Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,570)

Search Parameters:
Keywords = biomass generation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 9647 KB  
Review
Applications of Biochar in Fuel and Feedstock Substitution: A Review
by Huijuan Wang, Ping Zhou and Xiqiang Zhao
Energies 2025, 18(17), 4511; https://doi.org/10.3390/en18174511 (registering DOI) - 25 Aug 2025
Abstract
With the continuous growth of global energy consumption and the advancement of carbon reduction targets, the development of low-carbon and renewable energy resources has become a central focus in energy science research. As the only renewable carbon source, biomass exhibits significant application potential [...] Read more.
With the continuous growth of global energy consumption and the advancement of carbon reduction targets, the development of low-carbon and renewable energy resources has become a central focus in energy science research. As the only renewable carbon source, biomass exhibits significant application potential in future energy and resource systems due to its widespread availability, carbon neutrality, and environmental friendliness. Biochar, the primary solid product generated during biomass pyrolysis, is characterized by its high energy density, excellent thermal stability, and abundant porous structure. It has been increasingly regarded as a promising substitute for conventional fossil-based fuels and feedstocks. In this study, VOSviewer was employed to identify representative applications of biochar in energy systems. Particular attention is given to its roles in fossil fuel substitution and raw material replacement. By summarizing recent research progress, this review aims to provide theoretical support and technical references for the large-scale and efficient utilization of biochar. Full article
Show Figures

Graphical abstract

21 pages, 509 KB  
Review
Microbial Landscapes of the Gut–Biliary Axis: Implications for Benign and Malignant Biliary Tract Diseases
by David Meacci, Angelo Bruni, Alice Cocquio, Giuseppe Dell’Anna, Francesco Vito Mandarino, Giovanni Marasco, Paolo Cecinato, Giovanni Barbara and Rocco Maurizio Zagari
Microorganisms 2025, 13(9), 1980; https://doi.org/10.3390/microorganisms13091980 (registering DOI) - 25 Aug 2025
Abstract
Next-generation sequencing has overturned the dogma of biliary sterility, revealing low-biomass microbiota along the gut–biliary axis with metabolic and immunologic effects. This review synthesizes evidence on composition, function, and routes of colonization across benign and malignant disease. In cholelithiasis, Proteobacteria- and Firmicutes [...] Read more.
Next-generation sequencing has overturned the dogma of biliary sterility, revealing low-biomass microbiota along the gut–biliary axis with metabolic and immunologic effects. This review synthesizes evidence on composition, function, and routes of colonization across benign and malignant disease. In cholelithiasis, Proteobacteria- and Firmicutes-rich consortia provide β-glucuronidase, phospholipase A2, and bile salt hydrolase, driving bile supersaturation, nucleation, and recurrence. In primary sclerosing cholangitis, primary biliary cholangitis, and autoimmune hepatitis, intestinal dysbiosis and disturbed bile acid pools modulate pattern recognition receptors and bile acid signaling (FXR, TGR5), promote Th17 skewing, and injure cholangiocytes; bile frequently shows Enterococcus expansion linked to taurolithocholic acid. Distinct oncobiomes characterize cholangiocarcinoma subtypes; colibactin-positive Escherichia coli and intratumoral Gammaproteobacteria contribute to DNA damage and chemoresistance. In hepatocellular carcinoma, intratumoral microbial signatures correlate with tumor biology and prognosis. We critically appraise key methodological constraints—sampling route and post-sphincterotomy contamination, antibiotic prophylaxis, low biomass, and heterogeneous analytical pipelines—and outline a translational agenda: validated microbial/metabolomic biomarkers from bile, tissue, and stent biofilms; targeted modulation with selective antibiotics, engineered probiotics, fecal microbiota transplantation, and bile acid receptor modulators. Standardized protocols and spatial, multi-omic prospective studies are required to enable risk stratification and microbiota-informed therapeutics. Full article
(This article belongs to the Special Issue Gut Microbiome in Homeostasis and Disease, 3rd Edition)
Show Figures

Figure 1

15 pages, 962 KB  
Article
Renewable Energy Sources and Improved Energy Management as a Path to Energy Transformation: A Case Study of a Vodka Distillery in Poland
by Małgorzata Anita Bryszewska, Robert Staszków, Łukasz Ściubak, Jarosław Domański and Piotr Dziugan
Sustainability 2025, 17(17), 7652; https://doi.org/10.3390/su17177652 (registering DOI) - 25 Aug 2025
Abstract
The increasing awareness of the need for sustainable solutions to secure future energy supplies has spurred the search for innovative approaches. Energo-Efekt Sp. z o.o. has prepared a project for the green transformation of the energy system at a producer of spirits through [...] Read more.
The increasing awareness of the need for sustainable solutions to secure future energy supplies has spurred the search for innovative approaches. Energo-Efekt Sp. z o.o. has prepared a project for the green transformation of the energy system at a producer of spirits through the rectification of raw alcohol. An installation was conceptualised to develop the system to convert energy from biomass fuels into electricity and heat. The innovation of the installation is the use of an expander—a Heliex system which is the twin-screw turbine generator converting energy in the form of wet steam into electrical power integrated with pressure-reducing valve. This system captures all or part of the available steam flow and reduces the steam pressure, not only delivering steam at the same, lower pressure but also generating rotary energy that can be used to produce electricity with the power output range of 160 to 600 kWe. Currently, the company utilises natural gas as a fuel source and acquires electricity from the external grid. Implementing the system could reduce the carbon footprint associated with the production of vodka at the plant by 97%, to 102 t CO2 annually. This reduction would account for approximately 21% of the total carbon footprint of the entire alcohol production process. The system could also be applied to other low-power systems that produce < 250 kW, making it a viable option for use in distributed energy networks, and can be used as a model solution for other distillery plants. The transformation project dedicated to Polmos Żyrardów involves a comprehensive change in both the energy source and its management. The fossil fuels used until now are being replaced with a renewable energy source in the form of biomass. The steam and electricity cogeneration system meets the rectification process’s energy demand and can supply the central heating node. Heat recovery exchangers recuperate heat from the boiler room exhaust gases and the rectification cooling process. Potentially, all of these changes lead to the company’s energy self-sufficiency and reduce its overall environmental impact with almost zero CO2 emissions. Full article
Show Figures

Figure 1

22 pages, 7451 KB  
Article
Inversion of Grassland Aboveground Biomass in the Three Parallel Rivers Area Based on Genetic Programming Optimization Features and Machine Learning
by Rong Wei, Qingtai Shu, Zeyu Li, Lianjin Fu, Qin Xiang, Chaoguan Qin, Xin Rao and Jinfeng Liu
Remote Sens. 2025, 17(17), 2936; https://doi.org/10.3390/rs17172936 - 24 Aug 2025
Abstract
Aboveground biomass (AGB) in grasslands is a vital metric for assessing ecosystem functioning and health. Accurate and efficient AGB estimation is essential for the scientific management and sustainable use of grassland resources. However, achieving low-cost, high-efficiency AGB estimation via remote sensing remains a [...] Read more.
Aboveground biomass (AGB) in grasslands is a vital metric for assessing ecosystem functioning and health. Accurate and efficient AGB estimation is essential for the scientific management and sustainable use of grassland resources. However, achieving low-cost, high-efficiency AGB estimation via remote sensing remains a key challenge. This study integrates Sentinel-1 and Sentinel-2 imagery to derive 38 multi-source feature variables, including backscatter coefficients, texture, spectral reflectance, vegetation indices, and topographic factors. These features are combined with AGB data from 112 field plots in the Three Parallel Rivers area. Feature selection was performed using Pearson correlation, Random Forest (RF), and SHAP values to identify optimal variable sets. Genetic Programming (GP) was then applied for nonlinear optimization of the selected features. Three machine learning models—RF, GBRT, and KNN—were used to estimate AGB and generate spatial distribution maps. The results revealed notable differences in model accuracy, with RF performing best overall, outperforming GBRT and KNN. After GP optimization, all models showed improved performance, with the RF model based on RF-selected features achieving the highest accuracy (R2 = 0.90, RMSE = 0.31 t/ha, MAE = 0.23 t/ha), improving R2 by 0.03 and reducing RMSE and MAE by 0.05 and 0.03 t/ha, respectively. Spatial mapping showed the AGB ranged from 0.41 to 3.59 t/ha, with a mean of 1.39 t/ha, closely aligned with the actual distribution characteristics. This study demonstrates that the RF model, combined with multi-source features and GP optimization, provides an effective approach to grassland AGB estimation and supports ecological monitoring in complex areas. Full article
Show Figures

Figure 1

19 pages, 1887 KB  
Article
Chemical Dissection of PM2.5 in Cigarette Smoke: Main and Sidestream Emission Factors and Compositions
by Yujian Zhou, Hong Huang, Changwei Zou, Mengmeng Deng, Xiang Tu, Wei Deng, Chenglong Yu and Jianlong Li
Toxics 2025, 13(9), 711; https://doi.org/10.3390/toxics13090711 - 23 Aug 2025
Viewed by 51
Abstract
Despite increasing evidence that cigarette smoke is a significant source of indoor fine particulate matter (PM2.5), quantitative emission factors (EFs) for PM2.5 and its toxic chemical composition in mainstream (MS) and sidestream (SS) smoke are still not well defined. In [...] Read more.
Despite increasing evidence that cigarette smoke is a significant source of indoor fine particulate matter (PM2.5), quantitative emission factors (EFs) for PM2.5 and its toxic chemical composition in mainstream (MS) and sidestream (SS) smoke are still not well defined. In this study, we employed a custom-designed chamber to separately collect MS (intermittent puff) and SS (continuous sampling) smoke from eleven cigarette models, representing six brands and two product types, under controlled conditions. PM2.5 was collected on quartz-fiber filters and analyzed for carbon fractions (using the thermal–optical IMPROVE-A protocol), nine water-soluble inorganic ions (by ion chromatography), and twelve trace elements (via ICP-MS). SS smoke exhibited significantly higher mass fractions of total analyzed species (84.7% vs. 65.9%), carbon components (50.6% vs. 44.2%), water-soluble ions (17.1% vs. 13.7%), and elements (17.0% vs. 7.0%) compared to MS smoke. MS smoke is characterized by a high proportion of pyrolytic organic carbon fractions (OC1–OC3) and specific elements such as vanadium (V) and arsenic (As), while SS smoke shows elevated levels of elemental carbon (EC1), water-soluble ions (NH4+, NO3), and certain elements like zinc (Zn) and cadmium (Cd). The toxicity-weighted distribution indicates that MS smoke primarily induces membrane disruption and pulmonary inflammation through semi-volatile organics and elements, whereas SS smoke enhances oxidative stress and cardiopulmonary impairment via EC-mediated reactions and secondary aerosol formation. The mean OC/EC ratio of 132.4 in SS smoke is an order of magnitude higher than values reported for biomass or fossil-fuel combustion, indicative of extensive incomplete combustion unique to cigarettes and suggesting a high potential for oxidative stress generation. Emission factors (µg/g cigarette) revealed marked differences: MS delivered higher absolute EFs for PM2.5 (422.1), OC (8.8), EC (5.0), Na+ (32.6), and V (29.2), while SS emitted greater proportions of NH4+, NO3, Cl, and carcinogenic metals (As, Cd, Zn). These findings provide quantitative source profiles suitable for receptor-oriented indoor source-apportionment models and offer toxicological evidence to support the prioritization of comprehensive smoke-free regulations. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Figure 1

16 pages, 1550 KB  
Article
Effects of Biochar on the Mechanical Properties of Bermuda-Grass-Vegetated Soil in China
by Bo Wang, Feng Wang, Hongwei Liu and Hui Xu
Sustainability 2025, 17(17), 7596; https://doi.org/10.3390/su17177596 - 22 Aug 2025
Viewed by 201
Abstract
The effects of biochar on Bermuda grass growth and mechanical properties of vegetated soil were investigated in this study. Six groups of soil column tests were conducted, including two degrees of compaction (DOC) (70% and 90%) and two types of biochar content (5% [...] Read more.
The effects of biochar on Bermuda grass growth and mechanical properties of vegetated soil were investigated in this study. Six groups of soil column tests were conducted, including two degrees of compaction (DOC) (70% and 90%) and two types of biochar content (5% and 10% by soil dry weight), with two groups of bare soil serving as a reference (soil used in the test was classified as silty sand with gravel, i.e., SM). It was found that biochar increased the effective cohesion by up to 70% and slightly enhanced the effective internal friction angle while mitigating the detrimental effects of wetting–drying cycles, with the effective cohesion and friction angle retaining up to 73% and 99% of their initial values, respectively. Root biomass initially increased and then decreased as biochar content increased, particularly at a low degree of compaction of soil (i.e., 70% DOC was two times that of 90% DOC). The effective cohesion of intact biochar–root–soil initially increased up to 23% (at the biochar content of 5%, 90% DOC) and then decreased as biochar content increased, regardless of DOC. At the optimal biochar content (5%), the effective cohesion and internal friction angle of rooted soil were 1.4 and 1.1 times greater at low DOC (70%). For the remolded biochar–root–soil composite, at a high degree of compaction (90% DOC), the effective cohesion increased with the increase in root and biochar content. For a given root content, the shear strength of the remolded biochar–root–soil mixture was higher than that of intact biochar–root–soil (i.e., the shear strength of intact soil at 5% of biochar content was 87% of remolded soil), suggesting that the remolded soil mixture overestimated the biochar–root–soil strength. Generally, the present study demonstrates that a 5% biochar addition is optimal for enhancing plant root growth and soil strength, particularly under low compaction. Biochar significantly improves the mechanical performance of root–soil composites and mitigates the degradation of soil strength under wetting–drying cycles. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

22 pages, 12897 KB  
Article
Spatial Multi-Criteria Land Suitability Analysis for Community-Scale Biomass Power Plant Site Selection
by Athipthep Boonman, Suneerat Fukuda and Agapol Junpen
Energies 2025, 18(17), 4469; https://doi.org/10.3390/en18174469 - 22 Aug 2025
Viewed by 195
Abstract
Community-scale biomass power plants (CSBPPs) offer a decentralized approach for electricity generation by utilizing locally available biomass while delivering socioeconomic benefits. Site selection plays a critical role in the success of CSBPPs and requires the consideration of diverse spatial and non-spatial factors. This [...] Read more.
Community-scale biomass power plants (CSBPPs) offer a decentralized approach for electricity generation by utilizing locally available biomass while delivering socioeconomic benefits. Site selection plays a critical role in the success of CSBPPs and requires the consideration of diverse spatial and non-spatial factors. This study presents a spatial decision-support tool for identifying suitable CSBPP sites in Thailand’s Eastern Economic Corridor (EEC), which comprises the Chachoengsao, Chonburi, and Rayong provinces. A geoprocessing workflow integrating Geographic Information Systems (GISs), Multi-Criteria Decision-Making (MCDM), and the Analytic Hierarchy Process (AHP) was developed using ModelBuilder tools in ArcGIS Pro (version 3.0.2). Thirteen sub-criteria related to geographical, infrastructural, and socioeconomic–cultural dimensions, along with exclusion zones, were evaluated by 15 experts from diverse stakeholder groups. Biomass availability from five major economic crops was combined with other spatial data layers, incorporating expert-assigned weights and suitability scores. The findings indicated a remaining biomass energy potential was 34,156 TJ, with sugarcane residues contributing over 80%. Approximately 20% of the EEC area (about 0.262 million hectares) was classified as highly suitable for CSBPP development, revealing several viable site options. The proposed model offers a flexible and replicable framework for regional biomass planning and can be adapted to other locations by adjusting the criteria and integrating optimization techniques. Full article
Show Figures

Figure 1

26 pages, 1541 KB  
Article
Assessing the Socioeconomic and Environmental Impact of Hybrid Renewable Energy Systems for Sustainable Power in Remote Cuba
by Israel Herrera Orozco, Santacruz Banacloche, Yolanda Lechón and Javier Dominguez
Sustainability 2025, 17(17), 7592; https://doi.org/10.3390/su17177592 - 22 Aug 2025
Viewed by 245
Abstract
This study evaluates the viability of a specific hybrid renewable energy system (HRES) installation designed for a remote community as a case study in Cuba. The system integrates solar, wind, and biomass resources to address localised challenges of energy insecurity and environmental degradation. [...] Read more.
This study evaluates the viability of a specific hybrid renewable energy system (HRES) installation designed for a remote community as a case study in Cuba. The system integrates solar, wind, and biomass resources to address localised challenges of energy insecurity and environmental degradation. Rather than offering a generalised evaluation of HRES technologies, this work focuses on the performance, impacts, and viability of this particular configuration within its unique geographical, social, and technical context. Using life cycle assessment (LCA) and input–output modelling, the research assesses environmental and socioeconomic impacts. The proposed HRES reduces greenhouse gas emissions by 60% (from 1.14 to 0.47 kg CO2eq/kWh) and fossil energy consumption by 50% compared to diesel-based systems. Socioeconomic analysis reveals that the system generates 40.3 full-time equivalent (FTE) jobs, with significant employment opportunities in operation and maintenance. However, initial investments primarily benefit foreign suppliers due to Cuba’s reliance on imported components. The study highlights the potential for local economic gains through workforce training and domestic manufacturing of renewable energy technologies. These findings underscore the importance of integrating multiple renewable sources to enhance energy resilience and sustainability in Cuba. Policymakers should prioritise strategies to incentivise local production and capacity building to maximise long-term benefits. Future research should explore scalability across diverse regions and investigate policy frameworks to support widespread adoption of HRES. This study provides valuable insights for advancing sustainable energy solutions in Cuba and similar contexts globally. Full article
Show Figures

Figure 1

23 pages, 3380 KB  
Article
Environmental Performance of the Sewage Sludge Gasification Process Considering the Recovered CO2
by Daichi Terasawa, Mayu Hamazaki, Kanato Kumagai and Kiyoshi Dowaki
Energies 2025, 18(17), 4460; https://doi.org/10.3390/en18174460 - 22 Aug 2025
Viewed by 354
Abstract
An advanced gasification module (AGM) for green hydrogen production involves a small-scale biomass gasification process owing to the low energy density of biomass. Therefore, significant heat loss and the endothermic nature of gasification system require additional fossil fuel heat, increasing CO2 emissions. [...] Read more.
An advanced gasification module (AGM) for green hydrogen production involves a small-scale biomass gasification process owing to the low energy density of biomass. Therefore, significant heat loss and the endothermic nature of gasification system require additional fossil fuel heat, increasing CO2 emissions. This study focuses on bioenergy conversion with carbon capture and utilization (BECCU), where carbon-neutral CO2 from biomass gasification is captured and reused as a gasifying agent to reduce the greenhouse gas intensity of green hydrogen. BECCU is expected to achieve negative emissions and enhance gasification efficiency by promoting conversion of char and tar through CO2 gasification. To evaluate the effectiveness of BECCU in the AGM, we conducted a sensitivity analysis of the reformer temperature and S/C ratio using process simulation combined with life cycle assessment. In both sensitivity analyses, the GWP for CO2 capture was lower compared with conventional conditions, considering recovered CO2 from purification and the additional steam generated through heat recovery. This suggests improved hydrogen yields from enhanced char and tar conversion. Consequently, the GWP was reduced by more than 50%, demonstrating BECCU’s effectiveness in the AGM. This represents a step toward operating biomass gasification systems with lower environmental impact and contributing to sustainable energy production. Full article
Show Figures

Figure 1

13 pages, 417 KB  
Article
The Effects of Non-Viable Probiotic Lactobacillus paracasei on the Biotechnological Properties of Saccharomyces cerevisiae
by Marina Pihurov, Mihaela Cotârleț, Daniela Borda and Gabriela Elena Bahrim
Appl. Sci. 2025, 15(16), 9221; https://doi.org/10.3390/app15169221 - 21 Aug 2025
Viewed by 145
Abstract
Due to the increasing interest in probiotic components to improve quality of life, this study aimed to investigate the bioactive potential of a paraprobiotic derived from a selected strain of probiotic lactic acid bacteria (Lacticaseibacillus paracasei MIUG BL80) on Saccharomyces cerevisiae MIUG [...] Read more.
Due to the increasing interest in probiotic components to improve quality of life, this study aimed to investigate the bioactive potential of a paraprobiotic derived from a selected strain of probiotic lactic acid bacteria (Lacticaseibacillus paracasei MIUG BL80) on Saccharomyces cerevisiae MIUG D129, used as a cellular model organism. The paraprobiotics (inactivated cells) were obtained through a combination of ultrasonic and conventional heat treatments. It was observed that adding more than 10 % of the paraprobiotic suspension to the cultivation medium of yeast had a positive influence on the metabolic activity of the starter culture (S. cerevisiae). The specific growth rate increased from 0.227 in the control sample to 0.507 in the sample with 15% paraprobiotic supplementation (S3), while the generation time decreased from 4.403 h to 1.972 h. This suggests that adding probiotics to the cultivation medium enhances the metabolic performance of S. cerevisiae cells. Additionally, an improvement in yeast cell viability during wet biomass storage (from 48 h to 14 days at 4 °C) was observed. Full article
Show Figures

Figure 1

14 pages, 851 KB  
Article
Optimising Galdieria sulphuraria ACUF 427 Biomass for Enhanced Urban Wastewater Treatment: Evaluating Pollutant Removal Efficiency, Algal Growth, and Phycocyanin Production
by Berhan Retta, Manuela Iovinella and Claudia Ciniglia
Phycology 2025, 5(3), 40; https://doi.org/10.3390/phycology5030040 - 21 Aug 2025
Viewed by 370
Abstract
Urban wastewater is composed of nutrients such as nitrogen and phosphorus, organic matter, heavy metals, pathogens, and micropollutants. If untreated, these contribute to eutrophication and environmental degradation. Microalgae-based bioremediation offers a sustainable solution, showing promise for pollutant removal and high-value bioproduct generation. This [...] Read more.
Urban wastewater is composed of nutrients such as nitrogen and phosphorus, organic matter, heavy metals, pathogens, and micropollutants. If untreated, these contribute to eutrophication and environmental degradation. Microalgae-based bioremediation offers a sustainable solution, showing promise for pollutant removal and high-value bioproduct generation. This study evaluates the efficacy of Galdieria sulphuraria ACUF 427 in treating urban wastewater, with a focus on nutrient removal and phycocyanin production at different optical densities (OD 2, OD 4, and OD 6). Nutrient removal rates (RRs) were analysed for ammonium nitrogen (N-NH4+), ammonia nitrogen (N-NH3), phosphate phosphorus (P-PO43−), and chemical oxygen demand (COD). The RR for N-NH4+ increased with optical density, reaching 7.49 mg/L/d at an optical density of 6. Similar trends were observed for N-NH3 and P-PO43−, with peak removal at OD 6. COD removal remained high across all ODs, though differences between OD 4 and OD 6 were not statistically significant. Significant variations (p < 0.05) in nutrient removal were noted across the ODs, except for COD between OD 4 and OD 6. Biomass growth and phycocyanin production were significantly higher in the wastewater compared to the control (Allen Medium), with the most effective performance observed at an optical density (OD) of 6. Maximum growth rates were 0.241 g/L/d at OD 6, 0.178 g/L/d at OD 4, and 0.120 g/L/d at OD 2. These results highlight the potential of G. sulphuraria as an agent for wastewater bioremediation and the production of high-value compounds, particularly at elevated cell densities, where we achieved superior nutrient removal and biomass production. Full article
Show Figures

Figure 1

22 pages, 1104 KB  
Article
Bio-Waste to Bioenergy: Critical Assessment of Sustainable Energy Supply Chain in Egypt
by Noha Said, Raid Alrowais, Mahmoud M. Abdel-Daiem and Noha A. Mostafa
Resources 2025, 14(8), 131; https://doi.org/10.3390/resources14080131 - 21 Aug 2025
Viewed by 455
Abstract
This study analyses the potential electricity output from different bio wastes using various energy conversion technologies to enhance the share of renewable energy. Furthermore, it evaluates the carbon emissions mitigated by replacing fossil fuels with bioenergy, contributing to efforts to reduce environmental pollution. [...] Read more.
This study analyses the potential electricity output from different bio wastes using various energy conversion technologies to enhance the share of renewable energy. Furthermore, it evaluates the carbon emissions mitigated by replacing fossil fuels with bioenergy, contributing to efforts to reduce environmental pollution. The findings reveal that Egypt’s annual biomass waste (BW) could total approximately 80 million tons, with the most significant contributions from agricultural crop residues and municipal solid waste (MSW). MSW incineration and crop residue combustion were found to have the highest power generation compared to other techniques. Additionally, the anaerobic digestion of various biomass types offers the benefits of lower greenhouse gas emissions while still generating significant energy. The electricity generation from different BW sources is approximately 49.14 TWh/year. This energy can be predominantly generated through direct combustion of agricultural crop residues (66%), incineration of MSW (29%), anaerobic digestion of sewage sludge (3%), and animal waste (2%). Furthermore, the reduction in carbon emissions from substituting fossil fuels with bioenergy is estimated at up to 30.47 million tons of CO2 annually, supporting efforts to mitigate climate change and combat global warming. Full article
Show Figures

Figure 1

19 pages, 6878 KB  
Article
LiDAR-Assisted UAV Variable-Rate Spraying System
by Xuhang Liu, Yicheng Liu, Xinhanyang Chen, Yuhan Wan, Dengxi Gao and Pei Cao
Agriculture 2025, 15(16), 1782; https://doi.org/10.3390/agriculture15161782 - 20 Aug 2025
Viewed by 129
Abstract
In wheat pest and disease control methods, pesticide application occupies a dominant position, and the use of UAVs for precise pesticide application is a key technology in precision agriculture. However, it is difficult for existing UAV spraying systems to accurately achieve variable spraying [...] Read more.
In wheat pest and disease control methods, pesticide application occupies a dominant position, and the use of UAVs for precise pesticide application is a key technology in precision agriculture. However, it is difficult for existing UAV spraying systems to accurately achieve variable spraying according to crop growth conditions, resulting in pesticide waste and environmental pollution. To address this issue, this paper proposes a LiDAR-assisted UAV variable-speed spraying system. Firstly, a biomass estimation model based on LiDAR data and RGB data is constructed, LiDAR point cloud data and RGB data are extracted from the target farmland, and, after preprocessing, key parameters including LiDAR feature variables, canopy cover, and visible-light vegetation indices are extracted from the two types of data. Using these key parameters as model inputs, multiple machine learning methods are employed to build a wheat biomass estimation model, and a variable spraying prescription map is generated based on the spatial distribution of biomass. Secondly, the variable-speed spraying system is constructed, which integrates a prescription map interpretation module and a PWM control module. Under the guidance of the variable spraying prescription map, the spraying rate is adjusted to achieve real-time variable spraying. Finally, a comparative experiment is designed, and the results show that the LiDAR-assisted UAV variable spraying system designed in this study performs better than the traditional constant-rate spraying system; while maintaining equivalent spraying effects, the usage of chemical agents is significantly reduced by 30.1%, providing a new technical path for reducing pesticide pollution and lowering grain production costs. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

23 pages, 2612 KB  
Review
From Lignocellulosic Residues to Protein Sources: Insights into Biomass Pre-Treatments and Conversion
by Isabela Vera dos Anjos, Natacha Coelho, Hugo Duarte, Diogo Neves Proença, Maria F. Duarte, Raul Barros, Sara Raposo, Sandra Gonçalves, Anabela Romano and Bruno Medronho
Polymers 2025, 17(16), 2251; https://doi.org/10.3390/polym17162251 - 20 Aug 2025
Viewed by 319
Abstract
With the global population steadily rising, the demand for sustainable protein sources has become increasingly urgent. Traditional animal- and plant-based proteins face challenges related to scalability, resource efficiency, and environmental impact. In this context, single-cell protein has emerged as a promising alternative. Derived [...] Read more.
With the global population steadily rising, the demand for sustainable protein sources has become increasingly urgent. Traditional animal- and plant-based proteins face challenges related to scalability, resource efficiency, and environmental impact. In this context, single-cell protein has emerged as a promising alternative. Derived from microorganisms such as algae, bacteria, fungi, and yeast, single-cell protein offers a high nutritional profile- including all essential amino acids and vitamins—while enabling rapid production, minimal land and water requirements, and no generation of greenhouse gas emissions. A particularly compelling advantage of single-cell protein is its ability to be produced from agro-industrial waste, converting low-cost residues into valuable nutritional resources and contributing to environmental sustainability. Among these waste streams, lignocellulosic biomass from agricultural and forestry residues stands out as a renewable, biodegradable, and abundant feedstock. This review explores the potential of lignocellulosic waste as a substrate for single-cell protein production, emphasizing both its environmental advantages and nutritional value. It highlights the single-cell protein role as a sustainable and scalable alternative to conventional protein sources. The review also identifies key scientific, economic, and regulatory challenges, and recognizes the importance of targeted investments, particularly in policy development, public awareness, and technological innovation, to enable the broader adoption and acceptance of single-cell protein -based products. Full article
(This article belongs to the Special Issue Valorization of Biopolymer from Renewable Biomass)
Show Figures

Figure 1

16 pages, 1794 KB  
Article
Establishing Native Plant Communities to Improve the Management of the Invasive Weed Mikania micrantha
by Gaofeng Xu, Shicai Shen, Jiale Gao, Yunhai Yang, David Roy Clements, Shaosong Yang, Fengping Zhen, Bin Yao, Guimei Jin, Yun Zhang and Fudou Zhang
Agronomy 2025, 15(8), 1998; https://doi.org/10.3390/agronomy15081998 - 20 Aug 2025
Viewed by 201
Abstract
Using multiple species in native plant communities may improve control efficiency compared with single-species use. We conducted field investigations to assess the effects of Artemisia argyi, Portulaca oleracea, and their mixtures on the growth and reproduction of Mikania micrantha, followed [...] Read more.
Using multiple species in native plant communities may improve control efficiency compared with single-species use. We conducted field investigations to assess the effects of Artemisia argyi, Portulaca oleracea, and their mixtures on the growth and reproduction of Mikania micrantha, followed by a greenhouse de Wit replacement series to compare different combinations of M. micrantha, A. argyi, and P. oleracea in terms of multispecies competition, phytoallelopathy, and photosynthesis. Field investigation showed that compared with M. micrantha monoculture (Group D), aboveground biomass, total stem length, flower biomass, inflorescence biomass, seed biomass, and seed number of M. micrantha increased in the P. oleracea community (Group B), though only seed number was significantly higher (p < 0.05). In contrast, in the A. argyi community (Group A) and the mixed community of A. argyi and P. oleracea (Group C), all these indicators decreased significantly (p < 0.05), in the order: Group C < Group A < Group D < Group B. This indicates that the mixed community (Group C) most strongly suppressed M. micrantha growth and reproduction. The effects of A. argyi, P. oleracea, and their mixture on the growth of M. micrantha in the greenhouse experiments mirrored the trends observed in field investigations. Calculated indices (relative yield, relative yield total, competitive balance index, and change in contribution) of A. argyi, P. oleracea, and their mixed population on M. micrantha demonstrated a higher competitive ability and higher influence of the combination of the two species compared with either A. argyi or P. oleracea alone. The interspecific phytoallelopathy experiment demonstrated strong allelopathic potential of A. argyi versus M. micrantha (p < 0.05) but showed no significant effect on P. oleracea. The net photosynthetic rate (Pn) of M. micrantha was generally lower in communities with both competitors compared with single-species communities. Our results suggest that, compared with a single plant population, the mixed population of A. argyi and P. oleracea exhibited a markedly enhanced ecological control capability through increased relative competitive ability, strengthened allelopathic inhibition, and markedly reduced photosynthetic efficiency of M. micrantha. Full article
(This article belongs to the Section Weed Science and Weed Management)
Show Figures

Figure 1

Back to TopTop