Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = biotic and abiotic hurdles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 771 KB  
Review
Trichoderma: Dual Roles in Biocontrol and Plant Growth Promotion
by Xiaoyan Chen, Yuntong Lu, Xing Liu, Yunying Gu and Fei Li
Microorganisms 2025, 13(8), 1840; https://doi.org/10.3390/microorganisms13081840 - 7 Aug 2025
Cited by 4 | Viewed by 5619
Abstract
The genus Trichoderma plays a pivotal role in sustainable agriculture through its multifaceted contributions to plant health and productivity. This review explores Trichoderma’s biological functions, including its roles as a biocontrol agent, plant growth promoter, and stress resilience enhancer. By producing various [...] Read more.
The genus Trichoderma plays a pivotal role in sustainable agriculture through its multifaceted contributions to plant health and productivity. This review explores Trichoderma’s biological functions, including its roles as a biocontrol agent, plant growth promoter, and stress resilience enhancer. By producing various enzymes, secondary metabolites, and volatile organic compounds, Trichoderma effectively suppresses plant pathogens, promotes root development, and primes plant immune responses. This review details the evolutionary adaptations of Trichoderma, which has transitioned from saprotrophism to mycoparasitism and established beneficial symbiotic relationships with plants. It also highlights the ecological versatility of Trichoderma in colonizing plant roots and improving soil health, while emphasizing its role in mitigating both biotic and abiotic stressors. With increasing recognition as a biostimulant and biocontrol agent, Trichoderma has become a key player in reducing chemical inputs and advancing eco-friendly farming practices. This review addresses challenges such as strain selection, formulation stability, and regulatory hurdles and concludes by advocating for continued research to optimize Trichoderma’s applications in addressing climate change, enhancing food security, and promoting a sustainable agricultural future. Full article
(This article belongs to the Special Issue Advances in Plant–Soil–Microbe Interactions)
Show Figures

Figure 1

17 pages, 7038 KB  
Article
Polyploidy Induction of Wild Diploid Blueberry V. fuscatum
by Emily Walter, Paul M. Lyrene and Ye Chu
Horticulturae 2025, 11(8), 921; https://doi.org/10.3390/horticulturae11080921 - 5 Aug 2025
Viewed by 1082
Abstract
Diploid Vaccinium fuscatum is a wild blueberry species with a low chilling requirement, an evergreen growth habit, and soil adaptability to southeast US growing regions. Regardless of its potential to improve the abiotic and biotic resilience of cultivated blueberries, this species has rarely [...] Read more.
Diploid Vaccinium fuscatum is a wild blueberry species with a low chilling requirement, an evergreen growth habit, and soil adaptability to southeast US growing regions. Regardless of its potential to improve the abiotic and biotic resilience of cultivated blueberries, this species has rarely been used for blueberry breeding. One hurdle is the ploidy barrier between diploid V. fuscatum and tetraploid cultivated highbush blueberries. To overcome the ploidy barrier, vegetative shoots micro-propagated from one genotype of V. fuscatum, selected because it grew vigorously in vitro and two southern highbush cultivars, ‘Emerald’ and ‘Rebel,’ were treated with colchicine. While shoot regeneration was severely repressed in ‘Emerald’ and ‘Rebel,’ shoot production from the V. fuscatum clone was not compromised at either 500 µM or 5000 µM colchicine concentrations. Due to the high number of shoots produced in vitro via the V. fuscatum clone shoots of this clone that had an enlarged stem diameter in vitro were subjected to flow cytometer analysis to screen for induced polyploidy. Sixteen synthetic tetraploid V. fuscatum, one synthetic octoploid ‘Emerald,’ and three synthetic octoploid ‘Rebel’ were identified. Growth rates of the polyploid-induced mutants were reduced compared to their respective wildtype controls. The leaf width and length of synthetic tetraploid V. fuscatum and synthetic octoploid ‘Emerald’ was increased compared to the wildtypes, whereas the leaf width and length of synthetic octoploid ‘Rebel’ were reduced compared to the wildtype controls. Significant increases in stem thickness and stomata guard cell length were found in the polyploidy-induced mutant lines compared to the wildtypes. In the meantime, stomata density was reduced in the mutant lines. These morphological changes may improve drought tolerance and photosynthesis in these mutant lines. Synthetic tetraploid V. fuscatum can be used for interspecific hybridization with highbush blueberries to expand the genetic base of cultivated blueberries. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Figure 1

25 pages, 1579 KB  
Review
Advances in Soybean Genetic Improvement
by Adriana Vargas-Almendra, Roberto Ruiz-Medrano, Leandro Alberto Núñez-Muñoz, José Abrahán Ramírez-Pool, Berenice Calderón-Pérez and Beatriz Xoconostle-Cázares
Plants 2024, 13(21), 3073; https://doi.org/10.3390/plants13213073 - 31 Oct 2024
Cited by 14 | Viewed by 10256
Abstract
The soybean (Glycine max) is a globally important crop due to its high protein and oil content, which serves as a key resource for human and animal nutrition, as well as bioenergy production. This review assesses recent advancements in soybean genetic [...] Read more.
The soybean (Glycine max) is a globally important crop due to its high protein and oil content, which serves as a key resource for human and animal nutrition, as well as bioenergy production. This review assesses recent advancements in soybean genetic improvement by conducting an extensive literature analysis focusing on enhancing resistance to biotic and abiotic stresses, improving nutritional profiles, and optimizing yield. We also describe the progress in breeding techniques, including traditional approaches, marker-assisted selection, and biotechnological innovations such as genetic engineering and genome editing. The development of transgenic soybean cultivars through Agrobacterium-mediated transformation and biolistic methods aims to introduce traits such as herbicide resistance, pest tolerance, and improved oil composition. However, challenges remain, particularly with respect to genotype recalcitrance to transformation, plant regeneration, and regulatory hurdles. In addition, we examined how wild soybean germplasm and polyploidy contribute to expanding genetic diversity as well as the influence of epigenetic processes and microbiome on stress tolerance. These genetic innovations are crucial for addressing the increasing global demand for soybeans, while mitigating the effects of climate change and environmental stressors. The integration of molecular breeding strategies with sustainable agricultural practices offers a pathway for developing more resilient and productive soybean varieties, thereby contributing to global food security and agricultural sustainability. Full article
Show Figures

Figure 1

30 pages, 952 KB  
Review
Plant–Entomopathogenic Fungi Interaction: Recent Progress and Future Prospects on Endophytism-Mediated Growth Promotion and Biocontrol
by S. M. Ahsan, Md. Injamum-Ul-Hoque, Ashim Kumar Das, Md. Mezanur Rahman, Md. Mahi Imam Mollah, Narayan Chandra Paul and Hyong Woo Choi
Plants 2024, 13(10), 1420; https://doi.org/10.3390/plants13101420 - 20 May 2024
Cited by 22 | Viewed by 8666
Abstract
Entomopathogenic fungi, often acknowledged primarily for their insecticidal properties, fulfill diverse roles within ecosystems. These roles encompass endophytism, antagonism against plant diseases, promotion of the growth of plants, and inhabitation of the rhizosphere, occurring both naturally and upon artificial inoculation, as substantiated by [...] Read more.
Entomopathogenic fungi, often acknowledged primarily for their insecticidal properties, fulfill diverse roles within ecosystems. These roles encompass endophytism, antagonism against plant diseases, promotion of the growth of plants, and inhabitation of the rhizosphere, occurring both naturally and upon artificial inoculation, as substantiated by a growing body of contemporary research. Numerous studies have highlighted the beneficial aspects of endophytic colonization. This review aims to systematically organize information concerning the direct (nutrient acquisition and production of phytohormones) and indirect (resistance induction, antibiotic and secondary metabolite production, siderophore production, and mitigation of abiotic and biotic stresses) implications of endophytic colonization. Furthermore, a thorough discussion of these mechanisms is provided. Several challenges, including isolation complexities, classification of novel strains, and the impact of terrestrial location, vegetation type, and anthropogenic reluctance to use fungal entomopathogens, have been recognized as hurdles. However, recent advancements in biotechnology within microbial research hold promising solutions to many of these challenges. Ultimately, the current constraints delineate potential future avenues for leveraging endophytic fungal entomopathogens as dual microbial control agents. Full article
(This article belongs to the Special Issue Mycology and Plant Pathology)
Show Figures

Figure 1

37 pages, 2036 KB  
Review
Emerging Frontiers in Nanotechnology for Precision Agriculture: Advancements, Hurdles and Prospects
by Anurag Yadav, Kusum Yadav, Rumana Ahmad and Kamel A. Abd-Elsalam
Agrochemicals 2023, 2(2), 220-256; https://doi.org/10.3390/agrochemicals2020016 - 31 May 2023
Cited by 140 | Viewed by 14053
Abstract
This review article provides an extensive overview of the emerging frontiers of nanotechnology in precision agriculture, highlighting recent advancements, hurdles, and prospects. The benefits of nanotechnology in this field include the development of advanced nanomaterials for enhanced seed germination and micronutrient supply, along [...] Read more.
This review article provides an extensive overview of the emerging frontiers of nanotechnology in precision agriculture, highlighting recent advancements, hurdles, and prospects. The benefits of nanotechnology in this field include the development of advanced nanomaterials for enhanced seed germination and micronutrient supply, along with the alleviation of biotic and abiotic stress. Further, nanotechnology-based fertilizers and pesticides can be delivered in lower dosages, which reduces environmental impacts and human health hazards. Another significant advantage lies in introducing cutting-edge nanodiagnostic systems and nanobiosensors that monitor soil quality parameters, plant diseases, and stress, all of which are critical for precision agriculture. Additionally, this technology has demonstrated potential in reducing agro-waste, synthesizing high-value products, and using methods and devices for tagging, monitoring, and tracking agroproducts. Alongside these developments, cloud computing and smartphone-based biosensors have emerged as crucial data collection and analysis tools. Finally, this review delves into the economic, legal, social, and risk implications of nanotechnology in agriculture, which must be thoroughly examined for the technology’s widespread adoption. Full article
Show Figures

Figure 1

22 pages, 1727 KB  
Review
Plant Microbiome Engineering: Hopes or Hypes
by Muhammad Siddique Afridi, Sher Ali, Abdul Salam, Willian César Terra, Aqsa Hafeez, Sumaira, Baber Ali, Mona S. AlTami, Fuad Ameen, Sezai Ercisli, Romina Alina Marc, Flavio H. V. Medeiros and Rohini Karunakaran
Biology 2022, 11(12), 1782; https://doi.org/10.3390/biology11121782 - 7 Dec 2022
Cited by 79 | Viewed by 11768
Abstract
Rhizosphere microbiome is a dynamic and complex zone of microbial communities. This complex plant-associated microbial community, usually regarded as the plant’s second genome, plays a crucial role in plant health. It is unquestioned that plant microbiome collectively contributes to plant growth and fitness. [...] Read more.
Rhizosphere microbiome is a dynamic and complex zone of microbial communities. This complex plant-associated microbial community, usually regarded as the plant’s second genome, plays a crucial role in plant health. It is unquestioned that plant microbiome collectively contributes to plant growth and fitness. It also provides a safeguard from plant pathogens, and induces tolerance in the host against abiotic stressors. The revolution in omics, gene-editing and sequencing tools have somehow led to unravel the compositions and latent interactions between plants and microbes. Similarly, besides standard practices, many biotechnological, (bio)chemical and ecological methods have also been proposed. Such platforms have been solely dedicated to engineer the complex microbiome by untangling the potential barriers, and to achieve better agriculture output. Yet, several limitations, for example, the biological obstacles, abiotic constraints and molecular tools that capably impact plant microbiome engineering and functionality, remained unaddressed problems. In this review, we provide a holistic overview of plant microbiome composition, complexities, and major challenges in plant microbiome engineering. Then, we unearthed all inevitable abiotic factors that serve as bottlenecks by discouraging plant microbiome engineering and functionality. Lastly, by exploring the inherent role of micro/macrofauna, we propose economic and eco-friendly strategies that could be harnessed sustainably and biotechnologically for resilient plant microbiome engineering. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

18 pages, 1183 KB  
Review
Plant Bioactive Compounds as an Intrinsic and Sustainable Tool to Enhance the Microbial Safety of Crops
by Andree S. George and Maria T. Brandl
Microorganisms 2021, 9(12), 2485; https://doi.org/10.3390/microorganisms9122485 - 30 Nov 2021
Cited by 31 | Viewed by 4637
Abstract
Outbreaks of produce-associated foodborne illness continue to pose a threat to human health worldwide. New approaches are necessary to improve produce safety. Plant innate immunity has potential as a host-based strategy for the deactivation of enteric pathogens. In response to various biotic and [...] Read more.
Outbreaks of produce-associated foodborne illness continue to pose a threat to human health worldwide. New approaches are necessary to improve produce safety. Plant innate immunity has potential as a host-based strategy for the deactivation of enteric pathogens. In response to various biotic and abiotic threats, plants mount defense responses that are governed by signaling pathways. Once activated, these result in the release of reactive oxygen and nitrogen species in addition to secondary metabolites that aim at tempering microbial infection and pest attack. These phytochemicals have been investigated as alternatives to chemical sanitization, as many are effective antimicrobial compounds in vitro. Their antagonistic activity toward enteric pathogens may also provide an intrinsic hurdle to their viability and multiplication in planta. Plants can detect and mount basal defenses against enteric pathogens. Evidence supports the role of plant bioactive compounds in the physiology of Salmonella enterica, Escherichia coli, and Listeria monocytogenes as well as their fitness on plants. Here, we review the current state of knowledge of the effect of phytochemicals on enteric pathogens and their colonization of plants. Further understanding of the interplay between foodborne pathogens and the chemical environment on/in host plants may have lasting impacts on crop management for enhanced microbial safety through translational applications in plant breeding, editing technologies, and defense priming. Full article
(This article belongs to the Special Issue Human Pathogens in Primary Production Systems)
Show Figures

Figure 1

15 pages, 387 KB  
Review
Fungal and Bacterial Endophytes as Microbial Control Agents for Plant-Parasitic Nematodes
by K. Kiran Kumar and Surendra K. Dara
Int. J. Environ. Res. Public Health 2021, 18(8), 4269; https://doi.org/10.3390/ijerph18084269 - 17 Apr 2021
Cited by 49 | Viewed by 7098
Abstract
Endophytes are symbiotic microorganisms that colonize plant tissues and benefit plants in multiple ways including induced systemic resistance to biotic and abiotic stresses. Endophytes can be sustainable alternatives to chemical nematicides and enhance plant health in a variety of cropping and natural environments. [...] Read more.
Endophytes are symbiotic microorganisms that colonize plant tissues and benefit plants in multiple ways including induced systemic resistance to biotic and abiotic stresses. Endophytes can be sustainable alternatives to chemical nematicides and enhance plant health in a variety of cropping and natural environments. Several in vitro and in vivo studies demonstrated the potential of multiple species of Fusarium and Bacillus against plant-parasitic nematodes in horticultural, agricultural, and fodder crops and in forestry. While there were efforts to commercialize some of the endophytes as bionematicides, a lack of good formulations with consistent field efficacy has been a major hurdle in commercializing endophytes for nematode control. Identification of efficacious and environmentally resilient strains, a thorough understanding of their modes of action, interactions with various biotic and abiotic factors, and developing strategies that improve their effectiveness are critical areas to advance the commercialization of bionematicides based on fungal and bacterial endophytes. Full article
(This article belongs to the Special Issue Current Status, Challenges, and Prospects of Biopesticides)
18 pages, 1247 KB  
Review
An Overview of the Bionomics, Host Plant Resistance and Molecular Perspectives of Sesamia inferens Walker in Cereals and Millets
by Niranjanadevi Jeevanandham, Nalini Ramiah, Vanniarajan Chockalingam and Ramalingam Jegadeesan
Agronomy 2020, 10(11), 1705; https://doi.org/10.3390/agronomy10111705 - 4 Nov 2020
Cited by 9 | Viewed by 13762
Abstract
There is an urgent need to enhance agricultural production as well as productivity to meet the food demand of the growing population, estimated to be 10 billion by 2050, using a holistic and sustainable approach. The daily food sources for almost three-fourth of [...] Read more.
There is an urgent need to enhance agricultural production as well as productivity to meet the food demand of the growing population, estimated to be 10 billion by 2050, using a holistic and sustainable approach. The daily food sources for almost three-fourth of the global population, cereals and millets, are prone to several biotic factors and abiotic pressures. In particular, cereals and millet cultivation are limited by the polyphagous pink stem borer, Sesamia inferens Walker (Lepidoptera:Noctuidae) gaining national importance, since its larvae and pupae are concealed within the stem, none of the management measures have been found effective in controlling the menace. However, host plant resistance (HPR) is a reasonable and ecologically safe method wherein resistance mechanisms of crops could lower the stem borer infestation. The foremost challenge in understanding the mechanism would be to detecting the genes of interest in the crop using novel biotechnological approaches. The fundamental criterion for developing insect-resistant lines relies on recognizing the mechanism of plant resistance. The entire life cycle of this group of borers is completed or hidden within the stem, posing a hurdle in their management. Thus, molecular markers and Quantitative Trait Locus (QTL) mapping offer a more efficient approach to entomologists and plant breeders wherein they can work with traits like QTLs for stem borer resistance. In this review, an attempt has been made to provide an extensive summary of the host range and crop losses due to this borer, besides its taxonomic position, geographic distribution, bionomics, genetics of resistance, and molecular perspectives. Full article
Show Figures

Graphical abstract

Back to TopTop