Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = biomimetic nanodrug delivery systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1215 KiB  
Article
Daptomycin-Loaded Nano-Drug Delivery System Based on Biomimetic Cell Membrane Coating Technology: Preparation, Characterization, and Evaluation
by Yuqin Zhou, Shihan Du, Kailun He, Beilei Zhou, Zixuan Chen, Cheng Zheng, Minghao Zhou, Jue Li, Yue Chen, Hu Zhang, Hong Yuan, Yinghong Li, Yan Chen and Fuqiang Hu
Pharmaceuticals 2025, 18(8), 1169; https://doi.org/10.3390/ph18081169 - 6 Aug 2025
Abstract
Background/Objective: Staphylococcus aureus (S. aureus) is a clinically significant pathogenic bacterium. Daptomycin (DAP) is a cyclic lipopeptide antibiotic used to treat infections caused by multidrug-resistant Gram-positive bacteria, including S. aureus. However, DAP currently faces clinical limitations due to its short [...] Read more.
Background/Objective: Staphylococcus aureus (S. aureus) is a clinically significant pathogenic bacterium. Daptomycin (DAP) is a cyclic lipopeptide antibiotic used to treat infections caused by multidrug-resistant Gram-positive bacteria, including S. aureus. However, DAP currently faces clinical limitations due to its short half-life, toxic side effects, and increasingly severe drug resistance issues. This study aimed to develop a biomimetic nano-drug delivery system to enhance targeting ability, prolong blood circulation, and mitigate resistance of DAP. Methods: DAP-loaded chitosan nanocomposite particles (DAP-CS) were prepared by electrostatic self-assembly. Macrophage membrane vesicles (MM) were prepared by fusion of M1-type macrophage membranes with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). A biomimetic nano-drug delivery system (DAP-CS@MM) was constructed by the coextrusion process of DAP-CS and MM. Key physicochemical parameters, including particle diameter, zeta potential, encapsulation efficiency, and membrane protein retention, were systematically characterized. In vitro immune escape studies and in vivo zebrafish infection models were employed to assess the ability of immune escape and antibacterial performance, respectively. Results: The particle size of DAP-CS@MM was 110.9 ± 13.72 nm, with zeta potential +11.90 ± 1.90 mV, and encapsulation efficiency 70.43 ± 1.29%. DAP-CS@MM retained macrophage membrane proteins, including functional TLR2 receptors. In vitro immune escape assays, DAP-CS@MM demonstrated significantly enhanced immune escape compared with DAP-CS (p < 0.05). In the zebrafish infection model, DAP-CS@MM showed superior antibacterial efficacy over both DAP and DAP-CS (p < 0.05). Conclusions: The DAP-CS@MM biomimetic nano-drug delivery system exhibits excellent immune evasion and antibacterial performance, offering a novel strategy to overcome the clinical limitations of DAP. Full article
(This article belongs to the Section Pharmaceutical Technology)
17 pages, 2019 KiB  
Review
From Blood to Therapy: The Revolutionary Application of Platelets in Cancer-Targeted Drug Delivery
by Lijuan Xie, Fengxu Gan, Yun Hu, Yibin Zheng, Junshan Lan, Yuting Liu, Xiaofang Zhou, Jianyu Zheng, Xing Zhou and Jie Lou
J. Funct. Biomater. 2025, 16(1), 15; https://doi.org/10.3390/jfb16010015 - 6 Jan 2025
Cited by 3 | Viewed by 2579
Abstract
Biomimetic nanodrug delivery systems based on cell membranes have emerged as a promising approach for targeted cancer therapy due to their biocompatibility and low immunogenicity. Among them, platelet-mediated systems are particularly noteworthy for their innate tumor-homing and cancer cell interaction capabilities. These systems [...] Read more.
Biomimetic nanodrug delivery systems based on cell membranes have emerged as a promising approach for targeted cancer therapy due to their biocompatibility and low immunogenicity. Among them, platelet-mediated systems are particularly noteworthy for their innate tumor-homing and cancer cell interaction capabilities. These systems utilize nanoparticles shielded and directed by platelet membrane coatings for efficient drug delivery. This review highlights the role of platelets in cancer therapy, summarizes the advancements in platelet-based drug delivery systems, and discusses their integration with other cancer treatments. Additionally, it addresses the limitations and challenges of platelet-mediated drug delivery, offering insights into future developments in this innovative field. Full article
(This article belongs to the Collection Feature Papers in Biomaterials for Drug Delivery)
Show Figures

Figure 1

24 pages, 8268 KiB  
Review
Biomembrane-Modified Biomimetic Nanodrug Delivery Systems: Frontier Platforms for Cardiovascular Disease Treatment
by Yunan Gu, Lixin Du, Yuxin Wu, Juan Qin, Xiang Gu, Zhihua Guo and Ya Li
Biomolecules 2024, 14(8), 960; https://doi.org/10.3390/biom14080960 - 7 Aug 2024
Cited by 5 | Viewed by 1907
Abstract
Cardiovascular diseases (CVDs) are one of the leading causes of death worldwide. Despite significant advances in current drug therapies, issues such as poor drug targeting and severe side effects persist. In recent years, nanomedicine has been extensively applied in the research and treatment [...] Read more.
Cardiovascular diseases (CVDs) are one of the leading causes of death worldwide. Despite significant advances in current drug therapies, issues such as poor drug targeting and severe side effects persist. In recent years, nanomedicine has been extensively applied in the research and treatment of CVDs. Among these, biomembrane-modified biomimetic nanodrug delivery systems (BNDSs) have emerged as a research focus due to their unique biocompatibility and efficient drug delivery capabilities. By modifying with biological membranes, BNDSs can effectively reduce recognition and clearance by the immune system, enhance biocompatibility and circulation time in vivo, and improve drug targeting. This review first provides an overview of the classification and pathological mechanisms of CVDs, then systematically summarizes the research progress of BNDSs in the treatment of CVDs, discussing their design principles, functional characteristics, and clinical application potential. Finally, it highlights the issues and challenges faced in the clinical translation of BNDSs. Full article
Show Figures

Figure 1

27 pages, 3358 KiB  
Review
A Nanorobotics-Based Approach of Breast Cancer in the Nanotechnology Era
by Anca-Narcisa Neagu, Taniya Jayaweera, Krishan Weraduwage and Costel C. Darie
Int. J. Mol. Sci. 2024, 25(9), 4981; https://doi.org/10.3390/ijms25094981 - 2 May 2024
Cited by 2 | Viewed by 4839
Abstract
We are living in an era of advanced nanoscience and nanotechnology. Numerous nanomaterials, culminating in nanorobots, have demonstrated ingenious applications in biomedicine, including breast cancer (BC) nano-theranostics. To solve the complicated problem of BC heterogeneity, non-targeted drug distribution, invasive diagnostics or surgery, resistance [...] Read more.
We are living in an era of advanced nanoscience and nanotechnology. Numerous nanomaterials, culminating in nanorobots, have demonstrated ingenious applications in biomedicine, including breast cancer (BC) nano-theranostics. To solve the complicated problem of BC heterogeneity, non-targeted drug distribution, invasive diagnostics or surgery, resistance to classic onco-therapies and real-time monitoring of tumors, nanorobots are designed to perform multiple tasks at a small scale, even at the organelles or molecular level. Over the last few years, most nanorobots have been bioengineered as biomimetic and biocompatible nano(bio)structures, resembling different organisms and cells, such as urchin, spider, octopus, fish, spermatozoon, flagellar bacterium or helicoidal cyanobacterium. In this review, readers will be able to deepen their knowledge of the structure, behavior and role of several types of nanorobots, among other nanomaterials, in BC theranostics. We summarized here the characteristics of many functionalized nanodevices designed to counteract the main neoplastic hallmark features of BC, from sustaining proliferation and evading anti-growth signaling and resisting programmed cell death to inducing angiogenesis, activating invasion and metastasis, preventing genomic instability, avoiding immune destruction and deregulating autophagy. Most of these nanorobots function as targeted and self-propelled smart nano-carriers or nano-drug delivery systems (nano-DDSs), enhancing the efficiency and safety of chemo-, radio- or photodynamic therapy, or the current imagistic techniques used in BC diagnosis. Most of these nanorobots have been tested in vitro, using various BC cell lines, as well as in vivo, mainly based on mice models. We are still waiting for nanorobots that are low-cost, as well as for a wider transition of these favorable effects from laboratory to clinical practice. Full article
(This article belongs to the Special Issue The Interplay among Biomolecules and Nanomaterials)
Show Figures

Figure 1

26 pages, 5834 KiB  
Review
Cell Membrane Biomimetic Nano-Delivery Systems for Cancer Therapy
by Zhenxing Xia, Weiwei Mu, Shijun Yuan, Shunli Fu, Yongjun Liu and Na Zhang
Pharmaceutics 2023, 15(12), 2770; https://doi.org/10.3390/pharmaceutics15122770 - 13 Dec 2023
Cited by 6 | Viewed by 3488
Abstract
Nano-delivery systems have demonstrated great promise in the therapy of cancer. However, the therapeutic efficacy of conventional nanomedicines is hindered by the clearance of the blood circulation system and the physiological barriers surrounding the tumor. Inspired by the unique capabilities of cells within [...] Read more.
Nano-delivery systems have demonstrated great promise in the therapy of cancer. However, the therapeutic efficacy of conventional nanomedicines is hindered by the clearance of the blood circulation system and the physiological barriers surrounding the tumor. Inspired by the unique capabilities of cells within the body, such as immune evasion, prolonged circulation, and tumor-targeting, there has been a growing interest in developing cell membrane biomimetic nanomedicine delivery systems. Cell membrane modification on nanoparticle surfaces can prolong circulation time, activate tumor-targeting, and ultimately improve the efficacy of cancer treatment. It shows excellent development potential. This review will focus on the advancements in various cell membrane nano-drug delivery systems for cancer therapy and the obstacles encountered during clinical implementation. It is hoped that such discussions will inspire the development of cell membrane biomimetic nanomedical systems. Full article
(This article belongs to the Special Issue Nanosystems for Drug Delivery)
Show Figures

Graphical abstract

44 pages, 3546 KiB  
Review
Recent Advances in Micro- and Nano-Drug Delivery Systems Based on Natural and Synthetic Biomaterials
by Md. Harun-Or-Rashid, Most. Nazmin Aktar, Md. Sabbir Hossain, Nadia Sarkar, Md. Rezaul Islam, Md. Easin Arafat, Shukanta Bhowmik and Shin-ichi Yusa
Polymers 2023, 15(23), 4563; https://doi.org/10.3390/polym15234563 - 28 Nov 2023
Cited by 30 | Viewed by 7896
Abstract
Polymeric drug delivery technology, which allows for medicinal ingredients to enter a cell more easily, has advanced considerably in recent decades. Innovative medication delivery strategies use biodegradable and bio-reducible polymers, and progress in the field has been accelerated by future possible research applications. [...] Read more.
Polymeric drug delivery technology, which allows for medicinal ingredients to enter a cell more easily, has advanced considerably in recent decades. Innovative medication delivery strategies use biodegradable and bio-reducible polymers, and progress in the field has been accelerated by future possible research applications. Natural polymers utilized in polymeric drug delivery systems include arginine, chitosan, dextrin, polysaccharides, poly(glycolic acid), poly(lactic acid), and hyaluronic acid. Additionally, poly(2-hydroxyethyl methacrylate), poly(N-isopropyl acrylamide), poly(ethylenimine), dendritic polymers, biodegradable polymers, and bioabsorbable polymers as well as biomimetic and bio-related polymeric systems and drug-free macromolecular therapies have been employed in polymeric drug delivery. Different synthetic and natural biomaterials are in the clinical phase to mitigate different diseases. Drug delivery methods using natural and synthetic polymers are becoming increasingly common in the pharmaceutical industry, with biocompatible and bio-related copolymers and dendrimers having helped cure cancer as drug delivery systems. This review discusses all the above components and how, by combining synthetic and biological approaches, micro- and nano-drug delivery systems can result in revolutionary polymeric drug and gene delivery devices. Full article
(This article belongs to the Special Issue Polymeric Nanoparticles for Biomedical Applications)
Show Figures

Figure 1

24 pages, 5834 KiB  
Review
Cell Membrane Biomimetic Nanoparticles with Potential in Treatment of Alzheimer’s Disease
by Xinyu Zhong, Yue Na, Shun Yin, Chang Yan, Jinlian Gu, Ning Zhang and Fang Geng
Molecules 2023, 28(5), 2336; https://doi.org/10.3390/molecules28052336 - 3 Mar 2023
Cited by 29 | Viewed by 4975
Abstract
Alzheimer’s disease (AD) is to blame for about 60% of dementia cases worldwide. The blood–brain barrier (BBB) prevents many medications for AD from having clinical therapeutic effects that can be used to treat the affected area. Many researchers have turned their attention to [...] Read more.
Alzheimer’s disease (AD) is to blame for about 60% of dementia cases worldwide. The blood–brain barrier (BBB) prevents many medications for AD from having clinical therapeutic effects that can be used to treat the affected area. Many researchers have turned their attention to cell membrane biomimetic nanoparticles (NPs) to solve this situation. Among them, NPs can extend the half-life of drugs in the body as the “core” of the wrapped drug, and the cell membrane acts as the “shell” of the wrapped NPs to functionalize the NPs, which can further improve the delivery efficiency of nano-drug delivery systems. Researchers are learning that cell membrane biomimetic NPs can circumvent the BBB’s restriction, prevent harm to the body’s immune system, extend the period that NPs spend in circulation, and have good biocompatibility and cytotoxicity, which increases efficacy of drug release. This review summarized the detailed production process and features of core NPs and further introduced the extraction methods of cell membrane and fusion methods of cell membrane biomimetic NPs. In addition, the targeting peptides for modifying biomimetic NPs to target the BBB to demonstrate the broad prospects of cell membrane biomimetic NPs drug delivery systems were summarized. Full article
Show Figures

Figure 1

25 pages, 3359 KiB  
Review
Liposomes for Tumor Targeted Therapy: A Review
by Shile Wang, Yanyu Chen, Jiancheng Guo and Qinqin Huang
Int. J. Mol. Sci. 2023, 24(3), 2643; https://doi.org/10.3390/ijms24032643 - 31 Jan 2023
Cited by 185 | Viewed by 18558
Abstract
Liposomes, the most widely studied nano-drug carriers in drug delivery, are sphere-shaped vesicles consisting of one or more phospholipid bilayers. Compared with traditional drug delivery systems, liposomes exhibit prominent properties that include targeted delivery, high biocompatibility, biodegradability, easy functionalization, low toxicity, improvements in [...] Read more.
Liposomes, the most widely studied nano-drug carriers in drug delivery, are sphere-shaped vesicles consisting of one or more phospholipid bilayers. Compared with traditional drug delivery systems, liposomes exhibit prominent properties that include targeted delivery, high biocompatibility, biodegradability, easy functionalization, low toxicity, improvements in the sustained release of the drug it carries and improved therapeutic indices. In the wake of the rapid development of nanotechnology, the studies of liposome composition have become increasingly extensive. The molecular diversity of liposome composition, which includes long-circulating PEGylated liposomes, ligand-functionalized liposomes, stimuli-responsive liposomes, and advanced cell membrane-coated biomimetic nanocarriers, endows their drug delivery with unique physiological functions. This review describes the composition, types and preparation methods of liposomes, and discusses their targeting strategies in cancer therapy. Full article
(This article belongs to the Special Issue Toxicity and Biomedical Applications of Nano Materials)
Show Figures

Figure 1

15 pages, 3592 KiB  
Article
CRPC Membrane-Camouflaged, Biomimetic Nanosystem for Overcoming Castration-Resistant Prostate Cancer by Cellular Vehicle-Aided Tumor Targeting
by Kai Lu, Zheng Li, Qiang Hu, Jianfei Sun and Ming Chen
Int. J. Mol. Sci. 2022, 23(7), 3623; https://doi.org/10.3390/ijms23073623 - 26 Mar 2022
Cited by 11 | Viewed by 3180
Abstract
Castration-resistant prostate cancer (CRPC) is the most common malignant tumor of the male urinary system. Nanodrug delivery systems (NDDS) have been widely applied in drug delivery for tumor therapy; however, nanotherapeutics encounter various biological barriers that prevent successful accumulation of drugs, specifically at [...] Read more.
Castration-resistant prostate cancer (CRPC) is the most common malignant tumor of the male urinary system. Nanodrug delivery systems (NDDS) have been widely applied in drug delivery for tumor therapy; however, nanotherapeutics encounter various biological barriers that prevent successful accumulation of drugs, specifically at diseased sites. Therefore, there is an urgent need to develop a CRPC-targeting nanocomposite with fine biocompatibility for penetrating various biological barriers, delivering sufficient drugs to the targeting site and improving therapeutic efficiency. In this work, CRPC cell membranes were firstly adapted as biomimetic vectors for the encapsulating PEG−PLGA polymer containing the chemotherapy drug docetaxel (DTX). The CRPC membrane-camouflaged nanoparticles can easily escape early recognition by the immune system, penetrate the extracellular barrier, and evade clearance by the circulatory system. In addition to the characteristics of traditional nanoparticles, the CRPC cell membrane contains an arsenal of highly specific homotypic moieties that can be used to recognize the same cancer cell types and increase the targeted drug delivery of DTX. In vivo fluorescence and radionuclide dual-model imaging were fulfilled by decorating the biomimetic nanosystem with near-infrared dye and isotope, which validated the homotypic targeting property offered by the CRPC cell membrane coating. Importantly, remarkably improved therapeutic efficacy was achieved in a mice model bearing CRPC tumors. This homologous cell membrane enabled an efficient drug delivery strategy and enlightened a new pathway for the clinical application of tumor chemotherapy drugs in the future. Full article
(This article belongs to the Special Issue Nano-Materials and Methods 3.0)
Show Figures

Figure 1

25 pages, 5858 KiB  
Review
Biomimetic Bacterial Membrane Vesicles for Drug Delivery Applications
by Sajid Fazal and Ruda Lee
Pharmaceutics 2021, 13(9), 1430; https://doi.org/10.3390/pharmaceutics13091430 - 9 Sep 2021
Cited by 34 | Viewed by 5650
Abstract
Numerous factors need to be considered to develop a nanodrug delivery system that is biocompatible, non-toxic, easy to synthesize, cost-effective, and feasible for scale up over and above their therapeutic efficacy. With regards to this, worldwide, exosomes, which are nano-sized vesicles obtained from [...] Read more.
Numerous factors need to be considered to develop a nanodrug delivery system that is biocompatible, non-toxic, easy to synthesize, cost-effective, and feasible for scale up over and above their therapeutic efficacy. With regards to this, worldwide, exosomes, which are nano-sized vesicles obtained from mammalian cells, are being explored as a biomimetic drug delivery system that has superior biocompatibility and high translational capability. However, the economics of undertaking large-scale mammalian culture to derive exosomal vesicles for translation seems to be challenging and unfeasible. Recently, Bacterial Membrane Vesicles (BMVs) derived from bacteria are being explored as a viable alternative as biomimetic drug delivery systems that can be manufactured relatively easily at much lower costs at a large scale. Until now, BMVs have been investigated extensively as successful immunomodulating agents, but their capability as drug delivery systems remains to be explored in detail. In this review, the use of BMVs as suitable cargo delivery vehicles is discussed with focus on their use for in vivo treatment of cancer and bacterial infections reported thus far. Additionally, the different types of BMVs, factors affecting their synthesis and different cargo loading techniques used in BMVs are also discussed. Full article
(This article belongs to the Special Issue Natural Nanoparticle for Cancer Diagnosis and Treatment)
Show Figures

Graphical abstract

36 pages, 4360 KiB  
Review
Solid Lipid Nanoparticles (SLNs): An Advanced Drug Delivery System Targeting Brain through BBB
by Mantosh Kumar Satapathy, Ting-Lin Yen, Jing-Shiun Jan, Ruei-Dun Tang, Jia-Yi Wang, Rajeev Taliyan and Chih-Hao Yang
Pharmaceutics 2021, 13(8), 1183; https://doi.org/10.3390/pharmaceutics13081183 - 31 Jul 2021
Cited by 203 | Viewed by 14136
Abstract
The blood–brain barrier (BBB) plays a vital role in the protection and maintenance of homeostasis in the brain. In this way, it is an interesting target as an interface for various types of drug delivery, specifically in the context of the treatment of [...] Read more.
The blood–brain barrier (BBB) plays a vital role in the protection and maintenance of homeostasis in the brain. In this way, it is an interesting target as an interface for various types of drug delivery, specifically in the context of the treatment of several neuropathological conditions where the therapeutic agents cannot cross the BBB. Drug toxicity and on-target specificity are among some of the limitations associated with current neurotherapeutics. In recent years, advances in nanodrug delivery have enabled the carrier system containing the active therapeutic drug to target the signaling pathways and pathophysiology that are closely linked to central nervous system (CNS) disorders such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), multiple sclerosis (MS), brain tumor, epilepsy, ischemic stroke, and neurodegeneration. At present, among the nano formulations, solid lipid nanoparticles (SLNs) have emerged as a putative drug carrier system that can deliver the active therapeutics (drug-loaded SLNs) across the BBB at the target site of the brain, offering a novel approach with controlled drug delivery, longer circulation time, target specificity, and higher efficacy, and more importantly, reducing toxicity in a biomimetic way. This paper highlights the synthesis and application of SLNs as a novel nontoxic formulation strategy to carry CNS drugs across the BBB to improve the use of therapeutics agents in treating major neurological disorders in future clinics. Full article
Show Figures

Figure 1

30 pages, 5992 KiB  
Review
Nanomaterials and Nanotechnology-Associated Innovations against Viral Infections with a Focus on Coronaviruses
by Mahmoud Nasrollahzadeh, Mohaddeseh Sajjadi, Ghazaleh Jamalipour Soufi, Siavash Iravani and Rajender S. Varma
Nanomaterials 2020, 10(6), 1072; https://doi.org/10.3390/nano10061072 - 31 May 2020
Cited by 136 | Viewed by 13493
Abstract
Viral infections have recently emerged not only as a health threat to people but rapidly became the cause of universal fatality on a large scale. Nanomaterials comprising functionalized nanoparticles (NPs) and quantum dots and nanotechnology-associated innovative detection methods, vaccine design, and nanodrug production [...] Read more.
Viral infections have recently emerged not only as a health threat to people but rapidly became the cause of universal fatality on a large scale. Nanomaterials comprising functionalized nanoparticles (NPs) and quantum dots and nanotechnology-associated innovative detection methods, vaccine design, and nanodrug production have shown immense promise for interfacing with pathogenic viruses and restricting their entrance into cells. These viruses have been scrutinized using rapid diagnostic detection and therapeutic interventional options against the caused infections including vaccine development for prevention and control. Coronaviruses, namely SARS-CoV, MERS-CoV, and SARS-CoV-2, have endangered human life, and the COVID-19 (caused by SARS-CoV-2) outbreak has become a perilous challenge to public health globally with huge accompanying morbidity rates. Thus, it is imperative to expedite the drug and vaccine development efforts that would help mitigate this pandemic. In this regard, smart and innovative nano-based technologies and approaches encompassing applications of green nanomedicine, bio-inspired methods, multifunctional bioengineered nanomaterials, and biomimetic drug delivery systems/carriers can help resolve the critical issues regarding detection, prevention, and treatment of viral infections. This perspective review expounds recent nanoscience advancements for the detection and treatment of viral infections with focus on coronaviruses and encompasses nano-based formulations and delivery platforms, nanovaccines, and promising methods for clinical diagnosis, especially regarding SARS-CoV-2. Full article
(This article belongs to the Special Issue Nanomaterials: 10th Anniversary)
Show Figures

Graphical abstract

Back to TopTop