Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = biopterin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2590 KiB  
Article
Identification and Quantification of Pteridines in the Wild Type and the ambar Mutant of Orius laevigatus (Hemiptera: Anthocoridae)
by Yolanda Bel, Amador Rodríguez-Gómez, Pablo Bielza and Juan Ferré
Insects 2025, 16(8), 756; https://doi.org/10.3390/insects16080756 - 23 Jul 2025
Viewed by 448
Abstract
Nymphs of the ambar mutant of Orius laevigatus (Fieber) are orange-colored instead of the yellowish color of the wild-type individuals. Since there were no previous studies of the pigments of this species, we searched for differences in pigments of the pteridine family between [...] Read more.
Nymphs of the ambar mutant of Orius laevigatus (Fieber) are orange-colored instead of the yellowish color of the wild-type individuals. Since there were no previous studies of the pigments of this species, we searched for differences in pigments of the pteridine family between both strains. Fluorescent compounds from nymph extracts were separated by cellulose thin-layer chromatography (TLC) and by size exclusion chromatography, followed by LC/MS/MS. The present study has allowed the identification for the first time in O. laevigatus of erythropterin, leucopterin, 7-methylxanthopterin, xanthopterin, isoxanthopterin, pterin, and biopterin. The quantification was performed by fluorometry after elution of the pteridines previously separated by TLC. The results showed that the orange color in the ambar nymphs was due to the accumulation of the orange pigment erythropterin. Additionally, mutant nymphs exhibited significantly elevated levels of pterin and reduced levels of leucopterin. The possibility that these differences were due to differences in xanthine dehydrogenase (XDH) activity was tested; the results indicated that XDH deficiency is unlikely to be responsible for the mutant phenotype. Considering that the ambar mutation is recessive, the mutant phenotype should, most likely, be due to a disruption in downstream metabolic steps involved in erythropterin processing. Full article
(This article belongs to the Section Other Arthropods and General Topics)
Show Figures

Figure 1

11 pages, 1327 KiB  
Article
Clinical Features of Families with a Novel Pathogenic Mutation in Sepiapterin Reductase
by Feda E. Mohamed, Lara Alzyoud, Mohammad A. Ghattas, Mohammed Tabouni, André Fienemann, Joanne Trinh, Ibrahim Baydoun, Praseetha Kizhakkedath, Hiba Alblooshi, Qudsia Shaukat, Rim Amouri, Matthew J. Farrer, Samia Ben Sassi and Fatma Al-Jasmi
Int. J. Mol. Sci. 2025, 26(7), 3056; https://doi.org/10.3390/ijms26073056 - 27 Mar 2025
Viewed by 670
Abstract
Sepiapterin Reductase Deficiency (SRD) is a rare inherited neurometabolic disorder caused by variants in the SPR gene, which may lead to developmental delays, psychomotor retardation, and cognitive impairments. Two consanguineous North African and Middle Eastern families are reported with multiple affected individuals presenting [...] Read more.
Sepiapterin Reductase Deficiency (SRD) is a rare inherited neurometabolic disorder caused by variants in the SPR gene, which may lead to developmental delays, psychomotor retardation, and cognitive impairments. Two consanguineous North African and Middle Eastern families are reported with multiple affected individuals presenting with developmental delay, ataxia, hypotonia, fatigue, and ptosis, or parkinsonism and cognitive impairment. Exome sequencing revealed a novel homozygous SPR c.560A>G (p.Glu187Gly) mutation that segregates with disease. According to molecular dynamics analysis, the substitution is predicted to compromise structural integrity, likely affecting ligand binding and catalytic activity. Elevated cerebrospinal fluid sepiapterin and biopterin levels, along with low neurotransmitter levels, were concordant with a genetic diagnosis of SRD and the reclassification of this variant as pathogenic. SRD patients manifest a broad constellation of symptoms, albeit well-managed using low-dose L-dopa/carbidopa. This study highlights the value of genetic testing in expediting early diagnosis and intervention to mitigate the onset of this disorder. Full article
(This article belongs to the Special Issue Molecular Research of Dystonia and Parkinson’s Disease)
Show Figures

Figure 1

12 pages, 1237 KiB  
Article
Metabolic Disruptions and Non-Communicable Disease Risks Associated with Long-Term Particulate Matter Exposure in Northern Thailand: An NMR-Based Metabolomics Study
by Churdsak Jaikang, Giatgong Konguthaithip, Yutti Amornlertwatana, Narongchai Autsavapromporn, Sirichet Rattanachitthawat, Nitip Liampongsabuddhi and Tawachai Monum
Biomedicines 2025, 13(3), 742; https://doi.org/10.3390/biomedicines13030742 - 18 Mar 2025
Cited by 1 | Viewed by 675
Abstract
Background/Objectives: Particulate matter (PM) is a primary health hazard associated with metabolic pathway disruption. Population characteristics, topography, sources, and PM components contribute to health impacts. Methods: In this study, NMR-based metabolomics was used to evaluate the health impacts of prolonged exposure [...] Read more.
Background/Objectives: Particulate matter (PM) is a primary health hazard associated with metabolic pathway disruption. Population characteristics, topography, sources, and PM components contribute to health impacts. Methods: In this study, NMR-based metabolomics was used to evaluate the health impacts of prolonged exposure to PM. Blood samples (n = 197) were collected from healthy volunteers in low- (control; CG) and high-exposure areas (exposure; EG) in Northern Thailand. Non-targeted metabolite analysis was performed using proton nuclear magnetic resonance spectroscopy (1H-NMR). Results: Compared to CG, EG showed significantly increased levels of dopamine, N6-methyladenosine, 3-hydroxyproline, 5-carboxylcytosine, and cytidine (p < 0.05), while biopterin, adenosine, L-Histidine, epinephrine, and norepinephrine were significantly higher in CG (p < 0.05). These metabolic disturbances suggest that chronic exposure to particulate matter (PM) impairs energy and amino acid metabolism while enhancing oxidative stress, potentially contributing to the onset of non-communicable diseases (NCDs) such as cancer and neurodegenerative conditions. Conclusions: This study highlighted the connection between sub-chronic PM2.5 exposure, metabolic disturbances, and an increased risk of non-communicable diseases (NCDs), stressing the critical need for effective PM2.5 reduction strategies in Northern Thailand. Full article
(This article belongs to the Section Endocrinology and Metabolism Research)
Show Figures

Figure 1

21 pages, 2257 KiB  
Article
Persistent Metabolic Changes Are Induced by 24 h Low-Dose Lead (Pb) Exposure in Zebrafish Embryos
by Gwendolyn Cooper, Ryan North, Tyler Hunt-Smith, James Larson, Madison Rennie, Marguerite L. Bailey, Suzanne Scarlata, Christa S. Merzdorf and Brian Bothner
Int. J. Mol. Sci. 2025, 26(3), 1050; https://doi.org/10.3390/ijms26031050 - 26 Jan 2025
Cited by 2 | Viewed by 1354
Abstract
Lead (Pb) is a heavy metal associated with a range of toxic effects. Relatively few studies attempt to understand the impact of lead on development from a mechanistic perspective. Danio rerio (zebrafish) embryos are a model organism for studying the developmental consequences of [...] Read more.
Lead (Pb) is a heavy metal associated with a range of toxic effects. Relatively few studies attempt to understand the impact of lead on development from a mechanistic perspective. Danio rerio (zebrafish) embryos are a model organism for studying the developmental consequences of exposure to chemical agents. This study examined the metabolome of developing zebrafish embryos exposed to 5 ppb, 15 ppb, 150 ppb, and 1500 ppb Pb concentrations during the first 24 h post fertilization, followed by 24 h of unexposed development and harvest at 48 h. Untargeted metabolomics and multivariate analysis revealed that various Pb exposures differentially affected the embryonic metabolome. Pathway analyses showed the dysregulation of biopterin, purine, alanine, and aspartate metabolism. Inductively coupled plasma mass spectrometry demonstrated Pb accumulation in embryos. Additionally, decreases in oxidation–reduction ratios were observed in 5–150 ppb groups but not in the 1500 ppb exposure group. This finding, along with several metabolite abundances, suggests a hormetic effect of Pb concentrations on the developing zebrafish metabolome. Together, these data reveal persistent global changes in the embryonic metabolome, pin-point biomarkers for Pb exposure, unveil dose-dependent relationships, and reflect Pb-induced changes in cellular energy. This work highlights aberrant processes and persistent changes underlying low-dose heavy metal exposure during early development. Full article
(This article belongs to the Special Issue Molecular Mechanism and Therapeutic Approach of Metal Toxicity)
Show Figures

Figure 1

11 pages, 1797 KiB  
Article
Comparative Study of Blood Neopterin and Biopterins in Patients with COVID-19 and Secondary Bacterial Infection
by Tomohiro Eguchi, Shuhei Niiyama, Chinatsu Kamikokuryo, Yutaro Madokoro, Kenshin Shimono, Satoshi Hara, Hiroshi Ichinose and Yasuyuki Kakihana
J. Clin. Med. 2024, 13(15), 4365; https://doi.org/10.3390/jcm13154365 - 26 Jul 2024
Viewed by 1176
Abstract
Background/Objectives: As COVID-19 can be severe, early predictive markers of both severity and onset of secondary bacterial infections are needed. This study first examined changes over time in the levels of plasma neopterin (NP) and biopterins (BPs), among others, in patients with [...] Read more.
Background/Objectives: As COVID-19 can be severe, early predictive markers of both severity and onset of secondary bacterial infections are needed. This study first examined changes over time in the levels of plasma neopterin (NP) and biopterins (BPs), among others, in patients with COVID-19 and then in those with secondary bacterial infection complications. Methods: Fifty-two patients with COVID-19 admitted to two tertiary care centers were included. They were divided into a severe group (intubated + mechanical ventilation) (n = 10) and a moderate group (non-intubated + oxygen administration) (n = 42), and changes over time in plasma NP, plasma BPs, IFN-γ, lymphocyte count, CRP, and IL-6 were investigated. Four of the patients in the severe group (n = 10) developed secondary bacterial infections during treatment. Plasma NP and plasma BPs of patients with bacterial sepsis (no viral infection) (n = 25) were also examined. Results: The plasma NP, IL-6, CRP, and SOFA levels were significantly higher in the severe group, while the IFN-γ level and lymphocyte count were significantly lower. The higher plasma NP in the severe group persisted only up to 1 week after symptom onset. The plasma BPs were higher in complications of bacterial infection. Conclusions: The timing of sample collection is important for assessing severity through plasma NP, while plasma BPs may be a useful diagnostic tool for identifying the development of secondary bacterial infection in patients with COVID-19. Further investigation is needed to clarify the mechanism by which NP and BPs, which are involved in the same biosynthetic pathway, are differentially activated depending on the type of pathogen. Full article
(This article belongs to the Section Emergency Medicine)
Show Figures

Figure 1

6 pages, 447 KiB  
Case Report
A Case of DNAJC12-Deficient Hyperphenylalaninemia Detected on Newborn Screening: Clinical Outcomes from Early Detection
by Colleen Donnelly, Lissette Estrella, Ilona Ginevic and Jaya Ganesh
Int. J. Neonatal Screen. 2024, 10(1), 7; https://doi.org/10.3390/ijns10010007 - 17 Jan 2024
Cited by 3 | Viewed by 1987 | Correction
Abstract
DNAJC12-deficient hyperphenylalaninemia is a recently described inborn error of metabolism associated with hyperphenylalaninemia, neurotransmitter deficiency, and developmental delay caused by biallelic pathogenic variants of the DNAJC12 gene. The loss of the DNAJC12-encoded chaperone results in the destabilization of the biopterin-dependent aromatic [...] Read more.
DNAJC12-deficient hyperphenylalaninemia is a recently described inborn error of metabolism associated with hyperphenylalaninemia, neurotransmitter deficiency, and developmental delay caused by biallelic pathogenic variants of the DNAJC12 gene. The loss of the DNAJC12-encoded chaperone results in the destabilization of the biopterin-dependent aromatic amino acid hydroxylases, resulting in deficiencies in dopamine, norepinephrine, and serotonin. We present the case of a patient who screened positive for hyperphenylalaninemia on newborn screening and was discovered to be homozygous for a likely pathogenic variant of DNAJC12. Here, we review the management of DNAJC12-related hyperphenylalaninemia and compare our patient to other reported cases in the literature to investigate how early detection and management may impact clinical outcomes. Full article
Show Figures

Figure 1

14 pages, 2887 KiB  
Article
Characteristics of Metabolites in the Development of Atherosclerosis in Tibetan Minipigs Determined Using Untargeted Metabolomics
by Liye Shen, Jinlong Wang, Yongming Pan, Junjie Huang, Keyan Zhu, Haiye Tu and Minli Chen
Nutrients 2023, 15(20), 4425; https://doi.org/10.3390/nu15204425 - 18 Oct 2023
Cited by 3 | Viewed by 1656
Abstract
Background: Atherosclerosis (AS) is a chronic progressive disease caused by lipometabolic disorder. However, the pathological characteristics and mechanism of AS have not been fully clarified. Through high-fat and high-cholesterol diet induction, Tibetan minipigs can be used as the AS model animals, as they [...] Read more.
Background: Atherosclerosis (AS) is a chronic progressive disease caused by lipometabolic disorder. However, the pathological characteristics and mechanism of AS have not been fully clarified. Through high-fat and high-cholesterol diet induction, Tibetan minipigs can be used as the AS model animals, as they have a very similar AS pathogenesis to humans. Methods: In this study, we built an AS model of Tibetan minipigs and identified the differential abundance metabolites in the development of AS based on untargeted metabolomics. Results: We found that sphingolipid metabolism and glucose oxidation were obviously higher in the AS group and phenylalanine metabolism was reduced in the AS group. Moreover, in the development of AS, gluconolactone was enriched in the late stage of AS whereas biopterin was enriched in the early stage of AS. Conclusions: Our research provides novel clues to investigate the metabolic mechanism of AS from the perspective of metabolomics. Full article
(This article belongs to the Special Issue Dietary Factors on Cardiovascular and Endocrine Health)
Show Figures

Figure 1

14 pages, 1337 KiB  
Article
Effect of Remote Ischaemic Preconditioning on Perioperative Endothelial Dysfunction in Non-Cardiac Surgery: A Randomised Clinical Trial
by Kirsten L. Wahlstrøm, Hannah F. Hansen, Madeline Kvist, Jakob Burcharth, Jens Lykkesfeldt, Ismail Gögenur and Sarah Ekeloef
Cells 2023, 12(6), 911; https://doi.org/10.3390/cells12060911 - 16 Mar 2023
Cited by 5 | Viewed by 2544
Abstract
Endothelial dysfunction result from inflammation and excessive production of reactive oxygen species as part of the surgical stress response. Remote ischemic preconditioning (RIPC) potentially exerts anti-oxidative and anti-inflammatory properties, which might stabilise the endothelial function after non-cardiac surgery. This was a single centre [...] Read more.
Endothelial dysfunction result from inflammation and excessive production of reactive oxygen species as part of the surgical stress response. Remote ischemic preconditioning (RIPC) potentially exerts anti-oxidative and anti-inflammatory properties, which might stabilise the endothelial function after non-cardiac surgery. This was a single centre randomised clinical trial including 60 patients undergoing sub-acute laparoscopic cholecystectomy due to acute cholecystitis. Patients were randomised to RIPC or control. The RIPC procedure consisted of four cycles of five minutes of ischaemia and reperfusion of one upper extremity. Endothelial function was assessed as the reactive hyperaemia index (RHI) and circulating biomarkers of nitric oxide (NO) bioavailability (L-arginine, asymmetric dimethylarginine (ADMA), L-arginine/ADMA ratio, tetra- and dihydrobiopterin (BH4 and BH2), and total plasma biopterin) preoperative, 2–4 h after surgery and 24 h after surgery. RHI did not differ between the groups (p = 0.07). Neither did levels of circulating biomarkers of NO bioavailability change in response to RIPC. L-arginine and L-arginine/ADMA ratio was suppressed preoperatively and increased 24 h after surgery (p < 0.001). The BH4/BH2-ratio had a high preoperative level, decreased 2–4 h after surgery and remained low 24 h after surgery (p = 0.01). RIPC did not influence endothelial function or markers of NO bioavailability until 24 h after sub-acute laparoscopic cholecystectomy. In response to surgery, markers of NO bioavailability increased, and oxidative stress decreased. These findings support that a minimally invasive removal of the inflamed gallbladder countereffects reduced markers of NO bioavailability and increased oxidative stress caused by acute cholecystitis. Full article
Show Figures

Graphical abstract

15 pages, 3213 KiB  
Article
Associations of Biopterins and ADMA with Vascular Function in Peripheral Microcirculation from Patients with Chronic Kidney Disease
by Samsul Arefin, Lars Löfgren, Peter Stenvinkel, Anna B. Granqvist and Karolina Kublickiene
Int. J. Mol. Sci. 2023, 24(6), 5582; https://doi.org/10.3390/ijms24065582 - 15 Mar 2023
Cited by 6 | Viewed by 2182
Abstract
We hypothesized that patients with chronic kidney disease (CKD) display an altered plasma amino acid (AA) metabolomic profile that could contribute to abnormal vascular maintenance of peripheral circulation in uremia. The relationships between plasma AAs and endothelial and vascular smooth muscle function in [...] Read more.
We hypothesized that patients with chronic kidney disease (CKD) display an altered plasma amino acid (AA) metabolomic profile that could contribute to abnormal vascular maintenance of peripheral circulation in uremia. The relationships between plasma AAs and endothelial and vascular smooth muscle function in the microcirculation of CKD patients are not well understood. The objective of this study is to investigate to what extent the levels of AAs and its metabolites are changed in CKD patients and to test their relationship with endothelial and vascular smooth muscle function. Patients with CKD stages 3 and 5 and non-CKD controls are included in this study. We report that there was a significant reduction of the biopterin (BH4/BH2) ratio, which was accompanied by increased plasma levels of BH2, asymmetric dimethylarginine (ADMA) and citrulline in patients with CKD-5 vs. CKD-3 vs. controls. In vivo augmentation index measurement showed a positive association with ADMA in all participants. The contribution of nitric oxide, assessed by ex vivo assay, showed a negative association with creatinine, ADMA and citrulline in all participants. In CKD-5, BH4 negatively correlated with ADMA and ornithine levels, and the ex vivo endothelium-mediated dilatation positively correlated with phenylalanine levels. In conclusion, uremia is associated with alterations in AA metabolism that may affect endothelium-dependent dilatation and vascular stiffness in microcirculation. Interventional strategies aiming to normalize the AA metabolism could be of interest as treatment options. Full article
(This article belongs to the Special Issue Renal Dysfunction, Uremic Compounds, and Other Factors)
Show Figures

Figure 1

28 pages, 7161 KiB  
Article
Interaction between Butyrate and Tumor Necrosis Factor α in Primary Rat Colonocytes
by Christopher L. Souders, Juan J. Aristizabal-Henao, Sarah J. Patuel, John A. Bowden, Jasenka Zubcevic and Christopher J. Martyniuk
Biomolecules 2023, 13(2), 258; https://doi.org/10.3390/biom13020258 - 30 Jan 2023
Cited by 6 | Viewed by 3344
Abstract
Butyrate, a short-chain fatty acid, is utilized by the gut epithelium as energy and it improves the gut epithelial barrier. More recently, it has been associated with beneficial effects on immune and cardiovascular homeostasis. Conversely, tumor necrosis factor alpha (TNFα) is a pro-inflammatory [...] Read more.
Butyrate, a short-chain fatty acid, is utilized by the gut epithelium as energy and it improves the gut epithelial barrier. More recently, it has been associated with beneficial effects on immune and cardiovascular homeostasis. Conversely, tumor necrosis factor alpha (TNFα) is a pro-inflammatory and pro-hypertensive cytokine. While butyrate and TNFα are both linked with hypertension, studies have not yet addressed their interaction in the colon. Here, we investigated the capacity of butyrate to modulate a host of effects of TNFα in primary rodent colonic cells in vitro. We measured ATP levels, cell viability, mitochondrial membrane potential (MMP), reactive oxygen species (ROS), mitochondrial oxidative phosphorylation, and glycolytic activity in colonocytes following exposure to either butyrate or TNFα, or both. To address the potential mechanisms, transcripts related to oxidative stress, cell fate, and cell metabolism (Pdk1, Pdk2, Pdk4, Spr, Slc16a1, Slc16a3, Ppargc1a, Cs, Lgr5, Casp3, Tnfr2, Bax, Bcl2, Sod1, Sod2, and Cat) were measured, and untargeted liquid chromatography–tandem mass spectrometry (LC-MS/MS) was employed to profile the metabolic responses of colonocytes following exposure to butyrate and TNFα. We found that both butyrate and TNFα lowered cellular ATP levels towards a quiescent cell energy phenotype, characterized by decreased oxygen consumption and extracellular acidification. Co-treatment with butyrate ameliorated TNFα-induced cytotoxicity and the reduction in cell viability. Butyrate also opposed the TNFα-mediated decrease in MMP and mitochondrial-to-intracellular calcium ratios, suggesting that butyrate may protect colonocytes against TNFα-induced cytotoxicity by decreasing mitochondrial calcium flux. The relative expression levels of pyruvate dehydrogenase kinase 4 (Pdk4) were increased via co-treatment of butyrate and TNFα, suggesting the synergistic inhibition of glycolysis. TNFα alone reduced the expression of monocarboxylate transporters slc16a1 and slc16a3, suggesting effects of TNFα on butyrate uptake into colonocytes. Of the 185 metabolites that were detected with LC-MS, the TNFα-induced increase in biopterin produced the only significant change, suggesting an alteration in mitochondrial biogenesis in colonocytes. Considering the reports of elevated colonic TNFα and reduced butyrate metabolism in many conditions, including in hypertension, the present work sheds light on cellular interactions between TNFα and butyrate in colonocytes that may be important in understanding conditions of the colon. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

20 pages, 2946 KiB  
Article
Metastatic Melanoma Progression Is Associated with Endothelial Nitric Oxide Synthase Uncoupling Induced by Loss of eNOS:BH4 Stoichiometry
by Fabiana Henriques Machado de Melo, Diego Assis Gonçalves, Ricardo Xisto de Sousa, Marcelo Yudi Icimoto, Denise de Castro Fernandes, Francisco R. M. Laurindo and Miriam Galvonas Jasiulionis
Int. J. Mol. Sci. 2021, 22(17), 9556; https://doi.org/10.3390/ijms22179556 - 3 Sep 2021
Cited by 4 | Viewed by 3787
Abstract
Melanoma is the most aggressive type of skin cancer due to its high capability of developing metastasis and acquiring chemoresistance. Altered redox homeostasis induced by increased reactive oxygen species is associated with melanomagenesis through modulation of redox signaling pathways. Dysfunctional endothelial nitric oxide [...] Read more.
Melanoma is the most aggressive type of skin cancer due to its high capability of developing metastasis and acquiring chemoresistance. Altered redox homeostasis induced by increased reactive oxygen species is associated with melanomagenesis through modulation of redox signaling pathways. Dysfunctional endothelial nitric oxide synthase (eNOS) produces superoxide anion (O2−•) and contributes to the establishment of a pro-oxidant environment in melanoma. Although decreased tetrahydrobiopterin (BH4) bioavailability is associated with eNOS uncoupling in endothelial and human melanoma cells, in the present work we show that eNOS uncoupling in metastatic melanoma cells expressing the genes from de novo biopterin synthesis pathway Gch1, Pts, and Spr, and high BH4 concentration and BH4:BH2 ratio. Western blot analysis showed increased expression of Nos3, altering the stoichiometry balance between eNOS and BH4, contributing to NOS uncoupling. Both treatment with L-sepiapterin and eNOS downregulation induced increased nitric oxide (NO) and decreased O2 levels, triggering NOS coupling and reducing cell growth and resistance to anoikis and dacarbazine chemotherapy. Moreover, restoration of eNOS activity impaired tumor growth in vivo. Finally, NOS3 expression was found to be increased in human metastatic melanoma samples compared with the primary site. eNOS dysfunction may be an important mechanism supporting metastatic melanoma growth and hence a potential target for therapy. Full article
(This article belongs to the Special Issue Nitric Oxide Synthases: Regulation and Function 2021)
Show Figures

Graphical abstract

18 pages, 3141 KiB  
Article
Decreased Expression and Uncoupling of Endothelial Nitric Oxide Synthase in the Cerebral Cortex of Rats with Thioacetamide-Induced Acute Liver Failure
by Krzysztof Milewski, Anna Maria Czarnecka, Jan Albrecht and Magdalena Zielińska
Int. J. Mol. Sci. 2021, 22(13), 6662; https://doi.org/10.3390/ijms22136662 - 22 Jun 2021
Cited by 14 | Viewed by 3814
Abstract
Acute liver failure (ALF) is associated with deregulated nitric oxide (NO) signaling in the brain, which is one of the key molecular abnormalities leading to the neuropsychiatric disorder called hepatic encephalopathy (HE). This study focuses on the effect of ALF on the relatively [...] Read more.
Acute liver failure (ALF) is associated with deregulated nitric oxide (NO) signaling in the brain, which is one of the key molecular abnormalities leading to the neuropsychiatric disorder called hepatic encephalopathy (HE). This study focuses on the effect of ALF on the relatively unexplored endothelial NOS isoform (eNOS). The cerebral prefrontal cortices of rats with thioacetamide (TAA)-induced ALF showed decreased eNOS expression, which resulted in an overall reduction of NOS activity. ALF also decreased the content of the NOS cofactor, tetrahydro-L-biopterin (BH4), and evoked eNOS uncoupling (reduction of the eNOS dimer/monomer ratio). The addition of the NO precursor L-arginine in the absence of BH4 potentiated ROS accumulation, whereas nonspecific NOS inhibitor L-NAME or EDTA attenuated ROS increase. The ALF-induced decrease of eNOS content and its uncoupling concurred with, and was likely causally related to, both increased brain content of reactive oxidative species (ROS) and decreased cerebral cortical blood flow (CBF) in the same model. Full article
(This article belongs to the Special Issue Molecular Research in Neurotoxicology 2.0)
Show Figures

Graphical abstract

20 pages, 1107 KiB  
Article
Genome Analysis of Endotrypanum and Porcisia spp., Closest Phylogenetic Relatives of Leishmania, Highlights the Role of Amastins in Shaping Pathogenicity
by Amanda T. S. Albanaz, Evgeny S. Gerasimov, Jeffrey J. Shaw, Jovana Sádlová, Julius Lukeš, Petr Volf, Fred R. Opperdoes, Alexei Y. Kostygov, Anzhelika Butenko and Vyacheslav Yurchenko
Genes 2021, 12(3), 444; https://doi.org/10.3390/genes12030444 - 20 Mar 2021
Cited by 17 | Viewed by 4953
Abstract
While numerous genomes of Leishmania spp. have been sequenced and analyzed, an understanding of the evolutionary history of these organisms remains limited due to the unavailability of the sequence data for their closest known relatives, Endotrypanum and Porcisia spp., infecting sloths and porcupines. [...] Read more.
While numerous genomes of Leishmania spp. have been sequenced and analyzed, an understanding of the evolutionary history of these organisms remains limited due to the unavailability of the sequence data for their closest known relatives, Endotrypanum and Porcisia spp., infecting sloths and porcupines. We have sequenced and analyzed genomes of three members of this clade in order to fill this gap. Their comparative analyses revealed only minute differences from Leishmaniamajor genome in terms of metabolic capacities. We also documented that the number of genes under positive selection on the Endotrypanum/Porcisia branch is rather small, with the flagellum-related group of genes being over-represented. Most significantly, the analysis of gene family evolution revealed a substantially reduced repertoire of surface proteins, such as amastins and biopterin transporters BT1 in the Endotrypanum/Porcisia species when compared to amastigote-dwelling Leishmania. This reduction was especially pronounced for δ-amastins, a subfamily of cell surface proteins crucial in the propagation of Leishmania amastigotes inside vertebrate macrophages and, apparently, dispensable for Endotrypanum/Porcisia, which do not infect such cells. Full article
(This article belongs to the Special Issue Genetics and Genomics of Leishmania)
Show Figures

Figure 1

13 pages, 2953 KiB  
Article
Metabonomic Insights into the Sperm Activation Mechanisms in Ricefield Eel (Monopterus albus)
by Huiying Zhang, Yang Liu, Lingling Zhou, Shaohua Xu, Cheng Ye, Haifeng Tian, Zhong Li and Guangfu Hu
Genes 2020, 11(11), 1259; https://doi.org/10.3390/genes11111259 - 26 Oct 2020
Cited by 13 | Viewed by 3100
Abstract
In fish, sperm motility activation is one of the most essential procedures for fertilization. Previous studies have mainly focused on the external environmental effects and intracellular signals in sperm activation; however, little is known about the metabolic process of sperm motility activation in [...] Read more.
In fish, sperm motility activation is one of the most essential procedures for fertilization. Previous studies have mainly focused on the external environmental effects and intracellular signals in sperm activation; however, little is known about the metabolic process of sperm motility activation in fish. In the present study, using ricefield eel (Monopterus albus) sperm as a model, metabonomics was used to analyze the metabolic mechanism of the sperm motility activation in fish. Firstly, 529 metabolites were identified in the sperm of ricefield eel, which were clustered into the organic acids, amino acids, nucleotides, benzene, and carbohydrates, respectively. Among them, the most abundant metabolites in sperm were L-phenylalanine, DL-leucine, L-leucine, lysolecithin choline 18:0, L-tryptophan, adenine, hypoxanthine, 7-Methylguanine, shikimic acid, and L-tyrosine. Secondly, compared to pre-activated sperm, the level of S-sulfo-L-cysteine and L-asparagine were both increased in the post-activated sperm. Ninety-two metabolites were decreased in the post-activated sperm, including quinic acid, acetylsalicylic acid, 7,8-dihydro L-biopterin, citric acid, glycylphenylalanine, and dihydrotachysterol (DHT). Finally, basing on the pathway analysis, we found that the changed metabolites in sperm motility activation were mainly clustered into energy metabolism and anti-oxidative stress. Fish sperm motility activation would be accompanied by the release of a large amount of energy, which might damage the genetic material of sperm. Thus, the anti-oxidative stress function is a critical process to maintain the normal physiological function of sperm. Full article
Show Figures

Figure 1

16 pages, 1246 KiB  
Article
The Nitric Oxide System in Peripheral Artery Disease: Connection with Oxidative Stress and Biopterins
by Ahmed Ismaeel, Evlampia Papoutsi, Dimitrios Miserlis, Ramon Lavado, Gleb Haynatzki, George P. Casale, William T. Bohannon, Robert S. Smith, Jack Leigh Eidson, Robert Brumberg, Aaron Hayson, Jeffrey S. Kirk, Carlos Castro, Ian Sawicki, Charalambos Konstantinou, Luke P. Brewster, Iraklis I. Pipinos and Panagiotis Koutakis
Antioxidants 2020, 9(7), 590; https://doi.org/10.3390/antiox9070590 - 6 Jul 2020
Cited by 38 | Viewed by 5763
Abstract
Peripheral artery disease (PAD) pathophysiology extends beyond hemodynamics to include other operating mechanisms, including endothelial dysfunction. Oxidative stress may be linked to endothelial dysfunction by reducing nitric oxide (NO) bioavailability. We aimed to investigate whether the NO system and its regulators are altered [...] Read more.
Peripheral artery disease (PAD) pathophysiology extends beyond hemodynamics to include other operating mechanisms, including endothelial dysfunction. Oxidative stress may be linked to endothelial dysfunction by reducing nitric oxide (NO) bioavailability. We aimed to investigate whether the NO system and its regulators are altered in the setting of PAD and to assess the relationship between NO bioavailability and oxidative stress. Sera from 35 patients with intermittent claudication (IC), 26 patients with critical limb ischemia (CLI), and 35 non-PAD controls were analyzed to determine levels of tetrahydrobiopterin (BH4), dihydrobiopterin (BH2), nitrate/nitrite (nitric oxides, or NOx), arginine, citrulline, asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), and the oxidative stress markers 8-Oxo-2′-deoxyguanosine (8-OHdG), 4-hydroxynonenal (4-HNE), advanced glycation end products (AGEs), and protein carbonyls. NOx was significantly lower in IC and CLI patients compared to controls in association with elevated oxidative stress, with the greatest NOx reductions observed in CLI. Compared with controls, IC and CLI patients had reduced BH4, elevated BH2, and a reduced BH4/BH2 ratio. SDMA, the arginine/SDMA ratio, and the arginine/ADMA ratio were significantly higher in CLI patients. The NO system and its regulators are significantly compromised in PAD. This dysregulation appears to be driven by increased oxidative stress and worsens as the disease progresses from claudication to CLI. Full article
(This article belongs to the Special Issue Oxidative Stress and Inflammation in Cardiovascular Diseases)
Show Figures

Graphical abstract

Back to TopTop