Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = biochemical growth and fragmentation process

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3587 KB  
Article
A Low-Rank Coal-Derived Soil Amendment Promotes Plant Growth and Shapes Rhizosphere Microbial Communities of Lettuce (Lactuca sativa)
by Xing-Feng Huang, Paul H. Fallgren, Song Jin and Kenneth F. Reardon
Agriculture 2025, 15(21), 2310; https://doi.org/10.3390/agriculture15212310 - 6 Nov 2025
Abstract
Coal-derived soil amendments have been shown to improve soil physicochemical properties and promote plant growth; however, their effects on rhizosphere microbial communities remain insufficiently understood. In this study, a comprehensive assessment of the impacts of a lignite coal-based, microbially processed amendment on lettuce [...] Read more.
Coal-derived soil amendments have been shown to improve soil physicochemical properties and promote plant growth; however, their effects on rhizosphere microbial communities remain insufficiently understood. In this study, a comprehensive assessment of the impacts of a lignite coal-based, microbially processed amendment on lettuce (Lactuca sativa) growth, soil properties, and rhizosphere microbiota was conducted. Application of the coal-based amendment resulted in a more than two-fold increase in plant fresh weight compared to untreated soil. The amendment significantly improved soil organic matter content but did not increase phosphate or potassium levels. Rhizosphere bacterial and fungal communities were profiled using 16S rRNA and ITS gene sequencing. Principal coordinate analysis revealed that the coal-based amendment, commercial organic fertilizer, and raw coal each induced distinct shifts in microbial community structure. Notably, treatment with the coal-based amendment reduced the relative abundance of Proteobacteria while increasing Acidobacteriota and Chloroflexi in the bacterial community. In fungal communities, the amendment decreased Basidiomycota and enriched Ascomycota. These results suggest that the observed enhancement in plant growth is closely linked to changes in rhizosphere microbial composition and soil organic matter content, highlighting the potential of microbially processed coal products as sustainable soil amendments in agriculture. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

16 pages, 802 KB  
Review
Evaluating Current Molecular Techniques and Evidence in Assessing Microbiome in Placenta-Related Health and Disorders in Pregnancy
by Aleksandra Stupak and Wojciech Kwaśniewski
Biomolecules 2023, 13(6), 911; https://doi.org/10.3390/biom13060911 - 30 May 2023
Cited by 9 | Viewed by 4337
Abstract
The microbiome is of great interest due to its potential influence on the occurrence and treatment of some human illnesses. It may be regarded as disruptions to the delicate equilibrium that humans ordinarily maintain with their microorganisms or the microbiota in their environment. [...] Read more.
The microbiome is of great interest due to its potential influence on the occurrence and treatment of some human illnesses. It may be regarded as disruptions to the delicate equilibrium that humans ordinarily maintain with their microorganisms or the microbiota in their environment. The focus of this review is on the methodologies and current understanding of the functional microbiome in pregnancy outcomes. We present how novel techniques bring new insights to the contemporary field of maternal–fetal medicine with a critical analysis. The maternal microbiome in late pregnancy has been extensively studied, although data on maternal microbial changes during the first trimester are rare. Research has demonstrated that, in healthy pregnancies, the origin of the placental microbiota is oral (gut) rather than vaginal. Implantation, placental development, and maternal adaptation to pregnancy are complex processes in which fetal and maternal cells interact. Microbiome dysbiosis or microbial metabolites are rising as potential moderators of antenatal illnesses related to the placenta, such as fetal growth restriction, preeclampsia, and others, including gestational diabetes and preterm deliveries. However, because of the presence of antimicrobial components, it is likely that the bacteria identified in placental tissue are (fragments of) bacteria that have been destroyed by the placenta’s immune cells. Using genomic techniques (metagenomics, metatranscriptomics, and metaproteomics), it may be possible to predict some properties of a microorganism’s genome and the biochemical (epigenetic DNA modification) and physical components of the placenta as its environment. Despite the results described in this review, this subject needs further research on some major and crucial aspects. The phases of an in utero translocation of the maternal gut microbiota to the fetus should be explored. With a predictive knowledge of the impacts of the disturbance on microbial communities that influence human health and the environment, genomics may hold the answer to the development of novel therapies for the health of pregnant women. Full article
(This article belongs to the Special Issue Placental-Related Disorders of Pregnancy)
Show Figures

Figure 1

17 pages, 345 KB  
Article
Role of Inflammatory/Immune Response and Cytokine Polymorphisms in the Severity of Chronic Hepatitis C (CHC) before and after Direct Acting Antiviral (DAAs) Treatment
by Joana Ferreira, Mariana Oliveira, Manuel Bicho and Fátima Serejo
Int. J. Mol. Sci. 2023, 24(2), 1380; https://doi.org/10.3390/ijms24021380 - 10 Jan 2023
Cited by 12 | Viewed by 2617
Abstract
Host regulatory immune response is involved in the hepatic inflammatory process caused by the hepatitis C virus (HCV). We aimed to determine if HCV clearance with direct-acting antivirals (DAAs) changes the hepatic fibrosis stage, biochemical parameters of liver injury, and inflammatory/immune responses. Sample: [...] Read more.
Host regulatory immune response is involved in the hepatic inflammatory process caused by the hepatitis C virus (HCV). We aimed to determine if HCV clearance with direct-acting antivirals (DAAs) changes the hepatic fibrosis stage, biochemical parameters of liver injury, and inflammatory/immune responses. Sample: 329 chronic hepatitis C (CHC) patients, 134 of them treated with DAAs. Liver fibrosis was evaluated by transient elastography (FibroScan), biochemical and cellular parameters were determined by standard methods, cytokine concentration by enzyme-linked immunoabsorbent assay (ELISA), and genetic polymorphisms by polymerase chain reaction—restriction fragment length polymorphism (PCR-RFLP) or endpoint genotyping. Before DAA treatment, severe fibrosis or cirrhosis (F3/4) was associated with higher values of tumor necrosis factor-alpha (TNF-α) and genotypes transforming growth factor-beta-509 C/T_CC (TGF-β-509 C/T_CC), interleukine-10-1082 T/C_CC (IL-10-1082 T/C_CC), and IL-10-592 G/T_GT. After DAA treatment, fewer F3/4 patients and lower values of TNF-α were found. Patients with TNF-α-308 G/A_GG and IL-10-592 G/T_GT were at risk for F3/4. Lack of improvement of liver fibrosis was associated with lower baseline values of platelet count for genotypes TNF-α-308 G/A_GG and haplotype TT/GG of IL-10-1082 T/C and IL-10-592 G/T. Our study showed decreased liver fibrosis/inflammation and normalization of liver injury biomarkers after DAA treatment. It also points to the importance of suppressing the pro-inflammatory response by DAAs in the resolution of hepatitis C, contributing to the improvement of liver damage evaluated by transient elastography. Full article
(This article belongs to the Special Issue Regulation of Inflammatory Reactions in Health and Disease 2.0)
13 pages, 1436 KB  
Article
High Cell Density Cultivation Process for the Expression of Botulinum Neurotoxin a Receptor Binding Domain
by Alon Ben David, Yoel Papir, Ophir Hazan, Moses Redelman, Eran Diamant, Ada Barnea, Amram Torgeman and Ran Zichel
Toxins 2022, 14(4), 281; https://doi.org/10.3390/toxins14040281 - 14 Apr 2022
Cited by 1 | Viewed by 3850
Abstract
The receptor-binding domain of botulinum neurotoxin (HC fragment), is a promising botulism vaccine candidate. In the current study, fermentation strategies were evaluated to upscale HC fragment expression. A simple translation of the growth conditions from shake flasks to a batch fermentation [...] Read more.
The receptor-binding domain of botulinum neurotoxin (HC fragment), is a promising botulism vaccine candidate. In the current study, fermentation strategies were evaluated to upscale HC fragment expression. A simple translation of the growth conditions from shake flasks to a batch fermentation process resulted in limited culture growth and protein expression (OD of 11 and volumetric protein yields of 123 mg/L). Conducting fed-batch fermentation with rich media and continuous nutrient supplementation significantly improved culture growth (OD of 40.3) and protein expression (1093 mg/L). A further increase in HC fragment yield was achieved by high cell density cultivation (HCDC). The bacterium was grown in a defined medium and with a combined bolus/continuous feed of nutrients to maintain desired oxygen levels and prevent acetate accumulation. The final OD of the process was 260, and the volumetric yield of the HC fragment was 2065 mg/L, which reflects improvement by an order of magnitude. Purified HC fragments, produced by HCDC, exhibited typical biochemical and protective characteristics in mice. Taken together, the advancements achieved in this study promote large-scale production of the HC fragment in E. coli for use in anti-botulism vaccines. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

30 pages, 4664 KB  
Review
Mechanical Cues: Bidirectional Reciprocity in the Extracellular Matrix Drives Mechano-Signalling in Articular Cartilage
by Sophie Jane Gilbert, Cleo Selina Bonnet and Emma Jane Blain
Int. J. Mol. Sci. 2021, 22(24), 13595; https://doi.org/10.3390/ijms222413595 - 18 Dec 2021
Cited by 67 | Viewed by 8746
Abstract
The composition and organisation of the extracellular matrix (ECM), particularly the pericellular matrix (PCM), in articular cartilage is critical to its biomechanical functionality; the presence of proteoglycans such as aggrecan, entrapped within a type II collagen fibrillar network, confers mechanical resilience underweight-bearing. Furthermore, [...] Read more.
The composition and organisation of the extracellular matrix (ECM), particularly the pericellular matrix (PCM), in articular cartilage is critical to its biomechanical functionality; the presence of proteoglycans such as aggrecan, entrapped within a type II collagen fibrillar network, confers mechanical resilience underweight-bearing. Furthermore, components of the PCM including type VI collagen, perlecan, small leucine-rich proteoglycans—decorin and biglycan—and fibronectin facilitate the transduction of both biomechanical and biochemical signals to the residing chondrocytes, thereby regulating the process of mechanotransduction in cartilage. In this review, we summarise the literature reporting on the bidirectional reciprocity of the ECM in chondrocyte mechano-signalling and articular cartilage homeostasis. Specifically, we discuss studies that have characterised the response of articular cartilage to mechanical perturbations in the local tissue environment and how the magnitude or type of loading applied elicits cellular behaviours to effect change. In vivo, including transgenic approaches, and in vitro studies have illustrated how physiological loading maintains a homeostatic balance of anabolic and catabolic activities, involving the direct engagement of many PCM molecules in orchestrating this slow but consistent turnover of the cartilage matrix. Furthermore, we document studies characterising how abnormal, non-physiological loading including excessive loading or joint trauma negatively impacts matrix molecule biosynthesis and/or organisation, affecting PCM mechanical properties and reducing the tissue’s ability to withstand load. We present compelling evidence showing that reciprocal engagement of the cells with this altered ECM environment can thus impact tissue homeostasis and, if sustained, can result in cartilage degradation and onset of osteoarthritis pathology. Enhanced dysregulation of PCM/ECM turnover is partially driven by mechanically mediated proteolytic degradation of cartilage ECM components. This generates bioactive breakdown fragments such as fibronectin, biglycan and lumican fragments, which can subsequently activate or inhibit additional signalling pathways including those involved in inflammation. Finally, we discuss how bidirectionality within the ECM is critically important in enabling the chondrocytes to synthesise and release PCM/ECM molecules, growth factors, pro-inflammatory cytokines and proteolytic enzymes, under a specified load, to influence PCM/ECM composition and mechanical properties in cartilage health and disease. Full article
Show Figures

Figure 1

22 pages, 2726 KB  
Article
Triphenilphosphonium Analogs of Chloramphenicol as Dual-Acting Antimicrobial and Antiproliferating Agents
by Julia A. Pavlova, Zimfira Z. Khairullina, Andrey G. Tereshchenkov, Pavel A. Nazarov, Dmitrii A. Lukianov, Inna A. Volynkina, Dmitry A. Skvortsov, Gennady I. Makarov, Etna Abad, Somay Y. Murayama, Susumu Kajiwara, Alena Paleskava, Andrey L. Konevega, Yuri N. Antonenko, Alex Lyakhovich, Ilya A. Osterman, Alexey A. Bogdanov and Natalia V. Sumbatyan
Antibiotics 2021, 10(5), 489; https://doi.org/10.3390/antibiotics10050489 - 23 Apr 2021
Cited by 30 | Viewed by 5188
Abstract
In the current work, in continuation of our recent research, we synthesized and studied new chimeric compounds, including the ribosome-targeting antibiotic chloramphenicol (CHL) and the membrane-penetrating cation triphenylphosphonium (TPP), which are linked by alkyl groups of different lengths. Using various biochemical assays, we [...] Read more.
In the current work, in continuation of our recent research, we synthesized and studied new chimeric compounds, including the ribosome-targeting antibiotic chloramphenicol (CHL) and the membrane-penetrating cation triphenylphosphonium (TPP), which are linked by alkyl groups of different lengths. Using various biochemical assays, we showed that these CAM-Cn-TPP compounds bind to the bacterial ribosome, inhibit protein synthesis in vitro and in vivo in a way similar to that of the parent CHL, and significantly reduce membrane potential. Similar to CAM-C4-TPP, the mode of action of CAM-C10-TPP and CAM-C14-TPP in bacterial ribosomes differs from that of CHL. By simulating the dynamics of CAM-Cn-TPP complexes with bacterial ribosomes, we proposed a possible explanation for the specificity of the action of these analogs in the translation process. CAM-C10-TPP and CAM-C14-TPP more strongly inhibit the growth of the Gram-positive bacteria, as compared to CHL, and suppress some CHL-resistant bacterial strains. Thus, we have shown that TPP derivatives of CHL are dual-acting compounds targeting both the ribosomes and cellular membranes of bacteria. The TPP fragment of CAM-Cn-TPP compounds has an inhibitory effect on bacteria. Moreover, since the mitochondria of eukaryotic cells possess qualities similar to those of their prokaryotic ancestors, we demonstrate the possibility of targeting chemoresistant cancer cells with these compounds. Full article
(This article belongs to the Special Issue New Ribosome-Acting Antibiotic Derivatives)
Show Figures

Figure 1

17 pages, 2482 KB  
Article
Protein Carbonylation As a Biomarker of Heavy Metal, Cd and Pb, Damage in Paspalum fasciculatum Willd. ex Flüggé
by Manuel Salas-Moreno, Neyder Contreras-Puentes, Erika Rodríguez-Cavallo, Jesús Jorrín-Novo, José Marrugo-Negrete and Darío Méndez-Cuadro
Plants 2019, 8(11), 513; https://doi.org/10.3390/plants8110513 - 16 Nov 2019
Cited by 9 | Viewed by 5417
Abstract
Heavy metal tolerant plants have phytoremediation potential for the recovery of contaminated soils, and the characterization of their metabolic adaptation processes is an important starting point to elucidate their tolerance mechanisms at molecular, biochemical and physiological levels. In this research, the effects of [...] Read more.
Heavy metal tolerant plants have phytoremediation potential for the recovery of contaminated soils, and the characterization of their metabolic adaptation processes is an important starting point to elucidate their tolerance mechanisms at molecular, biochemical and physiological levels. In this research, the effects of Cd and Pb on growth and protein carbonylation in tissues of Paspalum fasciculatum exposed to 30 and 50 mg·Kg−1 Cd and Pb respectively were determined. P. fasciculatum seedlings exposed to metals grew more than controls until 60 days of cultivation and limited their oxidative effects to a reduced protein group. Carbonyl indexes in leaf and root proteins reached a significant increase concerning their controls in plants exposed 30 days to Cd and 60 days to Pb. From the combined approach of Western Blot with Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) and protein analysis by Matrix Asisted Laser Desorption/Ionisation-Time Of Flight (MALDI-TOF/TOF) mass spectrometry, chloroplastic proteins were identified into the main oxidative stress-inducible proteins to Cd and Pb, such as subunits α, γ of ATP synthetase, Chlorophyll CP26 binding protein, fructose-bisphosphate aldolase and long-chain ribulose bisphosphate carboxylase (RuBisCO LSU). Cd generated damage in the photosynthetic machinery of the leaves of P. fasciculatum into the first 30 days of treatment; five of the oxidized proteins are involved in photosynthesis processes. Moreover, there was a proteolytic fragmentation of the RuBisCO LSU. Results showed that intrinsic tolerance of P. fasciculatum to these metals reached 60 days in our conditions, along with the bioaccumulating appreciable quantities of metals in their roots. Full article
(This article belongs to the Special Issue Plant Responses and Tolerance to Metal/Metalloid Toxicity)
Show Figures

Graphical abstract

17 pages, 870 KB  
Article
DsHsp90 Is Involved in the Early Response of Dunaliella salina to Environmental Stress
by Si-Jia Wang, Ming-Jie Wu, Xiang-Jun Chen, Yan Jiang and Yong-Bin Yan
Int. J. Mol. Sci. 2012, 13(7), 7963-7979; https://doi.org/10.3390/ijms13077963 - 27 Jun 2012
Cited by 21 | Viewed by 8771
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone highly conserved across the species from prokaryotes to eukaryotes. Hsp90 is essential for cell viability under all growth conditions and is proposed to act as a hub of the signaling network and protein homeostasis [...] Read more.
Heat shock protein 90 (Hsp90) is a molecular chaperone highly conserved across the species from prokaryotes to eukaryotes. Hsp90 is essential for cell viability under all growth conditions and is proposed to act as a hub of the signaling network and protein homeostasis of the eukaryotic cells. By interacting with various client proteins, Hsp90 is involved in diverse physiological processes such as signal transduction, cell mobility, heat shock response and osmotic stress response. In this research, we cloned the dshsp90 gene encoding a polypeptide composed of 696 amino acids from the halotolerant unicellular green algae Dunaliella salina. Sequence alignment indicated that DsHsp90 belonged to the cytosolic Hsp90A family. Further biophysical and biochemical studies of the recombinant protein revealed that DsHsp90 possessed ATPase activity and existed as a dimer with similar percentages of secondary structures to those well-studied Hsp90As. Analysis of the nucleotide sequence of the cloned genomic DNA fragment indicated that dshsp90 contained 21 exons interrupted by 20 introns, which is much more complicated than the other plant hsp90 genes. The promoter region of dshsp90 contained putative cis-acting stress responsive elements and binding sites of transcriptional factors that respond to heat shock and salt stress. Further experimental research confirmed that dshsp90 was upregulated quickly by heat and salt shock in the D. salina cells. These findings suggested that dshsp90 might serve as a component of the early response system of the D. salina cells against environmental stresses. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Biology)
Show Figures

Back to TopTop