Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (665)

Search Parameters:
Keywords = biocontrol strategies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 605 KB  
Review
Xanthomonas spp.: Devastating Plant Pathogens and Sustainable Management Strategies
by Kamran Shah, Yanbing Guo, Muhammad Adnan and Hongzhi Wu
Pathogens 2026, 15(2), 175; https://doi.org/10.3390/pathogens15020175 - 5 Feb 2026
Abstract
The genus Xanthomonas comprises devastating plant pathogens responsible for significant yield losses in globally critical crops such as rice (Oryza sativa L.), citrus (Citrus L. spp.), cassava (Manihot esculenta Crantz), and tomato (Solanum lycopersicum L.). This review synthesizes current [...] Read more.
The genus Xanthomonas comprises devastating plant pathogens responsible for significant yield losses in globally critical crops such as rice (Oryza sativa L.), citrus (Citrus L. spp.), cassava (Manihot esculenta Crantz), and tomato (Solanum lycopersicum L.). This review synthesizes current knowledge on the molecular mechanisms driving Xanthomonas pathogenicity, including the type III secretion system (T3SS) that translocates effector proteins, transcription activator-like effectors (TALEs) that reprogram host transcription, and extracellular polysaccharides (EPS) that promote biofilm formation and immune evasion, which collectively enable host colonization, immune suppression, and disease progression. Rapid adaptation through genomic plasticity and horizontal gene transfer (HGT) exacerbates challenges in disease management by facilitating evasion of host defenses and environmental stressors. Economically, Xanthomonas spp. inflict billions in annual losses through crop damage, trade restrictions, and eradication efforts, disproportionately affecting resource-limited regions. Emerging antibiotic resistance and climate-driven shifts in pathogen distribution further threaten food security. Sustainable strategies, such as CRISPR-based genome editing to disrupt susceptibility genes, biocontrol agents (e.g., Bacillus and Pseudomonas spp.), and nanotechnology-driven antimicrobials offer promising alternatives to conventional copper-based and chemical controls. This review underscores the urgent need for integrated, climate-resilient management approaches to mitigate the ecological and socioeconomic impacts of Xanthomonas diseases, bridging genomic insights with innovative control measures, to address escalating threats posed by these pathogens in a changing global climate. Full article
(This article belongs to the Section Bacterial Pathogens)
23 pages, 975 KB  
Article
Grape-Associated Yeasts as Promising Antagonists Against Fungal Pathogens
by Tamar Maghradze, Alessandra Di Canito, Carmen Cris De Oliveira Nobre Bezerra, Mathabatha Evodia Setati, Roberto Carmine Foschino, Daniela Fracassetti and Ileana Vigentini
Microbiol. Res. 2026, 17(2), 32; https://doi.org/10.3390/microbiolres17020032 - 2 Feb 2026
Viewed by 62
Abstract
Biocontrol, a practice for using living organisms to target plant pathogens, offers a promising, sustainable agricultural strategy. This study involves epiphytic yeasts isolated from Vitis vinifera ssp. sylvestris and ssp. vinifera as natural antagonists against Aspergillus carbonarius, Botrytis cinerea, and Penicillium [...] Read more.
Biocontrol, a practice for using living organisms to target plant pathogens, offers a promising, sustainable agricultural strategy. This study involves epiphytic yeasts isolated from Vitis vinifera ssp. sylvestris and ssp. vinifera as natural antagonists against Aspergillus carbonarius, Botrytis cinerea, and Penicillium expansum. Twenty-one of 37 yeasts were chosen based on the Pathology Intensity (PA) score during preliminary in vivo screening. Following identification, dual-culture assays, VOC production, copper tolerance, and commercial fungicide resistance were assessed. On YPD and GJ medium, Saccharomyces isolates were the strongest antagonists, whereas P. terricola UMY197 inhibited Penicillium and Aspergillus. H. uvarum UMY1473 was notably effective against B. cinerea. VOC analysis confirmed that S. cerevisiae UMY1430 was the most effective against Aspergillus, likely owing to its production of oxalic acid, while S. cerevisiae UMY1438 was a producer of various esters and phenylethyl alcohol. C. intermedia UMY189, M. pulcherrima UMY1472, H. uvarum UMY1473, and S. cerevisiae UMY1436 were the most copper-resistant. Yeast activity on chemical fungicide SWITCH (up to 1 g/L) depended on culture media usage; in fact, a higher viability on YPD than on GJ was observed, where only 4 yeasts were able to grow. Thus, since several yeasts exhibit promising inhibitory activity through various mechanisms and against different molds, the use of synthetic consortia could represent a powerful and essential tool in field trials to limit fungicide use while preventing the emergence of resistance. Full article
(This article belongs to the Special Issue Advances in Plant–Pathogen Interactions)
26 pages, 2617 KB  
Review
Beyond Antibiotics: Therapeutic Strategies Utilizing Probiotics and Bacteriophages Against Drug-Resistant Staphylococcus aureus
by Miao Zhao, Dongli Rong, Ling Chen, Shuzhen Cai, Yongcheng Lu, Jingsha Dai, Youxiong Zhang, Xianhu Wei, Xiaojuan Yang and Qingping Wu
Microorganisms 2026, 14(2), 344; https://doi.org/10.3390/microorganisms14020344 - 2 Feb 2026
Viewed by 195
Abstract
Staphylococcus aureus, as a critical zoonotic and foodborne pathogen, not only triggers public health threats such as food poisoning but also acts as a leading cause of diverse clinical infections, including skin infections, pneumonia, and endocarditis. Confronted with the growing crisis of [...] Read more.
Staphylococcus aureus, as a critical zoonotic and foodborne pathogen, not only triggers public health threats such as food poisoning but also acts as a leading cause of diverse clinical infections, including skin infections, pneumonia, and endocarditis. Confronted with the growing crisis of multidrug resistance in S. aureus, both phage therapy and probiotic therapy have emerged as promising alternative biological strategies; however, the current literature predominantly examines them in isolation. This review therefore aims to delineate the contemporary therapeutic challenges of drug-resistant S. aureus and to systematically compare the mechanisms and clinical translation of phages and probiotics within an integrated analytical framework. We first outline the current therapy landscape, then present side by side the molecular inhibitory mechanisms and clinical progress of both approaches, followed by a comparative analysis of their antibacterial mechanisms, clinical efficacy, and industrial challenges. Through this consolidated perspective, the review not only clarifies the distinct strengths and limitations of each strategy but also seeks to provide researchers and clinicians with a comprehensive mechanistic and evidence-based reference for developing novel antibacterial technologies and designing innovative therapeutic regimens. Ultimately, it highlights potential synergies between phages and probiotics, offering a forward-looking roadmap to overcome S. aureus resistance and advance personalized combinatorial therapies. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

18 pages, 2935 KB  
Article
Bacillus velezensis Enhances Rice Resistance to Brown Spot by Integrating Antifungal and Growth Promotion Functions
by Elizabeth B. E. Pires, Maira S. Tique Obando, Luis Janssen, Bergmann M. Ribeiro, Odaiza F. Souza, Marcelo L. Dias, Luís O. Viteri Jumbo, Rodrigo R. Fidelis, Gil R. Santos, Raimundo N. C. Rocha, Guy Smagghe, Tito Bacca, Eugenio E. Oliveira, Rudolf Haumann and Raimundo W. S. Aguiar
Int. J. Mol. Sci. 2026, 27(3), 1455; https://doi.org/10.3390/ijms27031455 - 1 Feb 2026
Viewed by 183
Abstract
Brown spot, caused by the seedborne fungus Bipolaris oryzae, remains a major constraint in rice production. Here, we used in vitro and in vivo assays to evaluate the biocontrol potential of three Bacillus strains (Ba. cereus OQ725688.1, Ba. velezensis OP938696.1, and [...] Read more.
Brown spot, caused by the seedborne fungus Bipolaris oryzae, remains a major constraint in rice production. Here, we used in vitro and in vivo assays to evaluate the biocontrol potential of three Bacillus strains (Ba. cereus OQ725688.1, Ba. velezensis OP938696.1, and Ba. subtilis OP937353.1) against Bi. oryzae in two rice cultivars (“Rubelita” and “Predileta”). Ba. cereus showed the highest in vitro mycelial inhibition (≈95%), whereas Ba. velezensis was the most effective under greenhouse conditions, reducing disease severity by up to 60% and increasing seedling vigor by 51% compared with infected controls. “Predileta” showed the strongest response to bacterial treatment, maintaining severity scores below 2 even under high inoculum pressure. Functional assays confirmed that all strains displayed amylolytic, catalase, and phosphate-solubilizing activities, with Ba. velezensis uniquely expressing strong cellulase and protease activities. Genome analysis of Ba. velezensis OP938696.1 revealed multiple biosynthetic gene clusters for antifungal polyketides and lipopeptides. These integrated biochemical and genomic traits demonstrate the novelty and potential of this Neotropical strain as a multifunctional agent capable of suppressing Bi. oryzae while enhancing rice seedling performance. Incorporating such a native strain into seed and soil management offers a sustainable strategy for rice protection in Neotropical systems. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

14 pages, 4184 KB  
Article
Antimicrobial Activity of LysX and LysP Endolysins Against Pseudomonas syringae pv. syringae and Xanthomonas arboricola pv. juglandis
by Belén Díaz, Pamela Córdova, Alan Zamorano, Melisa Alegría-Arcos, Carlos J. Blondel, Camila Gamboa, Nicola Fiore, Nicolás Tobar, Carolina Ilabaca-Díaz, Assunta Bertaccini and Gastón Higuera
Plants 2026, 15(3), 431; https://doi.org/10.3390/plants15030431 - 30 Jan 2026
Viewed by 123
Abstract
Pseudomonas syringae pv. syringae and Xanthomonas arboricola pv. juglandis are the causal agents of bacterial canker in cherry and walnut blight, respectively, which cause significant production losses worldwide. These diseases have traditionally been controlled by copper-based agrochemicals and, more recently, antibiotics. However, the [...] Read more.
Pseudomonas syringae pv. syringae and Xanthomonas arboricola pv. juglandis are the causal agents of bacterial canker in cherry and walnut blight, respectively, which cause significant production losses worldwide. These diseases have traditionally been controlled by copper-based agrochemicals and, more recently, antibiotics. However, the prolonged use of these compounds has led to the emergence of resistant bacterial strains. The search for new, efficient, and environmentally friendly biocontrol alternatives has intensified. Phages are promising candidates due to their ability to specifically infect and lyse bacterial pathogens. Endolysin enzymes are responsible for bacterial cell wall degradation, and although they have been extensively studied in medical and veterinary contexts, their application in agriculture remains limited. In this study, 17 putative endolysins were identified from bacteriophages infecting X. arboricola pv. juglandis and P. syringae pv. syringae. Based on conserved domain analyses, 12 were classified as glycosidases, four as amidases, and one as an endopeptidase. From these, a recombinant amidase (LysP) and a recombinant glycosidase (LysX) were expressed in E. coli, purified, and evaluated as pure enzymes. Both endolysins exhibited significant antimicrobial activity, reducing P. syringae pv. syringae viability by 62–78.3% and X. arboricola pv. juglandis viability by 51.5–53.1%, respectively. These findings highlight these recombinant endolysins as promising candidates for the development of biocontrol strategies against bacterial plant pathogens. Full article
Show Figures

Figure 1

20 pages, 696 KB  
Article
Functional Profiling of Kiwifruit Phyllosphere Bacteria: Copper Resistance and Biocontrol Potential as a Foundation for Microbiome-Informed Strategies
by Vinicius Casais, Joana Pereira, Eva Garcia, Catarina Coelho, Daniela Figueira, Aitana Ares, Igor Tiago and Joana Costa
Microorganisms 2026, 14(2), 321; https://doi.org/10.3390/microorganisms14020321 - 29 Jan 2026
Viewed by 252
Abstract
Bacterial canker, caused by Pseudomonas syringae pv. actinidiae (Psa) is a major threat to global kiwifruit production. Copper-based bactericides remain widely used, but increasing resistance highlights the urgency of developing sustainable alternatives. Understanding the functional capabilities of phyllosphere bacteria under copper pressure is [...] Read more.
Bacterial canker, caused by Pseudomonas syringae pv. actinidiae (Psa) is a major threat to global kiwifruit production. Copper-based bactericides remain widely used, but increasing resistance highlights the urgency of developing sustainable alternatives. Understanding the functional capabilities of phyllosphere bacteria under copper pressure is critical for designing microbiome-informed management strategies. This study provides a culture-based functional inventory of bacteria associated with Actinidia chinensis var. deliciosa leaves from Portuguese orchards under long-term copper management, aiming to identify native taxa with traits relevant to plant health and resilience. A total of 1058 isolates were recovered and grouped into 261 Random Amplification of Polymorphic DNA (RAPD) clusters, representing 58 species across 29 genera. Representative strains were screened for Plant Growth-Promoting (PGP) traits (Indole-3-acetic acid (IAA), siderophore production, phosphate solubilization, ammonia production), copper tolerance, and in vitro antagonism against Psa. Copper resistance was widespread (53.3% of isolates with MIC ≥ 0.8 mM), including the first evidence of a highly copper-resistant PSA strain in Portuguese kiwifruit orchards and an exceptionally resistant non-pathogenic strain closely related to Erwinia iniecta (MIC 2.8 mM). A subset of 25 isolates combined all four PGP traits, and several also exhibited antagonism against Psa in vitro, among them Bacillus pumilus consistently supressed pathogen growth. Notably, antagonistic and multifunctional traits co-occurred in some isolates, highlighting promising candidates for integrated biocontrol strategies. Overall, the findings reveal a functionally diverse and copper-resilient collection of cultured bacteria, offering both challenges and opportunities for microbiome-based disease management. This work establishes a robust functional basis for subsequent in planta validation and the development of sustainable, microbiome-informed approaches for Psa control. Full article
Show Figures

Figure 1

16 pages, 5750 KB  
Article
Comparative Analysis of Photorhabdus luminescens Strains for Biological Control of Tetranychus truncatus: Novel Insights from Strain 2103-RUVI
by Li-Hsin Wu, Kuan-Min Yang, Xin-Ci Hong, Feng-Chia Hsieh and Chienyan Hsieh
Agriculture 2026, 16(3), 327; https://doi.org/10.3390/agriculture16030327 - 28 Jan 2026
Viewed by 131
Abstract
The increasing resistance of agricultural pests to conventional pesticides necessitates the development of alternative biological control strategies. This study evaluated the acaricidal potential of two Photorhabdus luminescens strains (0805-P2R and the newly isolated 2103-RUVI) against the spider mite Tetranychus truncatus. Culture conditions [...] Read more.
The increasing resistance of agricultural pests to conventional pesticides necessitates the development of alternative biological control strategies. This study evaluated the acaricidal potential of two Photorhabdus luminescens strains (0805-P2R and the newly isolated 2103-RUVI) against the spider mite Tetranychus truncatus. Culture conditions were optimized using a Taguchi L9(34) design to maximize growth, protease activity, and acaricidal efficacy. The optimized medium for strain 2103-RUVI achieved 90% mortality against T. truncatus at 72 h, compared to 83% for strain 0805-P2R under equivalent conditions. Genomic analysis identified putative phosphoporin PhoE genes exclusively in 2103-RUVI, which may contribute to its enhanced virulence, although this association remains correlative and requires functional validation. Histopathological observations confirmed severe tissue disruption in treated mites. Comparative analysis demonstrated complex, strain-specific relationships among bacterial growth, enzyme activity, and acaricidal effects. These results highlight the potential of the P. luminescens strain 2103-RUVI as an effective biocontrol agent, providing insights for its application in sustainable integrated pest management programs. Full article
(This article belongs to the Special Issue Biocontrol Agents for Plant Pest Management)
Show Figures

Figure 1

17 pages, 1910 KB  
Article
Identification of the Chestnut Endophyte Trichoderma nordicum FPYF2509 and the Antifungal Potential of Interaction-Induced Myrtenol Against Fruit Rot
by Yanqing Wang, Jianhua Feng, Weidong Chang, Fei Ren, Guiming Dou, Ziye Wang, Lingyu Liang and Dong-Hui Yan
Horticulturae 2026, 12(2), 140; https://doi.org/10.3390/horticulturae12020140 - 27 Jan 2026
Viewed by 151
Abstract
This study aimed to develop biofumigation strategies against chestnut fruit rot caused by Botryosphaeria dothidea. An endophytic strain, FPYF2509, was isolated from Castanea mollissima fruit and identified as Trichoderma nordicum using morphological and phylogenetic (tef1, rpb2) analyses. Antifungal volatile [...] Read more.
This study aimed to develop biofumigation strategies against chestnut fruit rot caused by Botryosphaeria dothidea. An endophytic strain, FPYF2509, was isolated from Castanea mollissima fruit and identified as Trichoderma nordicum using morphological and phylogenetic (tef1, rpb2) analyses. Antifungal volatile organic compounds (VOCs) were analyzed using headspace solid-phase microextraction and gas chromatography–mass spectrometry during dual-culture interactions with pathogens. The volatiles from the interaction exhibited to inhibit pathogen growth. Particularly an induced myrtenol, demonstrated strongly biofumigation activity in vitro, with a lowest observed effect concentration of 0.02 µL/mL, minimum inhibitory concentration and a minimum fungicidal concentration of 0.2 µL/mL against B. dothidea. In vivo, fumigation with 0.2 µL/mL myrtenol significantly reduced disease incidence from 83.3% to 17.39%, achieving a 79.1% control efficacy. This work presents endophytic T. nordicum FPYF2509 as a promising biocontrol agent and identifies myrtenol, of fungal interaction origin, as a novel and effective mycofumigant for postharvest disease management. Full article
(This article belongs to the Special Issue 10th Anniversary of Horticulturae—Recent Outcomes and Perspectives)
Show Figures

Figure 1

14 pages, 3902 KB  
Article
Ascomycetous Endophytic Fungi Drive Root Fungal Community Assembly in Wheat Under Moderate Drought
by Zixuan Yao, Yadi Chen, Guanqun Wang, Yonghui Hong, Shuqiu Jiang, Xuhang Jiang, Fanyu Zhao, Chen Zhou, Yuxiang Zhou, Hening Tang, Min Zhu, Jinfeng Ding, Chunyan Li, Weifeng Xu, Wenshan Guo, Jianhua Zhang, Ying Li and Xinkai Zhu
J. Fungi 2026, 12(2), 82; https://doi.org/10.3390/jof12020082 - 25 Jan 2026
Viewed by 285
Abstract
Drought stress severely limits wheat growth, development and yield. Endophytic fungi play a crucial role in plant growth and drought resistance. In agricultural production, they hold significant application potential as biocontrol agents capable of mitigating drought-induced damage. However, the mechanisms underlying changes in [...] Read more.
Drought stress severely limits wheat growth, development and yield. Endophytic fungi play a crucial role in plant growth and drought resistance. In agricultural production, they hold significant application potential as biocontrol agents capable of mitigating drought-induced damage. However, the mechanisms underlying changes in endophytic fungal community structure under drought stress remain unclear. Our study employed amplicon sequencing to investigate the structure of endophytic fungal communities in wheat roots under different water treatments, comparing structural and functional changes between different treatments. Results revealed that drought stress led to the greatest accumulation of relative abundance in the phylum Ascomycota (86.4%). At the genus level, Stachybotrys (increase 994.2%), Fusarium (increase 94.6%) and Aspergillus (increase 295.6%) showed the most significant increases in relative abundance. Co-occurrence network and Sankey diagram analysis revealed that wheat roots formed a drought-specific endophytic fungal community centered around Stachybotrys, Fusarium and Aspergillus, which indirectly enhanced crop drought tolerance. Our findings provide a theoretical foundation for future agricultural strategies to improve crop drought resistance through precise regulation of microbial communities. Full article
(This article belongs to the Special Issue Endophytic Fungi–Plant Interactions and Ecology)
Show Figures

Figure 1

14 pages, 1467 KB  
Article
BioControl 3.0: Biological Control Complex for Pest Control—Enhanced Control of Locusta migratoria manilensis via Combined Application of Metarhizium anisopliae var. acridum and Carabus smaragdinus
by Linqiang Gao, Yan Wang, Ruxin Wang, Jinshu Yang, Meiyi Yang, Yusheng Liu, Guangjun Wang, Mark R. McNeill, Zehua Zhang, Xinghu Qin and Haiyan Wang
Animals 2026, 16(2), 345; https://doi.org/10.3390/ani16020345 - 22 Jan 2026
Viewed by 202
Abstract
Locusta migratoria manilensis (Meyen) is a highly destructive insect pest worldwide. However, excessive reliance on insecticides has resulted in significant environmental pollution. Biocontrol complexes combine two or more BCAs to address the limitations of individual agents. However, biocontrol complex for locust control has [...] Read more.
Locusta migratoria manilensis (Meyen) is a highly destructive insect pest worldwide. However, excessive reliance on insecticides has resulted in significant environmental pollution. Biocontrol complexes combine two or more BCAs to address the limitations of individual agents. However, biocontrol complex for locust control has been rarely reported. Here, we propose BioControl 3.0, which integrates Metarhizium anisopliae var. acridum (Driver and Milner) and Carabus smaragdinus (Fischer von Waldheim) for locust control. We evaluated this system through a series of laboratory bioassays and semi-field cage experiments, comparing single-agent applications, sequential combinations (BioControl 2.0), and predator-mediated delivery (BioControl 3.0), and quantified locust mortality and interaction effects between predation and infection We found that M. anisopliae caused >85% mortality of locust nymphs at 1 × 108 conidia/mL (LT50 ≈ 6 days) while exhibiting negligible virulence toward C. smaragdinus. BioControl 2.0 (sequential application) increased mortality compared to single agents. However, this approach revealed a significant negative interaction between predation and infection, which limited the total control efficacy. BioControl 3.0 (predator-vectored fungus) achieved the highest corrected mortality, with predation and infection acting independently and additively (no detectable antagonistic interaction). By leveraging a predatory vector, BioControl 3.0 decouples negative interaction and harnesses dual biotic pressures, offering a cost-effective, environmentally benign alternative to conventional locust control. Our findings provide a blueprint for designing integrated predator-pathogen complexes and optimizing deployment strategies for sustainable management of locust outbreaks. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Graphical abstract

17 pages, 1748 KB  
Review
Next-Generation Biopesticides for the Control of Fungal Plant Pathogens
by Younes Rezaee Danesh, Nurhan Keskin, Solmaz Najafi, Harlene Hatterman-Valenti and Ozkan Kaya
Plants 2026, 15(2), 312; https://doi.org/10.3390/plants15020312 - 20 Jan 2026
Viewed by 300
Abstract
This review explores the innovative approaches in the development of next-generation biopesticides, focusing on molecular and microbial strategies for effective control of fungal plant pathogens. As agricultural practices increasingly seek sustainable solutions to combat plant diseases, biopesticides have emerged as a promising alternative [...] Read more.
This review explores the innovative approaches in the development of next-generation biopesticides, focusing on molecular and microbial strategies for effective control of fungal plant pathogens. As agricultural practices increasingly seek sustainable solutions to combat plant diseases, biopesticides have emerged as a promising alternative to chemical pesticides, offering reduced environmental impact and enhanced safety for non-target organisms. The review begins by outlining the critical role of fungal pathogens in global agriculture, emphasizing the need for novel control methods that can mitigate their detrimental effects on crop yields. Key molecular strategies discussed include the use of genetic engineering to enhance the efficacy of biopesticides, the application of RNA interference (RNAi) techniques to target specific fungal genes, and the development of bioactive compounds derived from natural sources. Additionally, this review highlights the potential of microbial agents, such as beneficial bacteria and fungi, in establishing biocontrol mechanisms that promote plant health and resilience. Through a comprehensive review of recent studies and advancements in the field, this manuscript illustrates how integrating molecular and microbial strategies can lead to the development of effective biopesticides tailored to combat specific fungal threats. The implications of these strategies for sustainable agriculture are discussed, alongside the challenges and future directions for research and implementation. Ultimately, this review aims to provide a thorough understanding of the transformative potential of next-generation biopesticides in the fight against fungal plant pathogens, contributing to the broader goal of sustainable food production. Full article
(This article belongs to the Special Issue Biopesticides for Plant Protection)
Show Figures

Figure 1

22 pages, 2070 KB  
Article
Management of Fall Armyworm (Spodoptera frugiperda) Through Combined Plant Extracts and Microbial Biocontrol Agents
by David P. Tokpah and Ovgu Isbilen
Insects 2026, 17(1), 110; https://doi.org/10.3390/insects17010110 - 19 Jan 2026
Viewed by 482
Abstract
The fall armyworm (FAW), Spodoptera frugiperda, poses a major threat to global maize production. Reliance on synthetic pesticides has contributed to pest resistance and environmental degradation, underscoring the need for sustainable alternatives. In this study, ethanolic extracts of neem (Azadirachta indica [...] Read more.
The fall armyworm (FAW), Spodoptera frugiperda, poses a major threat to global maize production. Reliance on synthetic pesticides has contributed to pest resistance and environmental degradation, underscoring the need for sustainable alternatives. In this study, ethanolic extracts of neem (Azadirachta indica) and moringa (Moringa oleifera), together with maize-associated bacterial isolates, were evaluated for their biocontrol potential against fall armyworm. Gas chromatography-mass spectrometry (GC-MS) analysis for bioextract identification revealed tissue-specific chemical diversity, identifying eight key phytochemicals, including octadecanoic acid, trimethyl fluorosilane, and hexadecanoic acid in neem, and trimethyl fluorosilane, ethyl oleate, ethyl (9Z,12Z), octadecanoic acid, and benzenedicarboxylic acid in moringa extracts. Eighty-nine bacterial isolates were screened for extracellular enzyme activities (cellulase, chitinase, glucanase, and protease) and siderophore production, among which four strains, DR-55 (Bacillus subtilis), HL-7 (Bacillus cereus), HL-37 (Bacillus cereus), and DR-63 (Enterobacter sp.), exhibited >50% biocontrol efficacy under greenhouse conditions. A strong correlation (r = 0.88) was observed between in vitro antagonistic activity and greenhouse performance, validating the screening approach. Fall armyworm mortality was the highest in larvae (up to 80%), moderate in pupae (15–17%), and the lowest in adults (6–7%), respectively. Overall, plant bio-extracts and maize-associated microbial isolates represent a promising, non-hazardous strategy for sustainable fall armyworm management while preserving maize plant health. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

24 pages, 15591 KB  
Article
Bioprospecting Honey-Derived Microorganisms for the Biological Control of Phytopathogens
by Patrícia Perina de Oliveira, Giovanna Felette de Paula, Katherine Bilsland Marchesan, Luiza Rodrigues de Souza, José Fhilipe de Miranda da Silva, João Gabriel Elston, Henrique Marques de Souza and Elizabeth Bilsland
Microorganisms 2026, 14(1), 224; https://doi.org/10.3390/microorganisms14010224 - 18 Jan 2026
Viewed by 250
Abstract
Microbial biological control agents are a sustainable alternative to synthetic pesticides, yet their widespread application is limited by a lack of environmental resilience of commercial products. To address this, we exploited honey—a stringent ecological niche—as a reservoir for stress-tolerant bacteria. In this study, [...] Read more.
Microbial biological control agents are a sustainable alternative to synthetic pesticides, yet their widespread application is limited by a lack of environmental resilience of commercial products. To address this, we exploited honey—a stringent ecological niche—as a reservoir for stress-tolerant bacteria. In this study, the bioprospection utilizing five types of commercially available honeys yielded a collection of 53 bacteria and 10 fungi. All bacterial isolates were evaluated for antimicrobial activity against a laboratory-standard bacterium and yeast, and six economically relevant phytopathogenic microorganisms. Initial screening with standard laboratory organisms proved to be an efficient method to detect strains with antimicrobial potential, correlating significantly with further phytopathogen inhibition (Spearman’s r = 0.4512, p = 0.0005). Two promising strains, M2.7 and M3.18, were selected for quantitative dual-culture assays along with molecular identification using 16S rDNA and gyrA gene sequencing, classifying them as Bacillus velezensis. These strains exhibited high inhibitory effects against the pathogens (p > 0.001), often with equivalent efficacy to the commercial biocontrol strain, and also induced significant phytopathogen hyphal deformities, such as increased septation and swelling. These findings support honey as a viable source of robust biocontrol agents, offering a sustainable strategy to substitute or complement current agrochemicals. Full article
(This article belongs to the Special Issue Microbes at the Root of Solutions for Anthropocene Challenges)
Show Figures

Figure 1

17 pages, 5273 KB  
Article
Novel Lytic Bacteriophage PAT-A: Isolation, Characterization, Genome Analysis, and Biocontrol Potential Against Agrobacterium tumefaciens
by Chenglin Liang, Wei Tian, Jianlong Liu, Zan Zhang and Dingli Li
Microorganisms 2026, 14(1), 223; https://doi.org/10.3390/microorganisms14010223 - 18 Jan 2026
Viewed by 196
Abstract
Agrobacterium tumefaciens, a destructive pathogen causing crown gall disease, results in substantial agricultural losses. Traditional chemical and existing biocontrol methods are limited by environmental pollution, pesticide resistance, and low efficacy, while bacteriophages emerge as a promising alternative due to their high host [...] Read more.
Agrobacterium tumefaciens, a destructive pathogen causing crown gall disease, results in substantial agricultural losses. Traditional chemical and existing biocontrol methods are limited by environmental pollution, pesticide resistance, and low efficacy, while bacteriophages emerge as a promising alternative due to their high host specificity, environmental compatibility, and low resistance risk. In this study, we isolated and characterized a lytic phage (PAT-A) targeting A. tumefaciens, evaluating its biological traits, genomic features, and biocontrol potential. The host strain A. tumefaciens CL-1 was isolated from cherry crown gall tissue and identified by 16S rDNA sequencing. Phage PAT-A was recovered from orchard soil via the double-layer agar method, showing a tadpole-shaped morphology (60 nm head diameter, 30 nm tail length) under transmission electron microscopy (TEM). Nucleic acid analysis confirmed a double-stranded DNA genome, susceptible to DNase I but resistant to RNase A and Mung Bean Nuclease. PAT-A exhibited an optimal MOI of 0.01, tolerated wide pH and temperature ranges, but was sensitive to UV (titer declined after 15 min of irradiation) and chloroform (8% survival at a 5% concentration). Whole-genome sequencing revealed a 44,828 bp genome with a compact structure, and phylogenetic/collinearity analyses placed it in the Atuphduvirus genus (Autographiviridae). Biocontrol experiments on tobacco plants demonstrated that PAT-A significantly reduced crown gall incidence. Specifically, simultaneous inoculation of PAT-A and A. tumefaciens CL-1 resulted in the lowest tumor incidence (12.0%), while pre-inoculation of PAT-A 2 days before pathogen exposure achieved an incidence rate of 33.3%. In conclusion, PAT-A is a novel strictly lytic phage with favorable biological properties and potent biocontrol efficacy against A. tumefaciens, enriching phage resources for crown gall management and supporting phage-based agricultural biocontrol strategies. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

33 pages, 2555 KB  
Review
Current Insights into Superinfection Exclusion in Insect-Specific Orthoflaviviruses
by Justin J. X. Chan, Ziyao Zhao, Carla J. S. P. Vieira, Jarvis Z. H. Goh and Andrii Slonchak
Viruses 2026, 18(1), 115; https://doi.org/10.3390/v18010115 - 15 Jan 2026
Viewed by 581
Abstract
The Orthoflavivirus genus includes a variety of human-pathogenic, mosquito-borne flaviviruses (MBFs) including dengue, Zika, and West Nile viruses, which pose significant global public health threats. Insect-specific flaviviruses (ISFs) are another group within the genus that exclusively replicate in mosquitoes and are incapable of [...] Read more.
The Orthoflavivirus genus includes a variety of human-pathogenic, mosquito-borne flaviviruses (MBFs) including dengue, Zika, and West Nile viruses, which pose significant global public health threats. Insect-specific flaviviruses (ISFs) are another group within the genus that exclusively replicate in mosquitoes and are incapable of infecting vertebrates. ISFs have recently attracted growing research interest due to their potential applications in vaccine development. In addition, multiple studies have demonstrated that prior infection with ISFs such as Palm Creek virus and Binjari virus can suppress subsequent infection with human-pathogenic MBFs. This phenomenon, known as superinfection exclusion (SIE), opens the avenue for the potential applications of ISFs in MBF transmission control. This prompted a growing number of studies into ISFs and their interactions with MBFs in mosquito hosts. In this review, we provide an overview on ISFs, with a particular emphasis on the capacity of different ISFs to cause SIE, the current insights into the mechanisms of this phenomenon, and the potential use of ISFs in the SIE-based biocontrol strategies. Full article
(This article belongs to the Special Issue Insect-Specific Viruses and Biological Control of Arboviruses)
Show Figures

Figure 1

Back to TopTop