Heterologously Expressed Cellobiose Dehydrogenase Acts as Efficient Electron-Donor of Lytic Polysaccharide Monooxygenase for Cellulose Degradation in Trichoderma reesei
Abstract
:1. Introduction
2. Results
2.1. Heterologous Expression and Purification of PcCDH
2.2. Catalytic Properties of PcCDH
2.3. Substrate Specificity of PcCDH
2.4. LPMO Activity Is Driven by CDH
2.5. Synergistic Effect with Cellulase
2.6. PcCDH Delays LPMO Deactivation
2.7. MALDI-TOF-MS (Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry) Analysis of LPMO Lysis Products
3. Discussion
4. Methods and Materials
4.1. Cultivation Conditions, Reagents, Plasmids and Strains
4.2. Expression Vector Construction & Transformation to Fungal Protoplast
4.3. Production and Purification of Recombinant Protein
4.4. MS Analysis of Purified Recombinant PcCDH
4.5. Characterization of Catalytic Activity of PcCDH
4.6. LPMO Cracking Efficiency Analysis
4.7. MALDI-TOF-MS Analysis
4.8. Electron Donor Effect on LPMO Deactivation
4.9. Synergistic Effect of CDH, Cellulase and LPMO on Cellulose Deconstruction
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Manikandan, S.; Subbaiya, R.; Biruntha, M.; Krishnan, R.Y.; Muthusamy, G.; Karmegam, N. Recent Development Patterns, Utilization and Prospective of Biofuel Production: Emerging Nanotechnological Intervention for Environmental Sustainability–A Review. Fuel 2022, 314, 122757. [Google Scholar] [CrossRef]
- Patel, A.; Shah, A.R. Integrated Lignocellulosic Biorefinery: Gateway for Production of Second Generation Ethanol and Value Added Products. J. Bioresour. Bioprod. 2021, 6, 108–128. [Google Scholar] [CrossRef]
- Hu, Y.; Xu, W.; Hu, S.; Lian, L.; Zhu, J.; Shi, L.; Ren, A.; Zhao, M. In Ganoderma lucidum, Glsnf1 Regulates Cellulose Degradation by Inhibiting GlCreA during the Utilization of Cellulose. Environ. Microbiol. 2020, 22, 107–121. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, N.; Srivastava, M.; Mishra, P.; Gupta, V.K.; Molina, G.; Rodriguez-Couto, S.; Manikanta, A.; Ramteke, P. Applications of Fungal Cellulases in Biofuel Production: Advances and Limitations. Renew. Sustain. Energy Rev. 2018, 82, 2379–2386. [Google Scholar] [CrossRef]
- Kuuskeri, J.; Häkkinen, M.; Laine, P.; Smolander, O.-P.; Tamene, F.; Miettinen, S.; Nousiainen, P.; Kemell, M.; Auvinen, P.; Lundell, T. Time-Scale Dynamics of Proteome and Transcriptome of the White-Rot Fungus Phlebia radiata: Growth on Spruce Wood and Decay Effect on Lignocellulose. Biotechnol. Biofuels 2016, 9, 192. [Google Scholar] [CrossRef]
- Wohlschlager, L.; Csarman, F.; Chang, H.; Fitz, E.; Seiboth, B.; Ludwig, R. Heterologous Expression of Phanerochaete chrysosporium Cellobiose Dehydrogenase in Trichoderma reesei. Microb. Cell Factories 2021, 20, 2. [Google Scholar] [CrossRef]
- Adnan, M.; Ma, X.; Olsson, S.; Wang, J.; Liu, G. Promoter Regulation and Genetic Engineering Strategies for Enhanced Cellulase Expression in Trichoderma reesei. Microbiol. Res. 2022, 259, 127011. [Google Scholar] [CrossRef]
- Phillips, C.M.; Beeson IV, W.T.; Cate, J.H.; Marletta, M.A. Cellobiose Dehydrogenase and a Copper-Dependent Polysaccharide Monooxygenase Potentiate Cellulose Degradation by Neurospora crassa. ACS Chem. Biol. 2011, 6, 1399–1406. [Google Scholar] [CrossRef]
- Chorozian, K.; Karnaouri, A.; Karantonis, A.; Souli, M.; Topakas, E. Characterization of a Dual Cellulolytic/Xylanolytic AA9 Lytic Polysaccharide Monooxygenase from Thermothelomyces thermophilus and Its Utilization toward Nanocellulose Production in a Multi-Step Bioprocess. ACS Sustain. Chem. Eng. 2022, 10, 8919–8929. [Google Scholar] [CrossRef]
- Bodenheimer, A.M.; O’Dell, W.B.; Oliver, R.C.; Qian, S.; Stanley, C.B.; Meilleur, F. Structural Investigation of Cellobiose Dehydrogenase IIA: Insights from Small Angle Scattering into Intra-and Intermolecular Electron Transfer Mechanisms. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2018, 1862, 1031–1039. [Google Scholar] [CrossRef]
- Schulz, C. Cellobiose Dehydrogenase on Electrodes-an Electrochemical Biosensor for Various Analytes Tunable by Positive Charges; Department of Chemistry, Lund University: Lund, Sweden, 2015. [Google Scholar]
- Igarashi, K.; Yoshida, M.; Matsumura, H.; Nakamura, N.; Ohno, H.; Samejima, M.; Nishino, T. Electron Transfer Chain Reaction of the Extracellular Flavocytochrome Cellobiose Dehydrogenase from the Basidiomycete Phanerochaete chrysosporium. FEBS J. 2005, 272, 2869–2877. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Laurent, C.V.; Schwaiger, L.; Wang, L.; Ma, S.; Ludwig, R. Interdomain Linker of the Bioelecrocatalyst Cellobiose Dehydrogenase Governs the Electron Transfer. ACS Catal. 2023, 13, 8195–8205. [Google Scholar] [CrossRef] [PubMed]
- Smuts, I.E.; Blakeway, N.J.; Rose, S.H.; den Haan, R.; Viljoen-Bloom, M.; van Zyl, W.H. Supplementation of Recombinant Cellulases with LPMOs and CDHs Improves Consolidated Bioprocessing of Cellulose. Enzym. Microb. Technol. 2023, 164, 110171. [Google Scholar] [CrossRef] [PubMed]
- Monclaro, A.V.; Petrović, D.M.; Alves, G.S.; Costa, M.M.; Midorikawa, G.E.; Miller, R.N.; Filho, E.X.; Eijsink, V.G.; Várnai, A. Characterization of Two Family AA9 LPMOs from Aspergillus tamarii with Distinct Activities on Xyloglucan Reveals Structural Differences Linked to Cleavage Specificity. PLoS ONE 2020, 15, e0235642. [Google Scholar] [CrossRef] [PubMed]
- Sabbadin, F.; Urresti, S.; Henrissat, B.; Avrova, A.O.; Welsh, L.R.; Lindley, P.J.; Csukai, M.; Squires, J.N.; Walton, P.H.; Davies, G.J. Secreted Pectin Monooxygenases Drive Plant Infection by Pathogenic Oomycetes. Science 2021, 373, 774–779. [Google Scholar] [CrossRef] [PubMed]
- Andlar, M.; Rezić, T.; Marđetko, N.; Kracher, D.; Ludwig, R.; Šantek, B. Lignocellulose Degradation: An Overview of Fungi and Fungal Enzymes Involved in Lignocellulose Degradation. Eng. Life Sci. 2018, 18, 768–778. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, Z.; Li, Y.; He, J.; Zhu, H. Improvement of the Stability and Activity of an LPMO through Rational Disulfide Bonds Design. Front. Bioeng. Biotechnol. 2022, 9, 815990. [Google Scholar] [CrossRef] [PubMed]
- Forsberg, Z.; Sørlie, M.; Petrović, D.; Courtade, G.; Aachmann, F.L.; Vaaje-Kolstad, G.; Bissaro, B.; Røhr, Å.K.; Eijsink, V.G. Polysaccharide Degradation by Lytic Polysaccharide Monooxygenases. Curr. Opin. Struct. Biol. 2019, 59, 54–64. [Google Scholar] [CrossRef]
- Frommhagen, M.; Westphal, A.H.; van Berkel, W.J.; Kabel, M.A. Distinct Substrate Specificities and Electron-Donating Systems of Fungal Lytic Polysaccharide Monooxygenases. Front. Microbiol. 2018, 9, 1080. [Google Scholar] [CrossRef]
- Vaaje-Kolstad, G.; Westereng, B.; Horn, S.J.; Liu, Z.; Zhai, H.; Sørlie, M.; Eijsink, V.G. An Oxidative Enzyme Boosting the Enzymatic Conversion of Recalcitrant Polysaccharides. Science 2010, 330, 219–222. [Google Scholar] [CrossRef]
- Xu, Z.; Zhou, J. Molecular Insights of Cellobiose Dehydrogenase Adsorption on Self-Assembled Monolayers. Langmuir 2023, 39, 5880–5890. [Google Scholar] [CrossRef]
- Courtade, G.; Wimmer, R.; Røhr, Å.K.; Preims, M.; Felice, A.K.; Dimarogona, M.; Vaaje-Kolstad, G.; Sørlie, M.; Sandgren, M.; Ludwig, R. Interactions of a Fungal Lytic Polysaccharide Monooxygenase with β-Glucan Substrates and Cellobiose Dehydrogenase. Proc. Natl. Acad. Sci. USA 2016, 113, 5922–5927. [Google Scholar] [CrossRef] [PubMed]
- Laurent, C.V.; Breslmayr, E.; Tunega, D.; Ludwig, R.; Oostenbrink, C. Interaction between Cellobiose Dehydrogenase and Lytic Polysaccharide Monooxygenase. Biochemistry 2019, 58, 1226–1235. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.-C.; Kracher, D.; Gandini, R.; Sygmund, C.; Kittl, R.; Haltrich, D.; Hällberg, B.M.; Ludwig, R.; Divne, C. Structural Basis for Cellobiose Dehydrogenase Action during Oxidative Cellulose Degradation. Nat. Commun. 2015, 6, 7542. [Google Scholar] [CrossRef] [PubMed]
- Bissaro, B.; Røhr, Å.K.; Müller, G.; Chylenski, P.; Skaugen, M.; Forsberg, Z.; Horn, S.J.; Vaaje-Kolstad, G.; Eijsink, V.G. Oxidative Cleavage of Polysaccharides by Monocopper Enzymes Depends on H2O2. Nat. Chem. Biol. 2017, 13, 1123–1128. [Google Scholar] [CrossRef]
- Califano, D.; Kadowaki, M.A.; Calabrese, V.; Prade, R.A.; Mattia, D.; Edler, K.J.; Polikarpov, I.; Scott, J.L. Multienzyme Cellulose Films as Sustainable and Self-Degradable Hydrogen Peroxide-Producing Material. Biomacromolecules 2020, 21, 5315–5322. [Google Scholar] [CrossRef]
- Filandr, F.; Man, P.; Halada, P.; Chang, H.; Ludwig, R.; Kracher, D. The H2O2-Dependent Activity of a Fungal Lytic Polysaccharide Monooxygenase Investigated with a Turbidimetric Assay. Biotechnol. Biofuels 2020, 13, 37. [Google Scholar] [CrossRef]
- Kracher, D.; Forsberg, Z.; Bissaro, B.; Gangl, S.; Preims, M.; Sygmund, C.; Eijsink, V.G.; Ludwig, R. Polysaccharide Oxidation by Lytic Polysaccharide Monooxygenase Is Enhanced by Engineered Cellobiose Dehydrogenase. FEBS J. 2020, 287, 897–908. [Google Scholar] [CrossRef]
- Lipovsky, A.; Thallinger, B.; Perelshtein, I.; Ludwig, R.; Sygmund, C.; Nyanhongo, G.S.; Guebitz, G.M.; Gedanken, A. Ultrasound Coating of Polydimethylsiloxanes with Antimicrobial Enzymes. J. Mater. Chem. B 2015, 3, 7014–7019. [Google Scholar] [CrossRef]
- Pricelius, S.; Ludwig, R.; Lant, N.; Haltrich, D.; Guebitz, G. Substrate Specificity of Myriococcum thermophilum Cellobiose Dehydrogenase on Mono-, Oligo-, and Polysaccharides Related to in Situ Production of H2O2. Appl. Microbiol. Biotechnol. 2009, 85, 75–83. [Google Scholar] [CrossRef]
- Quinlan, R.J.; Sweeney, M.D.; Lo Leggio, L.; Otten, H.; Poulsen, J.-C.N.; Johansen, K.S.; Krogh, K.B.; Jørgensen, C.I.; Tovborg, M.; Anthonsen, A. Insights into the Oxidative Degradation of Cellulose by a Copper Metalloenzyme That Exploits Biomass Components. Proc. Natl. Acad. Sci. USA 2011, 108, 15079–15084. [Google Scholar] [CrossRef]
- Filandr, F. Structural Characterization of Biotechnologically and Medicinally Important Proteins. 2020. Available online: https://www.citacepro.com/dok/fknjhbIkAmKWQZn1?kontrola=1 (accessed on 3 December 2023).
- Zanchetta, A.; Dos Santos, A.C.F.; Ximenes, E.; Nunes, C.d.C.C.; Boscolo, M.; Gomes, E.; Ladisch, M.R. Temperature Dependent Cellulase Adsorption on Lignin from Sugarcane Bagasse. Bioresour. Technol. 2018, 252, 143–149. [Google Scholar] [CrossRef]
- Nakagame, S.; Furujyo, A.; Sugiura, J. Purification and Characterization of Cellobiose Dehydrogenase from White-Rot Basidiomycete Trametes hirsuta. Biosci. Biotechnol. Biochem. 2006, 70, 1629–1635. [Google Scholar] [CrossRef]
- Westermark, U.; Eriksson, K. Purification and Properties of Cellobiose: Quinone Oxidoreductase from Sporotrichum pulverulentum. Acta Chem. Scand. Ser. B Org. Chem. Biochem. 1975, 29, 419–424. [Google Scholar] [CrossRef]
- Henriksson, G.; Sild, V.; Szabó, I.J.; Pettersson, G.; Johansson, G. Substrate Specificity of Cellobiose Dehydrogenase from Phanerochaete chrysosporium. Biochim. Biophys. Acta (BBA)-Protein Struct. Mol. Enzymol. 1998, 1383, 48–54. [Google Scholar] [CrossRef]
- Wu, S.; Tian, J.; Xie, N.; Adnan, M.; Wang, J.; Liu, G. A Sensitive, Accurate, and High-Throughput Gluco-Oligosaccharide Oxidase-Based HRP Colorimetric Method for Assaying Lytic Polysaccharide Monooxygenase Activity. Biotechnol. Biofuels Bioprod. 2022, 15, 15. [Google Scholar] [CrossRef] [PubMed]
- Petrović, D.M.; Varnai, A.; Dimarogona, M.; Mathiesen, G.; Sandgren, M.; Westereng, B.; Eijsink, V.G. Comparison of Three Seemingly Similar Lytic Polysaccharide Monooxygenases from Neurospora crassa Suggests Different Roles in Plant Biomass Degradation. J. Biol. Chem. 2019, 294, 15068–15081. [Google Scholar] [CrossRef] [PubMed]
- Long, L.; Yang, H.; Ren, H.; Liu, R.; Sun, F.F.; Xiao, Z.; Hu, J.; Xu, Z. Synergism of Recombinant Podospora anserina Pa AA9B with Cellulases Containing AA9s Can Boost the Enzymatic Hydrolysis of Cellulosic Substrates. ACS Sustain. Chem. Eng. 2020, 8, 11986–11993. [Google Scholar] [CrossRef]
- Farinas, C.S.; Loyo, M.M.; Junior, A.B.; Tardioli, P.W.; Neto, V.B.; Couri, S. Finding Stable Cellulase and Xylanase: Evaluation of the Synergistic Effect of pH and Temperature. New Biotechnol. 2010, 27, 810–815. [Google Scholar] [CrossRef]
- Cheng, C.; Haider, J.; Liu, P.; Yang, J.; Tan, Z.; Huang, T.; Lin, J.; Jiang, M.; Liu, H.; Zhu, L. Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization of Cellulose. J. Agric. Food Chem. 2020, 68, 15257–15266. [Google Scholar] [CrossRef]
- Wang, M.; Lu, X. Exploring the Synergy between Cellobiose Dehydrogenase from Phanerochaete chrysosporium and Cellulase from Trichoderma reesei. Front. Microbiol. 2016, 7, 620. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, K.; Samejima, M.; Eriksson, K.L. Cellobiose Dehydrogenase Enhances Phanerochaete chrysosporium Cellobiohydrolase I Activity by Relieving Product Inhibition. Eur. J. Biochem. 1998, 253, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, J.; Wang, S.; Xing, M.; Yu, S.; Liu, G. Achieving Efficient Protein Expression in Trichoderma reesei by Using Strong Constitutive Promoters. Microb. Cell Factories 2012, 11, 84. [Google Scholar] [CrossRef] [PubMed]
- Punt, P.J.; Oliver, R.P.; Dingemanse, M.A.; Pouwels, P.H.; van den Hondel, C.A. Transformation of Aspergillus Based on the Hygromycin B Resistance Marker from Escherichia coli. Gene 1987, 56, 117–124. [Google Scholar] [CrossRef]
- Cannella, D.; Möllers, K.; Frigaard, N.-U.; Jensen, P.; Bjerrum, M.; Johansen, K.; Felby, C. Light-Driven Oxidation of Polysaccharides by Photosynthetic Pigments and a Metalloenzyme. Nat. Commun. 2016, 7, 11134. [Google Scholar] [CrossRef]
- Baminger, U.; Subramaniam, S.S.; Renganathan, V.; Haltrich, D. Purification and Characterization of Cellobiose Dehydrogenase from the Plant Pathogen Sclerotium (Athelia) rolfsii. Appl. Environ. Microbiol. 2001, 67, 1766–1774. [Google Scholar] [CrossRef]
- Chen, C.; Chen, J.; Geng, Z.; Wang, M.; Liu, N.; Li, D. Regioselectivity of Oxidation by a Polysaccharide Monooxygenase from Chaetomium thermophilum. Biotechnol. Biofuels 2018, 11, 1–16. [Google Scholar] [CrossRef]
Electron Donors | PcCDH | ||
---|---|---|---|
Km | kcat | kcat/Km | |
[mM] | [s−1] | [mM−1 s−1] | |
Lactose | 0.97 ± 0.17 | 30.94 ± 3.70 | 31.77 |
cellobiose | 0.10 ± 0.01 | 21.66 ± 0.78 | 206.34 |
cellotriose | 0.36 ± 0.06 | 52.76 ± 7.51 | 144.17 |
cellotetraose | 0.16 ± 0.03 | 21.57 ± 2.67 | 134.01 |
cellopentaose | 0.35 ± 0.09 | 47.53 ± 8.95 | 133.90 |
cellohexose | 0.30 ± 0.06 | 27.17 ± 4.65 | 89.96 |
Primer | Sequence | Application |
---|---|---|
Pcdna1-F | aaaacgacggccagtgaattcCAGACAATGATGGTAGCAGCGC | Promoter amplification |
Pcdna1-R | gcttcgaccgagcatTTGAGAGAAGTTGTTGGATTGATCA | Promoter amplification |
CDH-F | ctcaaATGCTCGGTCGAAGCCTCCTCGC | Gene Amplification |
CDH-R | GGttaatgatgatgatgatgatgGGGTCCTCCGGCGAGAGC | Gene Amplification |
Tpdc1-F | CcatcatcatcatcatcattaaCCCGGCATGAAGTCTGACC | Terminator Amplification |
Tpdc1-R | gattacgccaagcttgcatgcTGGACGCCTCGATGTCTTCC | Terminator Amplification |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adnan, M.; Ma, X.; Xie, Y.; Waheed, A.; Liu, G. Heterologously Expressed Cellobiose Dehydrogenase Acts as Efficient Electron-Donor of Lytic Polysaccharide Monooxygenase for Cellulose Degradation in Trichoderma reesei. Int. J. Mol. Sci. 2023, 24, 17202. https://doi.org/10.3390/ijms242417202
Adnan M, Ma X, Xie Y, Waheed A, Liu G. Heterologously Expressed Cellobiose Dehydrogenase Acts as Efficient Electron-Donor of Lytic Polysaccharide Monooxygenase for Cellulose Degradation in Trichoderma reesei. International Journal of Molecular Sciences. 2023; 24(24):17202. https://doi.org/10.3390/ijms242417202
Chicago/Turabian StyleAdnan, Muhammad, Xuekun Ma, Yanping Xie, Abdul Waheed, and Gang Liu. 2023. "Heterologously Expressed Cellobiose Dehydrogenase Acts as Efficient Electron-Donor of Lytic Polysaccharide Monooxygenase for Cellulose Degradation in Trichoderma reesei" International Journal of Molecular Sciences 24, no. 24: 17202. https://doi.org/10.3390/ijms242417202
APA StyleAdnan, M., Ma, X., Xie, Y., Waheed, A., & Liu, G. (2023). Heterologously Expressed Cellobiose Dehydrogenase Acts as Efficient Electron-Donor of Lytic Polysaccharide Monooxygenase for Cellulose Degradation in Trichoderma reesei. International Journal of Molecular Sciences, 24(24), 17202. https://doi.org/10.3390/ijms242417202