil including an appendant custom-designed blended [...] Read more.
The main purpose of this work is to simulate the flow of air and solid particles over a wildfire and to investigate the single and multiphase flow over the surface of a custom-designed wing with an Eppler-420 airfoil including an appendant custom-designed blended winglet. The wing is the result of a conceptual and preliminary design of a small-scale unmanned aerial vehicle (UAV) designed to assist in firefighting. The fire embers will be simulated in the Ansys Fluent commercial code as solid particles injected in the continuous phase, in an Euler–Lagrange approach. Primarily studied were the response of the model in air and air–solid flows, as well as the impact on aerodynamic efficiency due to the existence of the second phase. Moreover, the effects of unstructured, structured and mosaic poly-hexcore meshes are investigated and compared. The computational fluid dynamics (CFD) simulations, were implemented using a pressure-based solver, spatial discretization was conducted with a second-order upwind scheme, and the k-omega SST (k-ω SST) turbulence model was applied. Meanwhile, the two-phase flow was simulated using the Discrete Phase Model with reflect boundary condition on the surface of the wing and two-way coupling between continuous and discrete phase. To validate the results, experiments were conducted in a subsonic wind tunnel using a 3D printed model of the wing. The results show good agreement between simulations and experiments, with the structured mesh coming closer to reality, followed by the mosaic and unstructured meshes, respectively. Finally, a reduction in the aerodynamic efficiency of the wing section is observed, due to the presence of solid particles. Full article
Show Figures

Figure 1

Back to TopTop