Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = bi-electromagnetic sensing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 7666 KiB  
Article
Analysis of the Influence of Patch Antenna Shapes for Wireless Passive Temperature Sensor Applications
by Trisa Azahra, Ying-Ting Liao, Yi-Chien Chen and Cheng-Chien Kuo
Appl. Sci. 2025, 15(6), 3136; https://doi.org/10.3390/app15063136 - 13 Mar 2025
Cited by 1 | Viewed by 639
Abstract
Wireless passive temperature sensors are essential in environments where wired connections are impractical, such as rotating machinery and harsh conditions. A key advantage of these sensors is their ability to operate without a local power source. This study employs the antenna backscattering method, [...] Read more.
Wireless passive temperature sensors are essential in environments where wired connections are impractical, such as rotating machinery and harsh conditions. A key advantage of these sensors is their ability to operate without a local power source. This study employs the antenna backscattering method, which relies on the wireless interaction between the interrogator antenna and the sensor antenna’s resonant frequency, implemented in the far-field region to support long communication distances. To evaluate the impact of antenna shape on sensor performance, three microstrip patch antenna shapes—rectangular, circular, and equilateral triangular—were designed to operate in the fundamental mode at 2.4 GHz. These designs were simulated using HFSS in Ansys Electromagnetic Suite® 2023 R1 (Ansys Inc., Canonsburg, PA, USA), fabricated on alumina substrates, and assessed for performance metrics, including communication distance and sensitivity. Results indicated that the equilateral triangular patch outperformed the others, achieving a maximum communication distance of 16.5 cm, a sensitivity of 0.129 MHz/°C over a temperature range of 25 °C to 500 °C, and a simulated gain of 5.84 dBi. These findings underscore the importance of antenna shape selection and optimization for robust, wireless temperature sensing in demanding environments. Full article
Show Figures

Figure 1

15 pages, 2903 KiB  
Article
Detection and Identification of Pesticides in Fruits Coupling to an Au–Au Nanorod Array SERS Substrate and RF-1D-CNN Model Analysis
by Pengxing Sha, Chushu Zhu, Tianran Wang, Peitao Dong and Xuezhong Wu
Nanomaterials 2024, 14(8), 717; https://doi.org/10.3390/nano14080717 - 19 Apr 2024
Cited by 5 | Viewed by 1679
Abstract
In this research, a method was developed for fabricating Au–Au nanorod array substrates through the deposition of large-area Au nanostructures on an Au nanorod array using a galvanic cell reaction. The incorporation of a granular structure enhanced both the number and intensity of [...] Read more.
In this research, a method was developed for fabricating Au–Au nanorod array substrates through the deposition of large-area Au nanostructures on an Au nanorod array using a galvanic cell reaction. The incorporation of a granular structure enhanced both the number and intensity of surface-enhanced Raman scattering (SERS) hot spots on the substrate, thereby elevating the SERS performance beyond that of substrates composed solely of an Au nanorod. Calculations using the finite difference time domain method confirmed the generation of a strong electromagnetic field around the nanoparticles. Motivated by the electromotive force, Au ions in the chloroauric acid solution were reduced to form nanostructures on the nanorod array. The size and distribution density of these granular nanostructures could be modulated by varying the reaction time and the concentration of chloroauric acid. The resulting Au–Au nanorod array substrate exhibited an active, uniform, and reproducible SERS effect. With 1,2-bis(4-pyridyl)ethylene as the probe molecule, the detection sensitivity of the Au–Au nanorod array substrate was enhanced to 10−11 M, improving by five orders of magnitude over the substrate consisting only of an Au nanorod array. For a practical application, this substrate was utilized for the detection of pesticides, including thiram, thiabendazole, carbendazim, and phosmet, within the concentration range of 10−4 to 5 × 10−7 M. An analytical model combining a random forest and a one-dimensional convolutional neural network, referring to the important variable-one-dimensional convolutional neural network model, was developed for the precise identification of thiram. This approach demonstrated significant potential for biochemical sensing and rapid on-site identification. Full article
Show Figures

Figure 1

17 pages, 16519 KiB  
Article
Partial Discharge Wideband Full-Band High-Gain Resonant Cavity UHF Sensor Research
by Chengqiang Liao, Lei Zhang, Guozhi Zhang, Changyue Lu and Xiaoxing Zhang
Sensors 2023, 23(15), 6847; https://doi.org/10.3390/s23156847 - 1 Aug 2023
Cited by 5 | Viewed by 2611
Abstract
To meet the real demand for broadband full-band high-gain antenna sensors in the process of partial discharge (PD) Ultra-High frequency (UHF) detection test and online monitoring of power equipment, this paper builds a resonant cavity monopole UHF antenna sensor based on Fabry–Perot resonant [...] Read more.
To meet the real demand for broadband full-band high-gain antenna sensors in the process of partial discharge (PD) Ultra-High frequency (UHF) detection test and online monitoring of power equipment, this paper builds a resonant cavity monopole UHF antenna sensor based on Fabry–Perot resonant cavity antenna technology, conducts the sensor Voltage Standing Wave Ratio (VSWR) optimization study using curved flow technology, conducts the sensor gain optimization study using slot dual resonant structure, and, finally, tests the sensor performance using the built PD detection test platform. The resonant cavity monopole antenna exhibits outstanding VSWR performance in the frequency range of 0.37 GHz–3 GHz, according to simulation and test data: the average gain in the frequency range of 0.3 GHz–3 GHz is 4.92 dBi, and the highest gain at the primary resonant frequency of 1.0 GHz is 7.16 dBi, with good radiation performance over the whole frequency spectrum. The electromagnetic pulse signal sensed by the UHF sensor developed in this paper can demonstrate the energy spectrum distribution characteristics of PD radiation electromagnetic wave signal more comprehensively, laying a firm technical foundation for thoroughly understanding the electromagnetic wave radiation characteristics of various types of PD insulation defects of various power equipment and the selection of a specific direction for its supporting optimization. Full article
(This article belongs to the Special Issue Advanced Sensing Detection in Electrical Equipment)
Show Figures

Figure 1

25 pages, 20160 KiB  
Article
The Development of Copper Clad Laminate Horn Antennas for Drone Interferometric Synthetic Aperture Radar
by Anthony Carpenter, James A. Lawrence, Richard Ghail and Philippa J. Mason
Drones 2023, 7(3), 215; https://doi.org/10.3390/drones7030215 - 20 Mar 2023
Cited by 7 | Viewed by 5147
Abstract
Interferometric synthetic aperture radar (InSAR) is an active remote sensing technique that typically utilises satellite data to quantify Earth surface and structural deformation. Drone InSAR should provide improved spatial-temporal data resolutions and operational flexibility. This necessitates the development of custom radar hardware for [...] Read more.
Interferometric synthetic aperture radar (InSAR) is an active remote sensing technique that typically utilises satellite data to quantify Earth surface and structural deformation. Drone InSAR should provide improved spatial-temporal data resolutions and operational flexibility. This necessitates the development of custom radar hardware for drone deployment, including antennas for the transmission and reception of microwave electromagnetic signals. We present the design, simulation, fabrication, and testing of two lightweight and inexpensive copper clad laminate (CCL)/printed circuit board (PCB) horn antennas for C-band radar deployed on the DJI Matrice 600 Pro drone. This is the first demonstration of horn antennas fabricated from CCL, and the first complete overview of antenna development for drone radar applications. The dimensions are optimised for the desired gain and centre frequency of 19 dBi and 5.4 GHz, respectively. The S11, directivity/gain, and half power beam widths (HPBW) are simulated in MATLAB, with the antennas tested in a radio frequency (RF) electromagnetic anechoic chamber using a calibrated vector network analyser (VNA) for comparison. The antennas are highly directive with gains of 15.80 and 16.25 dBi, respectively. The reduction in gain compared to the simulated value is attributed to a resonant frequency shift caused by the brass input feed increasing the electrical dimensions. The measured S11 and azimuth HPBW either meet or exceed the simulated results. A slight performance disparity between the two antennas is attributed to minor artefacts of the manufacturing and testing processes. The incorporation of the antennas into the drone payload is presented. Overall, both antennas satisfy our performance criteria and highlight the potential for CCL/PCB/FR-4 as a lightweight and inexpensive material for custom antenna production in drone radar and other antenna applications. Full article
Show Figures

Figure 1

19 pages, 7651 KiB  
Communication
Analysis and Simulation of a Sequential Rotationally Excited Circular Polarized Multi-Dipole Array for a Bi-Static Antenna GPR for Deep Exploration
by Haifeng Fan, Yiming Zhang, Qianqian Tian, Xuhong Wang and Hongyan Meng
Remote Sens. 2023, 15(4), 1134; https://doi.org/10.3390/rs15041134 - 19 Feb 2023
Cited by 3 | Viewed by 2095
Abstract
As an effective active remote sensing technology for the exploration of shallow underground targets, ground-penetrating radar (GPR) is a detection method that can be used to obtain information about the characteristics of underground targets by transmitting an electromagnetic wave from an antenna and [...] Read more.
As an effective active remote sensing technology for the exploration of shallow underground targets, ground-penetrating radar (GPR) is a detection method that can be used to obtain information about the characteristics of underground targets by transmitting an electromagnetic wave from an antenna and analyzing the propagation of the electromagnetic wave underground. Due to the frequency (1 MHz–3 GHz) of GPRs, the depth of geological exploration is shallow (0.1–30 m). In order to penetrate the deeper Earth, it is necessary to increase the size of the antenna in accordance with the wavelength ratio and, thus, reduce the radiation frequency. For most bi-static antenna GPRs, a dipole antenna is used as the transmitting antenna and another antenna device is used as a receiving antenna, with both being horizontally linearly polarized (LP) antennas. In some cases, such a design can cause problems, such as the multi-path effect and polarization mismatching. When a GPR is used for deep exploration, increased numbers of errors and greater signal attenuation during data reception and processing often occur. In contrast, at the radiation source, with the use of large-aperture multiple-dipole antennas and multi-channel sequential rotational excitation, the electromagnetic wave can radiate in the form of circular polarization at a low frequency. In the receiving antenna, the issues caused by the multi-path effect and polarization mismatching can be addressed, even if LP antennas are used. A novel sequential rotationally excited (SRE) circularly polarized (CP) multiple-dipole array for a bi-static antenna GPR for deep exploration is proposed in this paper. A large-aperture CP multiple-dipole array is used instead of a small-size LP dipole antenna. The analysis and simulation results demonstrated that, comparing circular polarization and linear polarization with the premise of the same transmitting power, the SRE CP multiple-dipole antenna array radiation source achieved a significant enhancement (about 7 dB) in the signal-to-noise ratio (SNR) as the radiant energy was collected at the receiving antenna. More importantly, by reducing the exploration frequency to 10 KHz, the exploration depth could also be greatly increased by about tenfold. Full article
Show Figures

Figure 1

13 pages, 14406 KiB  
Article
Enhanced Magneto-Optic Properties in Sputtered Bi- Containing Ferrite Garnet Thin Films Fabricated Using Oxygen Plasma Treatment and Metal Oxide Protective Layers
by V. A. Kotov, M. Nur-E-Alam, M. Vasiliev, K. Alameh, D. E. Balabanov and V. I. Burkov
Materials 2020, 13(22), 5113; https://doi.org/10.3390/ma13225113 - 12 Nov 2020
Cited by 6 | Viewed by 2510
Abstract
Magneto-optic (MO) imaging and sensing are at present the most developed practical applications of thin-film MO garnet materials. However, in order to improve sensitivity for a range of established and forward-looking applications, the technology and component-related advances are still necessary. These improvements are [...] Read more.
Magneto-optic (MO) imaging and sensing are at present the most developed practical applications of thin-film MO garnet materials. However, in order to improve sensitivity for a range of established and forward-looking applications, the technology and component-related advances are still necessary. These improvements are expected to originate from new material system development. We propose a set of technological modifications for the RF-magnetron sputtering deposition and crystallization annealing of magneto-optic bismuth-substituted iron-garnet films and investigate the improved material properties. Results show that standard crystallization annealing for the as-deposited ultrathin (sputtered 10 nm thick, amorphous phase) films resulted in more than a factor of two loss in the magneto-optical activity of the films in the visible spectral region, compared to the liquid-phase grown epitaxial films. Results also show that an additional 10 nm-thick metal-oxide (Bi2O3) protective layer above the amorphous film results in ~2.7 times increase in the magneto-optical quality of crystallized iron-garnet films. On the other hand, the effects of post-deposition oxygen (O2) plasma treatment on the magneto-optical (MO) properties of Bismuth substituted iron garnet thin film materials are investigated. Results show that in the visible part of the electromagnetic spectrum (at 532 nm), the O2 treated (up to 3 min) garnet films retain higher specific Faraday rotation and figures of merit compared to non-treated garnet films. Full article
(This article belongs to the Special Issue Photoactive Materials: Synthesis, Applications and Technology)
Show Figures

Figure 1

21 pages, 4200 KiB  
Article
Enabling a Battery-Less Sensor Node Using Dedicated Radio Frequency Energy Harvesting for Complete Off-Grid Applications
by Timothy Miller, Stephen S. Oyewobi, Adnan M. Abu-Mahfouz and Gerhard P. Hancke
Energies 2020, 13(20), 5402; https://doi.org/10.3390/en13205402 - 16 Oct 2020
Cited by 8 | Viewed by 3223
Abstract
The large-scale deployment of sensor nodes in difficult-to-reach locations makes powering of sensor nodes via batteries impractical. Besides, battery-powered WSNs require the periodic replacement of batteries. Wireless, battery-less sensor nodes represent a less maintenance-intensive, more environmentally friendly and compact alternative to battery powered [...] Read more.
The large-scale deployment of sensor nodes in difficult-to-reach locations makes powering of sensor nodes via batteries impractical. Besides, battery-powered WSNs require the periodic replacement of batteries. Wireless, battery-less sensor nodes represent a less maintenance-intensive, more environmentally friendly and compact alternative to battery powered sensor nodes. Moreover, such nodes are powered through wireless energy harvesting. In this research, we propose a novel battery-less wireless sensor node which is powered by a dedicated 4 W EIRP 920 MHz radio frequency (RF) energy device. The system is designed to provide complete off-grid Internet of Things (IoT) applications. To this end we have designed a power base station which derives its power from solar PV panels to radiate the RF energy used to power the sensor node. We use a PIC32MX220F32 microcontroller to implement a CC-CV battery charging algorithm to control the step-down DC-DC converter which charges lithium-ion batteries that power the RF transmitter and amplifier, respectively. A 12 element Yagi antenna was designed and optimized using the FEKO electromagnetic software. We design a step-up converter to step the voltage output from a single stage fully cross-coupled RF-DC converter circuit up to 3.3 V. Finally, we use the power requirements of the sensor node to size the storage capacity of the capacitor of the energy harvesting circuit. The results obtained from the experiments performed showed that enough RF energy was harvested over a distance of 15 m to allow the sensor node complete one sense-transmit operation for a duration of 156 min. The Yagi antenna achieved a gain of 12.62 dBi and a return loss of −14.11 dB at 920 MHz, while the battery was correctly charged according to the CC-CV algorithm through the control of the DC-DC converter. Full article
(This article belongs to the Special Issue Wireless Rechargeable Sensor Networks 2020-2022)
Show Figures

Graphical abstract

15 pages, 14029 KiB  
Article
Sentinel-2 Imagery Processing for Tree Logging Observations on the Białowieża Forest World Heritage Site
by Klaudia Weronika Pałaś and Jarosław Zawadzki
Forests 2020, 11(8), 857; https://doi.org/10.3390/f11080857 - 6 Aug 2020
Cited by 22 | Viewed by 5966
Abstract
Deforestation is currently among the most critical ecological issues, which need to be addressed urgently. Hence, identification of effective environmental monitoring methods is of top priority, especially in locations where no precise ground-based data are available. Constant development of remote sensing technology provides [...] Read more.
Deforestation is currently among the most critical ecological issues, which need to be addressed urgently. Hence, identification of effective environmental monitoring methods is of top priority, especially in locations where no precise ground-based data are available. Constant development of remote sensing technology provides an increasing number of tools needed for that purpose, based on extraction of information about Earth’s surface. One of the most advanced Earth Observation (EO) programs is Copernicus, established by European Space Agency (ESA). It incorporates a constellation of Sentinel satellites continuously delivering imagery, which can serve as input data for further environmental analyses. They can be performed in the Sentinel Application Platform (SNAP), the software also developed by ESA. The Sentinel-2 (S-2) mission was designed specifically for Earth’s surface observation. It acquires high-resolution data within visible and infrared range of electromagnetic spectrum (EMS), which has found applications in forest cover monitoring. In this paper, S-2 imagery was processed in SNAP software to determine its potential for deforestation observation on the example of 2017 tree logging in Białowieża Forest. For this purpose, images from October 2016 and 2018, covering the area of interest, were downloaded from the Copernicus Open Hub Platform. They then underwent pre-processing, involving atmospheric correction, resampling, and subset operations. As a part of environmental analysis, a set of chosen radiometric and biophysical indices was computed to preliminarily determine their usefulness for deforestation mapping. Index values were extracted from tree logging areas using pinpoints and region of interest (ROI) mask. The most effective indicators were the MERIS Terrestrial Chlorophyll Index (MTCI) and the Brightness Index (BI). The Normalized Difference Vegetation Index (NDVI), as well as the Ratio Vegetation Index (RVI), also displayed promising results. The results were visualized in Quantum GIS (QGIS) software, provided by the Open Source Geospatial Foundation (OSGeo). Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

9 pages, 4899 KiB  
Article
Design of Cavity-Backed Bow-Tie Antenna with Matching Layer for Human Body Application
by Jinho Jeong, Kihoon Park and Changmin Lee
Sensors 2019, 19(18), 4015; https://doi.org/10.3390/s19184015 - 17 Sep 2019
Cited by 7 | Viewed by 6045
Abstract
This paper presents the broadband antenna for the microwave radiometric sensing of internal body temperature. For broadband operation, the bow-tie antenna was designed and backed with a cylindrical cavity, which decreased environmental electromagnetic interference and also improved the directivity of the antenna. The [...] Read more.
This paper presents the broadband antenna for the microwave radiometric sensing of internal body temperature. For broadband operation, the bow-tie antenna was designed and backed with a cylindrical cavity, which decreased environmental electromagnetic interference and also improved the directivity of the antenna. The broadband impedance-transforming balun in microstrip form was also designed to feed the bow-tie antenna, and was located inside the cavity. An impedance-matching dielectric layer (IMDL) was introduced on top of the bow-tie antenna, for impedance match with the human body with high permittivity. The fabricated antenna was measured in free space with the IMDL removed, showing an input reflection coefficient lower than −10 dB from 2.64 to > 3.60 GHz with antenna gain over 6.0 dBi and radiation efficiency over 74.7% from 2.7 to 3.5 GHz. The IMDL was re-installed on the cavity-backed bow-tie antenna to measure the antenna performance for the human head with relative permittivity of about 40. The measured reflection coefficient was as low as −28.9 dB at 2.95 GHz and lower than −10 dB from 2.65 to > 3.5 GHz. It was also shown that the designed antenna recovered a good impedance match by adjusting the permittivity and thickness of the IMDL for the different parts of the human body with different permittivities. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

16 pages, 5118 KiB  
Article
Horizontal Directional Drilling-Length Detection Technology While Drilling Based on Bi-Electro-Magnetic Sensing
by Yudan Wang, Guojun Wen and Han Chen
Sensors 2017, 17(5), 967; https://doi.org/10.3390/s17050967 - 27 Apr 2017
Cited by 4 | Viewed by 12377
Abstract
The drilling length is an important parameter in the process of horizontal directional drilling (HDD) exploration and recovery, but there has been a lack of accurate, automatically obtained statistics regarding this parameter. Herein, a technique for real-time HDD length detection and a management [...] Read more.
The drilling length is an important parameter in the process of horizontal directional drilling (HDD) exploration and recovery, but there has been a lack of accurate, automatically obtained statistics regarding this parameter. Herein, a technique for real-time HDD length detection and a management system based on the electromagnetic detection method with a microprocessor and two magnetoresistive sensors employing the software LabVIEW are proposed. The basic principle is to detect the change in the magnetic-field strength near a current coil while the drill stem and drill-stem joint successively pass through the current coil forward or backward. The detection system consists of a hardware subsystem and a software subsystem. The hardware subsystem employs a single-chip microprocessor as the main controller. A current coil is installed in front of the clamping unit, and two magneto resistive sensors are installed on the sides of the coil symmetrically and perpendicular to the direction of movement of the drill pipe. Their responses are used to judge whether the drill-stem joint is passing through the clamping unit; then, the order of their responses is used to judge the movement direction. The software subsystem is composed of a visual software running on the host computer and a software running in the slave microprocessor. The host-computer software processes, displays, and saves the drilling-length data, whereas the slave microprocessor software operates the hardware system. A combined test demonstrated the feasibility of the entire drilling-length detection system. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Back to TopTop