Microwave Pretreatment for Biomass Pyrolysis: A Systematic Review on Efficiency and Environmental Aspects
Abstract
1. Introduction
2. Methods
2.1. Phase One: Focused Literature Review
2.2. Phase Two: Thematic Analysis Guided by Research Questions
- RQ1: How does microwave-assisted pretreatment alter the physicochemical structure of lignocellulosic biomass (e.g., cellulose crystallinity, lignin removal, and porosity enhancement)?
- RQ2: How do combined microwave-assisted pretreatments influence the physicochemical properties of lignocellulosic biomass?
- RQ3: What are the current challenges, limitations, and future perspectives in applying microwave pretreatment at pilot and industrial scales for sustainable bioenergy production?
- RQ4: What were the most important advances and discoveries in the field of microwave-assisted biomass pretreatment prior to pyrolysis in the last five years?
3. Results
3.1. Phase One: Focused Literature Review
3.1.1. Publications per Year
3.1.2. Distribution of Publications by Subject Area
3.1.3. Keywords
3.1.4. Correlation Keywords
3.1.5. Correlation Keyword Clusters
3.1.6. Publications per Country
3.1.7. Publications per Affiliation
3.1.8. Publications per Funding Sponsors
3.1.9. Publications per Source
3.2. Phase Two: Thematic Analysis Guided by Research Questions
3.2.1. How Does Microwave-Assisted Pretreatment Alter the Physicochemical Structure of Lignocellulosic Biomass?
- Physical principle and selectivity.
- Lignin removal [delignification].
- Cellulose crystallinity.
- Porosity and surface morphology.
- Hemicellulose deconstruction and acetyl removal.
- Mechanistic implications for pretreatment design.
3.2.2. How Do Combined Microwave-Assisted Pretreatments Influence the Physicochemical Properties of Lignocellulosic Biomass and What Are Their Implications for Enhancing Energy Efficiency, Product Selectivity, and Environmental Sustainability in Subsequent Pyrolysis Processes?
3.2.3. What Are the Current Challenges, Limitations, and Future Perspectives in Applying Microwave Pretreatment at Pilot and Industrial Scales for Sustainable Bioenergy Production?
3.2.4. What Were the Most Important Advances and Discoveries in the Field of Microwave-Assisted Biomass Pretreatment Prior to Pyrolysis in the Last Five Years?
4. Future Works
- Reactor engineering, scale-up, and electrification efficiency.
- Specific reaction rates of the formation of pyrolysis products
- Microwave absorbers and catalytic co-pretreatments.
- Microwave-assisted hydrothermal and organosolv routes.
- Integrated TEA/LCA under renewable electricity supply.
- Feedstock breadth, moisture tolerance, and quality control.
- Data standards and reproducibility.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MWP | Microwave pretreatment |
TEA | Techno-economic assessments |
LCA | Life cycle analyses |
References
- Orejuela-Escobar, L.; Venegas-Vásconez, D.; Méndez, M.Á. Opportunities of artificial intelligence in valorisation of biodiversity, biomass and bioresidues—Towards advanced bio-economy, circular engineering, and sustainability. Int. J. Sustain. Energy Environ. Res. 2024, 13, 105–113. [Google Scholar] [CrossRef]
- Smith, C.J.; Forster, P.M.; Allen, M.; Fuglestvedt, J.; Millar, R.J.; Rogelj, J.; Zickfeld, K. Current fossil fuel infrastructure does not yet commit us to 1.5 °C warming. Nat. Commun. 2019, 10, 101. [Google Scholar] [CrossRef] [PubMed]
- Daimary, N.; Deb, B.; Roy, B.; Ranjan, R.K.; Mukherjee, A. Sustainable biorefinery approach for the transformation of biowaste into biofuels and chemicals for the circular economy: A review. Sustain. Energy Technol. Assess. 2025, 82, 104457. [Google Scholar] [CrossRef]
- Ahmed, S.; Ali, A.; D’Angola, A. A Review of Renewable Energy Communities: Concepts, Scope, Progress, Challenges, and Recommendations. Sustainability 2024, 16, 1749. [Google Scholar] [CrossRef]
- Li, F.; Srivatsa, S.C.; Bhattacharya, S. A review on catalytic pyrolysis of microalgae to high-quality bio-oil with low oxygeneous and nitrogenous compounds. Renew. Sustain. Energy Rev. 2019, 108, 481–497. [Google Scholar] [CrossRef]
- Venegas-Vásconez, D.; Orejuela-Escobar, L.; Valarezo-Garcés, A.; Guerrero, V.H.; Tipanluisa-Sarchi, L.; Alejandro-Martín, S. Biomass Valorization through Catalytic Pyrolysis Using Metal-Impregnated Natural Zeolites: From Waste to Resources. Polymers 2024, 16, 1912. [Google Scholar] [CrossRef] [PubMed]
- Bridgwater, A.V. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 2012, 38, 68–94. [Google Scholar] [CrossRef]
- Scarlat, N.; Fahl, F.; Dallemand, J.-F.; Monforti, F.; Motola, V. A spatial analysis of biogas potential from manure in Europe. Renew. Sustain. Energy Rev. 2018, 94, 915–930. [Google Scholar] [CrossRef]
- Vamvuka, D. Bio-oil, solid and gaseous biofuels from biomass pyrolysis processes-An overview. Int. J. Energy Res. 2011, 35, 835–862. [Google Scholar] [CrossRef]
- Lei, H.; Cybulska, I.; Julson, J. Hydrothermal Pretreatment of Lignocellulosic Biomass and Kinetics. J. Sustain. Bioenergy Syst. 2013, 3, 250–259. [Google Scholar] [CrossRef]
- Fargione, J.; Hill, J.; Tilman, D.; Polasky, S.; Hawthorne, P. Land Clearing and the Biofuel Carbon Debt. Science 2008, 319, 1235–1238. [Google Scholar] [CrossRef] [PubMed]
- Ungureanu, N.; Vlăduț, N.-V.; Biriș, S.-Ș.; Gheorghiță, N.-E.; Ionescu, M. Biomass Pyrolysis Pathways for Renewable Energy and Sustainable Resource Recovery: A Critical Review of Processes, Parameters, and Product Valorization. Sustainability 2025, 17, 7806. [Google Scholar] [CrossRef]
- Aboelela, D.; Saleh, H.; Attia, A.M.; Elhenawy, Y.; Majozi, T.; Bassyouni, M. Recent Advances in Biomass Pyrolysis Processes for Bioenergy Production: Optimization of Operating Conditions. Sustainability 2023, 15, 11238. [Google Scholar] [CrossRef]
- Karkach, B.; Tahiri, M.; Haibi, A.; Bouya, M.; Kifani-Sahban, F. Review on Fast Pyrolysis of Biomass for Biofuel Production from Date Palm. Appl. Sci. 2023, 13, 10463. [Google Scholar] [CrossRef]
- Tan, H.; Lee, C.T.; Ong, P.Y.; Wong, K.Y.; Bong, C.P.C.; Li, C.; Gao, Y. A Review On The Comparison Between Slow Pyrolysis And Fast Pyrolysis On The Quality Of Lignocellulosic And Lignin-Based Biochar. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1051, 012075. [Google Scholar] [CrossRef]
- Zaman, C.Z.; Pal, K.; Yehye, W.A.; Sagadevan, S.; Shah, S.T.; Adebisi, G.A.; Marliana, E.; Rafique, R.F.; Johan, R.B. Pyrolysis: A Sustainable Way to Generate Energy from Waste. In Pyrolysis; Samer, M., Ed.; InTech: Rijeka, Croatia, 2017. [Google Scholar]
- Demirbaş, A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers. Manag. 2001, 42, 1357–1378. [Google Scholar] [CrossRef]
- Wang, S.; Dai, G.; Yang, H.; Luo, Z. Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Prog. Energy Combust. Sci. 2017, 62, 33–86. [Google Scholar] [CrossRef]
- Alherbawi, M.; Parthasarathy, P.; Elkhalifa, S.; Al-Ansari, T.; McKay, G. Techno-economic and environmental analyses of the pyrolysis of food waste to produce bio-products. Heliyon 2024, 10, e27713. [Google Scholar] [CrossRef]
- Roy, P.; Dias, G. Prospects for pyrolysis technologies in the bioenergy sector: A review. Renew. Sustain. Energy Rev. 2017, 77, 59–69. [Google Scholar] [CrossRef]
- Nishu; Liu, R.; Rahman, M.M.; Sarker, M.; Chai, M.; Li, C.; Cai, J. A review on the catalytic pyrolysis of biomass for the bio-oil production with ZSM-5: Focus on structure. Fuel Process. Technol. 2020, 199, 106301. [Google Scholar] [CrossRef]
- Zainan, N.H.; Srivatsa, S.C.; Bhattacharya, S. Catalytic pyrolysis of microalgae Tetraselmis suecica and characterization study using in situ Synchrotron-based Infrared Microscopy. Fuel 2015, 161, 345–354. [Google Scholar] [CrossRef]
- Neumann, J.; Meyer, J.; Ouadi, M.; Apfelbacher, A.; Binder, S.; Hornung, A. The conversion of anaerobic digestion waste into biofuels via a novel Thermo-Catalytic Reforming process. Waste Manag. 2016, 47, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Alvira, P.; Tomás-Pejó, E.; Ballesteros, M.; Negro, M.J. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour. Technol. 2010, 101, 4851–4861. [Google Scholar] [CrossRef] [PubMed]
- Collard, F.-X.; Blin, J. A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew. Sustain. Energy Rev. 2014, 38, 594–608. [Google Scholar] [CrossRef]
- Lange, J. Lignocellulose conversion: An introduction to chemistry, process and economics. Biofuels Bioprod. Biorefining 2007, 1, 39–48. [Google Scholar] [CrossRef]
- Traven, L. Sustainable energy generation from municipal solid waste: A brief overview of existing technologies. Case Stud. Chem. Environ. Eng. 2023, 8, 100491. [Google Scholar] [CrossRef]
- Isahak, W.N.R.W.; Hisham, M.W.M.; Yarmo, M.A.; Yun Hin, T. A review on bio-oil production from biomass by using pyrolysis method. Renew. Sustain. Energy Rev. 2012, 16, 5910–5923. [Google Scholar] [CrossRef]
- Ryu, S.; Lee, H.W.; Kim, Y.-M.; Jae, J.; Jung, S.-C.; Ha, J.-M.; Park, Y.-K. Catalytic fast co-pyrolysis of organosolv lignin and polypropylene over in-situ red mud and ex-situ HZSM-5 in two-step catalytic micro reactor. Appl. Surf. Sci. 2020, 511, 145521. [Google Scholar] [CrossRef]
- Hamza, M.; Ayoub, M.; Shamsuddin, R.B.; Mukhtar, A.; Saqib, S.; Zahid, I.; Ameen, M.; Ullah, S.; Al-Sehemi, A.G.; Ibrahim, M. A review on the waste biomass derived catalysts for biodiesel production. Environ. Technol. Innov. 2021, 21, 101200. [Google Scholar] [CrossRef]
- Demirbas, A. Partly chemical analysis of liquid fraction of flash pyrolysis products from biomass in the presence of sodium carbonate. Energy Convers. Manag. 2002, 43, 1801–1809. [Google Scholar] [CrossRef]
- Motasemi, F.; Afzal, M.T. A review on the microwave-assisted pyrolysis technique. Renew. Sustain. Energy Rev. 2013, 28, 317–330. [Google Scholar] [CrossRef]
- Conesa, J.A.; Marcilla, A.; Moral, R.; Moreno-Caselles, J.; Perez-Espinosa, A. Evolution of gases in the primary pyrolysis of different sewage sludges. Thermochim. Acta 1998, 313, 63–73. [Google Scholar] [CrossRef]
- Kumar, B.; Bhardwaj, N.; Agrawal, K.; Chaturvedi, V.; Verma, P. Current perspective on pretreatment technologies using lignocellulosic biomass: An emerging biorefinery concept. Fuel Process. Technol. 2020, 199, 106244. [Google Scholar] [CrossRef]
- Ethaib, S.; Omar, R.; Kamal, S.M.M.; Biak, D.R.A. Microwave—Assisted pretreatment of lignocellulosic biomass: A Review. J. Eng. Sci. Technol. 2015, 10, 97–109. [Google Scholar]
- Woźniak, A.; Kuligowski, K.; Świerczek, L.; Cenian, A. Review of Lignocellulosic Biomass Pretreatment Using Physical, Thermal and Chemical Methods for Higher Yields in Bioethanol Production. Sustainability 2025, 17, 287. [Google Scholar] [CrossRef]
- Kumari, D.; Singh, R. Pretreatment of lignocellulosic wastes for biofuel production: A critical review. Renew. Sustain. Energy Rev. 2018, 90, 877–891. [Google Scholar] [CrossRef]
- Ge, L.; Ali, M.M.; Osman, A.I.; Elgarahy, A.M.; Samer, M.; Xu, Y.; Liu, Z. A critical review on conversion technology for liquid biofuel production from lignocellulosic biomass. Renew. Sustain. Energy Rev. 2025, 217, 115726. [Google Scholar] [CrossRef]
- Giorcelli, M.; Das, O.; Sas, G.; Försth, M.; Bartoli, M. A Review of Bio-Oil Production through Microwave-Assisted Pyrolysis. Processes 2021, 9, 561. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, P.; Liu, S.; Fan, L.; Zhou, N.; Min, M.; Cheng, Y.; Peng, P.; Anderson, E.; Wang, Y.; et al. Microwave-Assisted Pyrolysis of Biomass for Bio-Oil Production. In Pyrolysis; Samer, M., Ed.; InTech: Rijeka, Croatia, 2017. [Google Scholar]
- Bundhoo, Z.M.A. Microwave-assisted conversion of biomass and waste materials to biofuels. Renew. Sustain. Energy Rev. 2018, 82, 1149–1177. [Google Scholar] [CrossRef]
- Roberts, B.A.; Strauss, C.R. Toward Rapid, “Green”, Predictable Microwave-Assisted Synthesis. Acc. Chem. Res. 2005, 38, 653–661. [Google Scholar] [CrossRef]
- Nüchter, M.; Ondruschka, B.; Bonrath, W.; Gum, A. Microwave assisted synthesis—A critical technology overview. Green Chem. 2004, 6, 128–141. [Google Scholar] [CrossRef]
- Hassan, S.S.; Williams, G.A.; Jaiswal, A.K. Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresour. Technol. 2018, 262, 310–318. [Google Scholar] [CrossRef]
- Lei, H.; Ren, S.; Julson, J. The Effects of Reaction Temperature and Time and Particle Size of Corn Stover on Microwave Pyrolysis. Energy Fuels 2009, 23, 3254–3261. [Google Scholar] [CrossRef]
- Zhang, X.; Rajagopalan, K.; Lei, H.; Ruan, R.; Sharma, B.K. An overview of a novel concept in biomass pyrolysis: Microwave irradiation. Sustain. Energy Fuels 2017, 1, 1664–1699. [Google Scholar] [CrossRef]
- Chen, P.; Xie, Q.; Addy, M.; Zhou, W.; Liu, Y.; Wang, Y.; Cheng, Y.; Li, K.; Ruan, R. Utilization of municipal solid and liquid wastes for bioenergy and bioproducts production. Bioresour. Technol. 2016, 215, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Menéndez, J.A.; Arenillas, A.; Fidalgo, B.; Fernández, Y.; Zubizarreta, L.; Calvo, E.G.; Bermúdez, J.M. Microwave heating processes involving carbon materials. Fuel Process. Technol. 2010, 91, 1–8. [Google Scholar] [CrossRef]
- Thostenson, E.T.; Chou, T.-W. Microwave processing: Fundamentals and applications. Compos. Part Appl. Sci. Manuf. 1999, 30, 1055–1071. [Google Scholar] [CrossRef]
- Jin, Q.; Liang, F.; Zhang, H.; Zhao, L.; Huan, Y. Daqian Song Application of microwave techniques in analytical chemistry. TrAC Trends Anal. Chem. 1999, 18, 479–484. [Google Scholar] [CrossRef]
- Abdulridha, S.; Zhang, R.; Xu, S.; Tedstone, A.; Ou, X.; Gong, J.; Mao, B.; Frogley, M.; Bawn, C.; Zhou, Z.; et al. An efficient microwave-assisted chelation (MWAC) post-synthetic modification method to produce hierarchical Y zeolites. Microporous Mesoporous Mater. 2021, 311, 110715. [Google Scholar] [CrossRef]
- Akhlisah, Z.N.; Yunus, R.; Abidin, Z.Z.; Lim, B.Y.; Kania, D. Pretreatment methods for an effective conversion of oil palm biomass into sugars and high-value chemicals. Biomass Bioenergy 2021, 144, 105901. [Google Scholar] [CrossRef]
- Huang, Y.-F.; Chiueh, P.-T.; Lo, S.-L. A review on microwave pyrolysis of lignocellulosic biomass. Sustain. Environ. Res. 2016, 26, 103–109. [Google Scholar] [CrossRef]
- Mushtaq, F.; Mat, R.; Ani, F.N. A review on microwave assisted pyrolysis of coal and biomass for fuel production. Renew. Sustain. Energy Rev. 2014, 39, 555–574. [Google Scholar] [CrossRef]
- Haque, K.E. Microwave energy for mineral treatment processes—A brief review. Int. J. Miner. Process. 1999, 57, 1–24. [Google Scholar] [CrossRef]
- Jones, D.A.; Lelyveld, T.P.; Mavrofidis, S.D.; Kingman, S.W.; Miles, N.J. Microwave heating applications in environmental engineering—A review. Resour. Conserv. Recycl. 2002, 34, 75–90. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, M.; Zhao, K.; Liu, Z. Microwave application in biomass conversion: A Review. ChemBioEng Rev. 2024, 11, e202400020. [Google Scholar] [CrossRef]
- Ke, L.; Zhou, N.; Wu, Q.; Zeng, Y.; Tian, X.; Zhang, J.; Fan, L.; Ruan, R.; Wang, Y. Microwave catalytic pyrolysis of biomass: A review focusing on absorbents and catalysts. npj Mater. Sustain. 2024, 2, 24. [Google Scholar] [CrossRef]
- Singh, R.; Lindenberger, C.; Chawade, A.; Vivekanand, V. Unveiling the microwave heating performance of biochar as microwave absorber for microwave-assisted pyrolysis technology. Sci. Rep. 2024, 14, 9222. [Google Scholar] [CrossRef]
- Mikulski, D.; Kłosowski, G. High-pressure microwave-assisted pretreatment of softwood, hardwood and non-wood biomass using different solvents in the production of cellulosic ethanol. Biotechnol. Biofuels Bioprod. 2023, 16, 19. [Google Scholar] [CrossRef]
- Hoang, A.T.; Nižetić, S.; Ong, H.C.; Mofijur, M.; Ahmed, S.F.; Ashok, B.; Bui, V.T.V.; Chau, M.Q. Insight into the recent advances of microwave pretreatment technologies for the conversion of lignocellulosic biomass into sustainable biofuel. Chemosphere 2021, 281, 130878. [Google Scholar] [CrossRef]
- Allende, S.; Brodie, G.; Jacob, M.V. Breakdown of biomass for energy applications using microwave pyrolysis: A technological review. Environ. Res. 2023, 226, 115619. [Google Scholar] [CrossRef]
- Lozano Pérez, A.S.; Lozada Castro, J.J.; Guerrero Fajardo, C.A. Application of Microwave Energy to Biomass: A Comprehensive Review of Microwave-Assisted Technologies, Optimization Parameters, and the Strengths and Weaknesses. J. Manuf. Mater. Process. 2024, 8, 121. [Google Scholar] [CrossRef]
- Kostas, E.T.; Beneroso, D.; Robinson, J.P. The application of microwave heating in bioenergy: A review on the microwave pre-treatment and upgrading technologies for biomass. Renew. Sustain. Energy Rev. 2017, 77, 12–27. [Google Scholar] [CrossRef]
- Erythropel, H.C.; Zimmerman, J.B.; De Winter, T.M.; Petitjean, L.; Melnikov, F.; Lam, C.H.; Lounsbury, A.W.; Mellor, K.E.; Janković, N.Z.; Tu, Q.; et al. The Green ChemisTREE: 20 years after taking root with the 12 principles. Green Chem. 2018, 20, 1929–1961. [Google Scholar] [CrossRef]
- Foong, S.Y.; Chan, Y.H.; Yek, P.N.Y.; Lock, S.S.M.; Chin, B.L.F.; Yiin, C.L.; Lan, J.C.-W.; Lam, S.S. Microwave-assisted pyrolysis in biomass and waste valorisation: Insights into the life-cycle assessment (LCA) and techno-economic analysis (TEA). Chem. Eng. J. 2024, 491, 151942. [Google Scholar] [CrossRef]
- Syed, N.R.; Zhang, B.; Mwenya, S.; Aldeen, A.S. A Systematic Review on Biomass Treatment Using Microwave-Assisted Pyrolysis under PRISMA Guidelines. Molecules 2023, 28, 5551. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Xu, X.; Yu, Z.; Chen, L.; Liao, Y.; Ma, X. Effects of microwave pretreatment on catalytic fast pyrolysis of pine sawdust. Bioresour. Technol. 2019, 293, 122080. [Google Scholar] [CrossRef]
- Qiu, B.; Wang, Y.; Zhang, D.; Chu, H. Microwave-assisted pyrolysis of biomass to high-value products: Factors assessment, mechanism analysis, and critical issues proposal. Chem. Eng. J. 2024, 498, 155362. [Google Scholar] [CrossRef]
- Mahmood, H.; Moniruzzaman, M.; Iqbal, T.; Khan, M.J. Recent advances in the pretreatment of lignocellulosic biomass for biofuels and value-added products. Curr. Opin. Green Sustain. Chem. 2019, 20, 18–24. [Google Scholar] [CrossRef]
- Sankaran, R.; Parra Cruz, R.A.; Pakalapati, H.; Show, P.L.; Ling, T.C.; Chen, W.-H.; Tao, Y. Recent advances in the pretreatment of microalgal and lignocellulosic biomass: A comprehensive review. Bioresour. Technol. 2020, 298, 122476. [Google Scholar] [CrossRef]
- Anu; Kumar, A.; Rapoport, A.; Kunze, G.; Kumar, S.; Singh, D.; Singh, B. Multifarious pretreatment strategies for the lignocellulosic substrates for the generation of renewable and sustainable biofuels: A review. Renew. Energy 2020, 160, 1228–1252. [Google Scholar] [CrossRef]
- Mahmood, H.; Moniruzzaman, M.; Yusup, S.; Muhammad, N.; Iqbal, T.; Akil, H.M. Ionic liquids pretreatment for fabrication of agro-residue/thermoplastic starch based composites: A comparative study with other pretreatment technologies. J. Clean. Prod. 2017, 161, 257–266. [Google Scholar] [CrossRef]
- Kumar, A.K.; Sharma, S. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: A review. Bioresour. Bioprocess. 2017, 4, 7. [Google Scholar] [CrossRef] [PubMed]
- Ramos Maldonado, M.; Duarte Sepúlveda, T.; Gatica Neira, F.; Venegas-Vásconez, D. Machine learning para predecir la calidad del secado de chapas en la industria de tableros contrachapados de Pinus radiata. Maderas Cienc. Tecnol. 2024, 26, e4624. [Google Scholar] [CrossRef]
- Li, H.; Qu, Y.; Yang, Y.; Chang, S.; Xu, J. Microwave irradiation—A green and efficient way to pretreat biomass. Bioresour. Technol. 2016, 199, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Beig, B.; Riaz, M.; Raza Naqvi, S.; Hassan, M.; Zheng, Z.; Karimi, K.; Pugazhendhi, A.; Atabani, A.E.; Thuy Lan Chi, N. Current challenges and innovative developments in pretreatment of lignocellulosic residues for biofuel production: A review. Fuel 2021, 287, 119670. [Google Scholar] [CrossRef]
- Rezania, S.; Oryani, B.; Cho, J.; Talaiekhozani, A.; Sabbagh, F.; Hashemi, B.; Rupani, P.F.; Mohammadi, A.A. Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview. Energy 2020, 199, 117457. [Google Scholar] [CrossRef]
- Lynd, L.R.; Weimer, P.J.; Van Zyl, W.H.; Pretorius, I.S. Microbial Cellulose Utilization: Fundamentals and Biotechnology. Microbiol. Mol. Biol. Rev. 2002, 66, 739. [Google Scholar] [CrossRef]
- Ryu, H.W.; Kim, D.H.; Jae, J.; Lam, S.S.; Park, E.D.; Park, Y.-K. Recent advances in catalytic co-pyrolysis of biomass and plastic waste for the production of petroleum-like hydrocarbons. Bioresour. Technol. 2020, 310, 123473. [Google Scholar] [CrossRef]
- Mankar, A.R.; Pandey, A.; Modak, A.; Pant, K.K. Pretreatment of lignocellulosic biomass: A review on recent advances. Bioresour. Technol. 2021, 334, 125235. [Google Scholar] [CrossRef]
- Hu, Z.; Wen, Z. Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment. Biochem. Eng. J. 2008, 38, 369–378. [Google Scholar] [CrossRef]
- Budarin, V.L.; Clark, J.H.; Lanigan, B.A.; Shuttleworth, P.; Macquarrie, D.J. Microwave assisted decomposition of cellulose: A new thermochemical route for biomass exploitation. Bioresour. Technol. 2010, 101, 3776–3779. [Google Scholar] [CrossRef]
- Sólyom, K.; Mato, R.B.; Pérez-Elvira, S.I.; Cocero, M.J. The influence of the energy absorbed from microwave pretreatment on biogas production from secondary wastewater sludge. Bioresour. Technol. 2011, 102, 10849–10854. [Google Scholar] [CrossRef] [PubMed]
- Eskicioglu, C.; Terzian, N.; Kennedy, K.; Droste, R.; Hamoda, M. Athermal microwave effects for enhancing digestibility of waste activated sludge. Water Res. 2007, 41, 2457–2466. [Google Scholar] [CrossRef] [PubMed]
- Devi, A.; Singh, A.; Bajar, S.; Pant, D.; Din, Z.U. Ethanol from lignocellulosic biomass: An in-depth analysis of pre-treatment methods, fermentation approaches and detoxification processes. J. Environ. Chem. Eng. 2021, 9, 105798. [Google Scholar] [CrossRef]
- Haldar, D.; Purkait, M.K. A review on the environment-friendly emerging techniques for pretreatment of lignocellulosic biomass: Mechanistic insight and advancements. Chemosphere 2021, 264, 128523. [Google Scholar] [CrossRef] [PubMed]
- Shinoj, S.; Visvanathan, R.; Panigrahi, S.; Kochubabu, M. Oil palm fiber (OPF) and its composites: A review. Ind. Crops Prod. 2011, 33, 7–22. [Google Scholar] [CrossRef]
- Tsubaki, S.; Ozaki, Y.; Azuma, J. Microwave-Assisted Autohydrolysis of Prunus mume Stone for Extraction of Polysaccharides and Phenolic Compounds. J. Food Sci. 2010, 75, C152–C159. [Google Scholar] [CrossRef]
- Gabhane, J.; Prince William, S.P.M.; Vaidya, A.N.; Mahapatra, K.; Chakrabarti, T. Influence of heating source on the efficacy of lignocellulosic pretreatment—A cellulosic ethanol perspective. Biomass Bioenergy 2011, 35, 96–102. [Google Scholar] [CrossRef]
- Shi, J.; Pu, Y.; Yang, B.; Ragauskas, A.; Wyman, C.E. Comparison of microwaves to fluidized sand baths for heating tubular reactors for hydrothermal and dilute acid batch pretreatment of corn stover. Bioresour. Technol. 2011, 102, 5952–5961. [Google Scholar] [CrossRef]
- Dhua, S.; Mishra, P. Microwave drying: A novel technique in the sustainable development of corn starch-based aerogel and its comparison with traditional freeze dried aerogel. Colloids Surf. Physicochem. Eng. Asp. 2025, 720, 137135. [Google Scholar] [CrossRef]
- Zaker, A.; Chen, Z.; Wang, X.; Zhang, Q. Microwave-assisted pyrolysis of sewage sludge: A review. Fuel Process. Technol. 2019, 187, 84–104. [Google Scholar] [CrossRef]
- Prasiwi, A.D.; Trisunaryanti, W.; Triyono, T.; Falah, I.I.; Santi, D.; Marsuki, M.F. Synthesis of Mesoporous Carbon from Merbau Wood (Intsia spp.) by Microwave Method as Ni Catalyst Support for α-Cellulose Hydrocracking. Indones. J. Chem. 2019, 19, 575–582. [Google Scholar] [CrossRef]
- Anoopkumar, A.N.; Reshmy, R.; Aneesh, E.M.; Madhavan, A.; Kuriakose, L.L.; Awasthi, M.K.; Pandey, A.; Binod, P.; Sindhu, R. Progress and challenges of Microwave-assisted pretreatment of lignocellulosic biomass from circular bioeconomy perspectives. Bioresour. Technol. 2023, 369, 128459. [Google Scholar] [CrossRef] [PubMed]
- Mikulski, D.; Kłosowski, G. Delignification efficiency of various types of biomass using microwave-assisted hydrotropic pretreatment. Sci. Rep. 2022, 12, 4561. [Google Scholar] [CrossRef] [PubMed]
- Venegas-Vásconez, D.; Arteaga-Pérez, L.E.; Aguayo, M.G.; Romero-Carrillo, R.; Guerrero, V.H.; Tipanluisa-Sarchi, L.; Alejandro-Martín, S. Analytical Pyrolysis of Pinus radiata and Eucalyptus globulus: Effects of Microwave Pretreatment on Pyrolytic Vapours Composition. Polymers 2023, 15, 3790. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.-Y.; Zhang, N.; Jiang, J.-C. Effects of Microwave-Assisted Liquid Hot Water Pretreatment on Chemical Composition and Structure of Moso Bamboo. Front. Bioeng. Biotechnol. 2022, 9, 821982. [Google Scholar] [CrossRef]
- Lam, S.S.; Tabatabaei, M.; Yek, P.N.Y.; Cheng, W.Y.; Liew, R.K.; Aghbashlo, M. Production of biochar using sustainable microwave pyrolysis approach. In Biochar in Agriculture for Achieving Sustainable Development Goals; Academic Press: Cambridge, MA, USA, 2022; pp. 323–332. [Google Scholar]
- Masood, H.M.; Ashraf, J.; Shahzad, K.; Khan, R.U.; Imran, N.; Zafar, Z. Recent advancements, challenges in recycling of waste plastic using microwave assisted catalytic co-pyrolysis of biomass and waste plastic for production of value added chemicals: A review. J. Therm. Eng. 2025, 11, 1176–1192. [Google Scholar] [CrossRef]
- Mohamad Aziz, N.A.; Mohamed, H.; Kania, D.; Ong, H.C.; Zainal, B.S.; Junoh, H.; Ker, P.J.; Silitonga, A.S. Bioenergy production by integrated microwave-assisted torrefaction and pyrolysis. Renew. Sustain. Energy Rev. 2024, 191, 114097. [Google Scholar] [CrossRef]
- Chowdhury, S.; Khatun, H.; Kumar, N.; Singh, N.K.; Bera, A. Design of Applicators (2.45 GHz) for Efficient Microwave Assisted Pyrolysis (MAP) of Waste Material. In Proceedings of the National Conference on Emerging Trends in Vacuum Electronic Devices and Applications, Pilani, India, 18–20 November 2024; Springer: Singapore, 2025; pp. 204–209. [Google Scholar]
- Bu, Q.; Morgan, H.M.; Liang, J.; Lei, H.; Ruan, R. Catalytic Microwave Pyrolysis of Lignocellulosic Biomass for Fuels and Chemicals. In Advances in Bioenergy; Elsevier: Amsterdam, The Netherlands, 2016; pp. 69–123. [Google Scholar]
- Yadav, P.; Mundada, G.; Biswas, B.; Srivastava, V.; Singh, R.; Krishna, B.B.; Kumar, J.; Bhaskar, T. Microwave-Assisted Pyrolysis of Biomass for Liquid Biofuels Production. Bioresour. Technol. 2012, 120, 273–284. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, D.; Sun, X.; Zhu, X.; Yan, B.; Chen, G. Different pretreatment of biomass for gasification: A critical review. J. Energy Inst. 2025, 119, 101992. [Google Scholar] [CrossRef]
- Ganesapillai, M.; Manara, P.; Zabaniotou, A. Effect of microwave pretreatment on pyrolysis of crude glycerol-olive kernel alternative fuels. Energy Convers. Manag. 2016, 110, 287–295. [Google Scholar] [CrossRef]
- Feng, Y.; Li, G.; Li, X.; Zhu, N.; Xiao, B.; Li, J.; Wang, Y. Enhancement of biomass conversion in catalytic fast pyrolysis by microwave-assisted formic acid pretreatment. Bioresour. Technol. 2016, 214, 520–527. [Google Scholar] [CrossRef] [PubMed]
- Valdmanis, R.; Zake, M. Selective Microwave Pretreatment of Biomass Mixtures for Sustainable Energy Production. Energies 2025, 18, 3677. [Google Scholar] [CrossRef]
- Fodah, A.E.M.; Abdelwahab, T.A.M. Process optimization and technoeconomic environmental assessment of biofuel produced by solar powered microwave pyrolysis. Sci. Rep. 2022, 12, 12572. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.I.; Farghali, M.; Ihara, I.; Elgarahy, A.M.; Ayyad, A.; Mehta, N.; Ng, K.H.; Abd El-Monaem, E.M.; Eltaweil, A.S.; Hosny, M.; et al. Materials, fuels, upgrading, economy, and life cycle assessment of the pyrolysis of algal and lignocellulosic biomass: A review. Environ. Chem. Lett. 2023, 21, 1419–1476. [Google Scholar] [CrossRef]
- Ethaib, S. Microwave-assisted pretreatment for lignocellulosic biomass energy conversion path. Bioresour. Technol. Rep. 2024, 28, 102006. [Google Scholar] [CrossRef]
- Li, S.; Li, C.; Shao, Z. Microwave pyrolysis of sludge: A review. Sustain. Environ. Res. 2022, 32, 23. [Google Scholar] [CrossRef]
- Chen, C.; Bu, X.; Huang, H.; Huang, D.; Huang, Y. Thermal Decomposition and Kinetics Analysis of Microwave Pyrolysis of Dunaliella salina Using Composite Additives. BioEnergy Res. 2020, 13, 1205–1220. [Google Scholar] [CrossRef]
- Amer, M.; Nour, M.; Ahmed, M.; El-Sharkawy, I.; Ookawara, S.; Nada, S.; Elwardany, A. Kinetics and physical analyses for pyrolyzed Egyptian agricultural and woody biomasses: Effect of microwave drying. Biomass Convers. Biorefining 2021, 11, 2855–2868. [Google Scholar] [CrossRef]
- Liang, J.; Yu, Z.; Chen, L.; Fang, S.; Ma, X. Microwave pretreatment power and duration time effects on the catalytic pyrolysis behaviors and kinetics of water hyacinth. Bioresour. Technol. 2019, 286, 121369. [Google Scholar] [CrossRef]
- Kaur, K.; Phutela, U.G. Enhancement of paddy straw digestibility and biogas production by sodium hydroxide-microwave pretreatment. Renew. Energy 2016, 92, 178–184. [Google Scholar] [CrossRef]
- Zheng, A.; Zhao, Z.; Huang, Z.; Zhao, K.; Wei, G.; Jiang, L.; Wang, X.; He, F.; Li, H. Overcoming biomass recalcitrance for enhancing sugar production from fast pyrolysis of biomass by microwave pretreatment in glycerol. Green Chem. 2015, 17, 1167–1175. [Google Scholar] [CrossRef]
- Keshwani, D.R.; Cheng, J.J. Microwave-based alkali pretreatment of switchgrass and coastal bermudagrass for bioethanol production. Biotechnol. Prog. 2010, 26, 644–652. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Wu, Y.; Zhao, Y.; Tu, S.; Xue, Y.; Yu, Z.; Zhang, X. Fed-Batch simultaneous saccharification and fermentation of microwave/acid/alkali pretreated rice straw for production of ethanol. Chem. Eng. Commun. 2006, 193, 639–648. [Google Scholar]
- Nair, L.G.; Agrawal, K.; Verma, P. Organosolv pretreatment: An in-depth purview of mechanics of the system. Bioresour. Bioprocess. 2023, 10, 50. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, N.; Goyal, D.; Goyal, A. Characterization of microwave-alkali-acid pre-treated rice straw for optimization of ethanol production via simultaneous saccharification and fermentation (SSF). Energy Convers. Manag. 2017, 141, 133–144. [Google Scholar] [CrossRef]
- Marx, S.; Ndaba, B.; Chiyanzu, I.; Schabort, C. Fuel ethanol production from sweet sorghum bagasse using microwave irradiation. Biomass Bioenergy 2014, 65, 145–150. [Google Scholar] [CrossRef]
- Alio, M.A.; Tugui, O.-C.; Vial, C.; Pons, A. Microwave-assisted Organosolv pretreatment of a sawmill mixed feedstock for bioethanol production in a wood biorefinery. Bioresour. Technol. 2019, 276, 170–176. [Google Scholar] [CrossRef]
- Torrado, I.; Neves, B.G.; Da Conceição Fernandes, M.; Carvalheiro, F.; Pereira, H.; Duarte, L.C. Microwave-assisted hydrothermal processing of pine nut shells for oligosaccharide production. Biomass Convers. Biorefining 2024, 14, 20751–20760. [Google Scholar] [CrossRef]
- Dai, L.; He, C.; Wang, Y.; Liu, Y.; Yu, Z.; Zhou, Y.; Fan, L.; Duan, D.; Ruan, R. Comparative study on microwave and conventional hydrothermal pretreatment of bamboo sawdust: Hydrochar properties and its pyrolysis behaviors. Energy Convers. Manag. 2017, 146, 1–7. [Google Scholar] [CrossRef]
- Kunaver, M.; Jasiukaitytė, E.; Čuk, N. Ultrasonically assisted liquefaction of lignocellulosic materials. Bioresour. Technol. 2012, 103, 360–366. [Google Scholar] [CrossRef]
- Alagöz, B.A.; Yenigün, O.; Erdinçler, A. Ultrasound assisted biogas production from co-digestion of wastewater sludges and agricultural wastes: Comparison with microwave pre-treatment. Ultrason. Sonochem. 2018, 40, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Darji, D.; Alias, Y.; Mohd Som, F.; Abd Razak, N.H. Microwave heating and hydrolysis of rubber wood biomass in ionic liquids. J. Chem. Technol. Biotechnol. 2015, 90, 2050–2056. [Google Scholar] [CrossRef]
- Chen, W.-H.; Escalante, J.J.; Ocreto, J.B.; Saravanakumar, A.; Goodarz, V. Ferric chloride-driven microwave-assisted hydrothermal pretreatment for boosting macroalgal sugar recovery and solubilization. Biomass Bioenergy 2025, 200, 108035. [Google Scholar] [CrossRef]
- Mane, S.; Singh, A.; Taneja, N.K. Pretreatment optimization for microalgae oil yield enhancement and residual biomass characterization for sustainable biofuel feedstock production. Biomass Convers. Biorefining 2025, 15, 9859–9874. [Google Scholar] [CrossRef]
- Li, F.; Li, Y.; Lin, R.; Sun, D.; Zhang, H. A comparative thermodynamic assessment of microwave-assisted and conventional pyrolysis of biomass in poly-generation systems using coupled numerical and process simulations. Energy Convers. Manag. 2024, 319, 118965. [Google Scholar] [CrossRef]
- Wei, H.; Dong, K.; Men, X.; Guo, F.; Sun, Z.; Kong, L.; Zhao, N.; Wang, Y.; Bai, Y. Microwave-induced biomass pyrolysis coupled with hydrothermal char composites catalysis to selectively prepare phenols-rich liquid products. Fuel 2024, 363, 130872. [Google Scholar] [CrossRef]
- Lin, Y.; Yu, G.; Liang, R.; Kong, F.; Song, D. Converting Tobacco Stalk Wastes into Value-Added Products via Sequential Hydrothermal and Pyrolysis Treatments. Agronomy 2024, 14, 801. [Google Scholar] [CrossRef]
- Long, Y.; Xiao, L.; Zhou, D.; Meng, Y.; Wang, L.; Shen, D. Promising valorisation method of chitin biomass by producing 5-hydroxymethylfurfural using microwave hydrothermal treatment. Environ. Technol. 2024, 45, 4576–4584. [Google Scholar] [CrossRef]
- Sun, J.; Tao, J.; Huang, H.; Ma, R.; Sun, S. Promotion of bio-oil production from the microwave pyrolysis of cow dung using pretreated red mud as a bifunctional additive: Parameter optimization, energy efficiency evaluation, and mechanism analysis. Environ. Res. 2023, 236, 116806. [Google Scholar] [CrossRef]
- de Lima Ferreira, I.M.; de Araújo, N.K.C.; de Melo Queiroz, G.S.; de Medeiros Batista, A.C.; de Melo Viana, G.A.C.; de Carvalho Galvão, L.P.F.; de Morais Araujo, A.M.; Gondim, A.D. Study of thermal decomposition of microalgae biomass pretreated by acetylation for biofuel production. J. Therm. Anal. Calorim. 2023, 148, 11825–11833. [Google Scholar] [CrossRef]
- Li, C.; Li, B.; Gao, G.; Zhang, L.; Zhang, S.; Zhang, L.; Xiang, J.; Hu, S.; Wang, Y.; Hu, X. Thermal pretreatment of poplar sawdust at 100 °C in water or with microwave heating impacts the pyrolysis behaviors. J. Ind. Eng. Chem. 2023, 125, 189–199. [Google Scholar] [CrossRef]
- Sun, J.; Tao, J.; Ma, R.; Lin, J.; Luo, J.; Sun, S.; Ma, N. Synergistic optimization of bio–oil quality and heavy metal solidification during microwave co–pyrolysis of cow dung and red mud. Chemosphere 2023, 336, 139187. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Bai, J.; Wei, Y.; Chen, W.; Li, L.; Huang, G.; Li, P.; Chang, C. Effects of drying pretreatment on microwave pyrolysis characteristics of tobacco stems. Biomass Convers. Biorefining 2023, 13, 11521–11531. [Google Scholar] [CrossRef]
- Chen, B.; Gu, Z.; Wu, M.; Ma, Z.; Lim, H.R.; Khoo, K.S.; Show, P.L. Advancement pathway of biochar resources from macroalgae biomass: A review. Biomass Bioenergy 2022, 167, 106650. [Google Scholar] [CrossRef]
- Potnuri, R.; Suriapparao, D.V.; Rao, C.S.; Sridevi, V.; Kumar, A. Effect of dry torrefaction pretreatment of the microwave-assisted catalytic pyrolysis of biomass using the machine learning approach. Renew. Energy 2022, 197, 798–809. [Google Scholar] [CrossRef]
- Ao, W.; Cheng, L.; Zhang, X.; Fu, J.; Liu, Y.; Dai, J.; Bi, X. One-step preparation of char-supported iron nanocatalysts under microwave irradiation and their application for tar removal. J. Anal. Appl. Pyrolysis 2022, 165, 105564. [Google Scholar] [CrossRef]
- Xie, X.; Peng, C.; Song, X.; Peng, N.; Gai, C. Pyrolysis kinetics of the hydrothermal carbons derived from microwave-assisted hydrothermal carbonization of food waste digestate. Energy 2022, 245, 123269. [Google Scholar] [CrossRef]
- Jing, Y.; Li, F.; Li, Y.; Jiang, D.; Lu, C.; Zhang, Z.; Zhang, Q. Biohydrogen production by deep eutectic solvent delignification-driven enzymatic hydrolysis and photo-fermentation: Effect of liquid–solid ratio. Bioresour. Technol. 2022, 349, 126867. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, F.; Chen, F.; Zhang, Y.; Wu, Y.; Jiang, L. Dual Utilization of Lignocellulose Biomass and Glycerol Waste to Produce Fermentable Levoglucosan via Fast Pyrolysis. Front. Chem. 2022, 10, 847767. [Google Scholar] [CrossRef]
- Maliutina, K.; Huang, J.; Su, T.; Yu, J.; Fan, L. Biomass-derived Ta,N,S co-doped CNTs enriched carbon catalyst for efficient electrochemical oxygen reduction. J. Alloys Compd. 2021, 888, 161479. [Google Scholar] [CrossRef]
- Álvarez-Chávez, B.J.; Godbout, S.; Raghavan, V. Optimization of microwave-assisted hydrothermal pretreatment and its effect on pyrolytic oil quality obtained by an auger reactor. Biofuel Res. J. 2021, 8, 1316–1329. [Google Scholar] [CrossRef]
- Maliutina, K.; He, C.; Huang, J.; Yu, J.; Li, F.; He, C.; Fan, L. Structural and electronic engineering of biomass-derived carbon nanosheet composite for electrochemical oxygen reduction. Sustain. Energy Fuels 2021, 5, 2114–2126. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Q.; Yang, X.; Xia, S.; Zheng, A.; Zeng, K.; Zhao, Z.; Li, H.; Sobek, S.; Werle, S. Comparative assessment of pretreatment options for biomass pyrolysis: Linking biomass compositions to resulting pyrolysis behaviors, kinetics, and product yields. Energy Fuels 2021, 35, 3186–3196. [Google Scholar] [CrossRef]
- Trubetskaya, A.; Hunt, A.J.; Budarin, V.L.; Attard, T.M.; Kling, J.; Surup, G.R.; Arshadi, M.; Umeki, K. Supercritical extraction and microwave activation of wood wastes for enhanced syngas production and generation of fullerene-like soot particles. Fuel Process. Technol. 2021, 212, 106633. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, Z.; Lu, X.; Ma, X. Catalytic co-pyrolysis of microwave pretreated chili straw and polypropylene to produce hydrocarbons-rich bio-oil. Bioresour. Technol. 2021, 319, 124191. [Google Scholar] [CrossRef]
Conventional Heating | Microwave Heating |
---|---|
Energy transfer | Energy conversion |
Surface heating by conduction, convection, and radiation | Volumetric and uniform core heating at the molecular level |
Absence of hot spots | Presence of hot spots |
Slow, inefficient, and limited | Fast and efficient |
Lower electricity-to-heat conversion efficiency | Higher electricity-to-heat conversion efficiency |
Non-selective | Selective |
Limited dependence on material properties | Strong dependence on material properties |
Limited heating controllability | Precise and controllable heating |
Limited process flexibility | High process flexibility |
Bulky and less portable equipment | Portable equipment |
Polluting process | Cleaner and less polluting process |
Higher thermal inertia | Lower thermal inertia |
Environmental/Sustainability Advantage | Why It Helps (Mechanism) | Ref. |
---|---|---|
Lower process energy via rapid, volumetric heating | Microwaves couple directly with dipoles/ions, cutting heat-up times and thermal losses vs. convective heating. | [60] |
Less pre-drying/size-reduction energy | MAP tolerates higher moisture and larger particle sizes, avoiding energy-intensive drying and fine milling. | [58] |
Integration of renewables | Microwaves are inherently electric—easy coupling to PV/wind or hybrid systems | [104] |
Improved product selectivity → lower downstream upgrading burden | Selective, in-core heating and catalyst/absorber synergy yield higher-quality, lower-oxygen bio-oil, reducing hydrotreating severity and associated emissions. | [105] |
Potential life-cycle GHG reduction (with biochar co-product) | Biochar/activated carbon from MAP can act as carbon sequestration; MAP systems can be designed for distributed conversion to cut transport emissions. | [106] |
Reduced reagent intensity when paired with tunable pretreatments | MAP enhances physicochemical pretreatments (acid/alkali/organosolv/hydrothermal), enabling milder conditions or shorter times for delignification/demineralization. | [60,107] |
Lower emissions from process intensification | Compact reactors, rapid start/stop, and targeted heating minimize off-gas/cooling loads relative to large, thermally massive units. | [58] |
Valorization of wet/heterogeneous wastes | MAP handles moist, variable feedstocks (sludge, residues), enabling diversion from landfilling and fossil displacement. | [108] |
Scalable routes to higher-surface-area biochar (adsorbents/soil) | Faster heating and localized hotspots can yield chars with higher surface area, supporting soil health, pollutant capture, and circular uses. | [105] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venegas-Vásconez, D.; Orejuela-Escobar, L.M.; Villasana, Y.; Salgado, A.; Tipanluisa-Sarchi, L.; Romero-Carrillo, R.; Alejandro-Martín, S. Microwave Pretreatment for Biomass Pyrolysis: A Systematic Review on Efficiency and Environmental Aspects. Processes 2025, 13, 3194. https://doi.org/10.3390/pr13103194
Venegas-Vásconez D, Orejuela-Escobar LM, Villasana Y, Salgado A, Tipanluisa-Sarchi L, Romero-Carrillo R, Alejandro-Martín S. Microwave Pretreatment for Biomass Pyrolysis: A Systematic Review on Efficiency and Environmental Aspects. Processes. 2025; 13(10):3194. https://doi.org/10.3390/pr13103194
Chicago/Turabian StyleVenegas-Vásconez, Diego, Lourdes M. Orejuela-Escobar, Yanet Villasana, Andrea Salgado, Luis Tipanluisa-Sarchi, Romina Romero-Carrillo, and Serguei Alejandro-Martín. 2025. "Microwave Pretreatment for Biomass Pyrolysis: A Systematic Review on Efficiency and Environmental Aspects" Processes 13, no. 10: 3194. https://doi.org/10.3390/pr13103194
APA StyleVenegas-Vásconez, D., Orejuela-Escobar, L. M., Villasana, Y., Salgado, A., Tipanluisa-Sarchi, L., Romero-Carrillo, R., & Alejandro-Martín, S. (2025). Microwave Pretreatment for Biomass Pyrolysis: A Systematic Review on Efficiency and Environmental Aspects. Processes, 13(10), 3194. https://doi.org/10.3390/pr13103194