Sentinel-2 Imagery Processing for Tree Logging Observations on the Białowieża Forest World Heritage Site
Abstract
:1. Introduction
2. Materials and Methods
- (1)
- Sen2Cor 2.8,
- (2)
- SNAP 6.0.0,
- (3)
- QGIS 3.2.8. ‘Zanzibar’.
2.1. Study Area
2.2. Data Download and Pre-Processing
- S2A_MSIL2A_20161017T094032_N0204_R036_T34UFD_20161017T094431.SAFE,
- S2B_MSIL2A_20181012T094029_N0209_R036_T34UFD_20181012T145646.SAFE.
2.3. Environmental Analysis Tools
- 1.
- Ratio Vegetation Index (RVI)
- 2.
- Difference Vegetation Index (DVI)
- 3.
- Normalized Difference Vegetation Index (NDVI)
- 4.
- Perpendicular Vegetation Index (PVI)
- 5.
- Soil-Adjusted Vegetation Index (SAVI)
- 6.
- Global Environmental Monitoring Index (GEMI)
- 7.
- MERIS Terrestrial Chlorophyll Index (MTCI)
- 8.
- Modified Chlorophyll Absorption Ratio Index (MCARI)
- 9.
- Brightness Index (BI)
- 10.
- Color Index (CI)
- 11.
- Leaf Area Index (LAI),
- 12.
- Fraction of Absorbed Photosynthetically Active Radiation (FAPAR),
- 13.
- Fractional Vegetation Cover (FVC or FCOVER),
- 14.
- Chlorophyll content (a + b) (Cab),
- 15.
- Canopy water content (CWC or CW).
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- ESA. Sentinel Online. Sentinel-2. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-2 (accessed on 18 June 2020).
- ESA. Science Toolbox Exploitation Platform (STEP). Sentinel Application Platform (SNAP). Available online: https://step.esa.int/main/toolboxes/snap (accessed on 25 June 2020).
- Milodowski, D.; Mitchard, E.; Williams, M. Forest loss maps from regional satellite monitoring systematically underestimate deforestation in two rapidly changing parts of the Amazon. Environ. Res. Lett. 2017, 12, 094003. [Google Scholar] [CrossRef] [Green Version]
- USAID. Overview of semi-automated approaches for monitoring national deforestation. In Forest Carbon, Markets and Communities (FCMC) Program; USAID: Washington, DC, USA, 2015. [Google Scholar]
- EU SCIENCE HUB. European Commission’s Science and Knowledge Service. A Comparison of US and EU Satellites in Monitoring Forest Disturbances. 2019. Available online: https://ec.europa.eu/jrc/en/science-update/comparison-us-and-eu-satellites-monitoring-forest-disturbances (accessed on 18 June 2020).
- Simonetti, D.; Marelli, A.; Rodriguez, D.; Vasilev, V.; Strobl, P.; Burger, A.; Soille, P.; Achard, F.; Eva, H.; Stibig, H.J.; et al. Sentinel-2 web platform for REDD+ monitoring. In JRC Technical Reports; European Commission: Brussels, Belgium, 2017. [Google Scholar]
- Addabbo, P.; Focareta, M.; Marcuccio, S.; Votto, C.; Ullo, S.L. Contribution of Sentinel-2 data for applications in vegetation monitoring. In ACTA IMEKO; IMEKO: Budapest, Hungary, 2016; Volume 5, pp. 44–54. ISSN 2221-870X. [Google Scholar]
- Hawryło, P.; Wężyk, P. Predicting Growing Stock Volume of Scots Pine Stands Using Sentinel-2 Satellite Imagery and Airborne Image-Derived Point Clouds. Forests 2018, 9, 274. [Google Scholar] [CrossRef] [Green Version]
- Spectral Reflectance. Humboldt State Geospatial Online. Humboldt State University. Available online: http://gsp.humboldt.edu/OLM/Courses/GSP_216_Online/lesson2-1/reflectance.html (accessed on 17 June 2020).
- Mikusiński, G.; Bubnicki, J.W.; Churski, M.; Czeszczewik, D.; Walankiewicz, W.; Kuijper, D.P. Is the impact of loggings in the last primeval lowland forest in Europe underestimated? The conservation issues of Białowieża Forest. Biolog. Conserv. 2018, 227, 266–274. [Google Scholar] [CrossRef]
- Commission Calls for Immediate Suspension of Logging in Poland’s Białowieża Forest. European Commision, European Union. 13 July 2017. Available online: https://ec.europa.eu/commission/presscorner/detail/pl/IP_17_1948 (accessed on 1 August 2020).
- Bohdan, A.; Grundland, M.R.; Kolbusz, M.; Książek, M.; Mikos, A.; Rok, J. Report on the Devastation of the Forest, 2017; Greenpeace: Warszawa, Poland, 2018; Available online: https://www.greenpeace.org/poland/raporty/1119/raportz-dewastacji-puszczy-2017 (accessed on 15 June 2020).
- Więcko, E. Białowieza Primeval Forest; Wydawnictwo Naukowe (PWN): Warszawa, Poland, 1984. [Google Scholar]
- Karczewska, M. Location. Białowieża National Park. Available online: https://bpn.com.pl (accessed on 18 June 2020).
- Climate Maps of Poland. CLIMATE IMGW-PIB. Available online: https://klimat.imgw.pl/pl/climate-maps (accessed on 19 June 2020).
- Modzelewska, A.; Fassnacht, F.E.; Stereńczak, K. Tree species identification within an extensive forest area with diverse management regimes using airborne hyperspectral data. Int. J. Appl. Earth Obs. Geoinf. 2020, 84, 101960. [Google Scholar] [CrossRef]
- Program Ochrony Przyrody i Wartości Kulturowych w Leśnym Kompleksie Promocyjnym Puszcza Białowieska na okres 1.01.2002–31.12.2011; Regionalna Dyrekcja Lasów Państwowych w Białymstoku: Warsaw, Poland, 2011.
- Copernicus Open Access Hub. Copernicus, ESA. 2019. Available online: https://scihub.copernicus.eu/dhus (accessed on 21 June 2020).
- Sen2Cor. STEP ESA. Available online: http://step.esa.int/main/third-party-plugins-2/sen2cor (accessed on 15 June 2020).
- Atmospheric Correction. University of Maryland Institute for Advanced Computer Studies, UMIACS. Available online: http://www.umiacs.umd.edu/research/GC/atmo (accessed on 5 August 2020).
- Da Silva, V.S.; Salami, G.; Da Silva, M.I.; Silva, E.A.; Monteiro Junior, J.J.; Alba, E. Methodological evaluation of vegetation indexes in land use and land cover (LULC) classification. Geol. Ecol. Landsc. 2019, 4, 159–169. [Google Scholar] [CrossRef]
- Change Detection of Vegetation Cover, Using Multi-Temporal Remote Sensing Data and GIS Techniques. Geospatial World. 2009. Available online: https://www.geospatialworld.net/article/change-detection-of-vegetation-cover-using-multi-temporal-remote-sensing-data-and-gis-techniques (accessed on 15 June 2020).
- Othman, M.A.; Ash’Aari, Z.H.; Aris, A.Z.; Ramli, M.F. Tropical deforestation monitoring using NDVI from MODIS satellite: A case study in Pahang, Malaysia. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018; Volume 169. [Google Scholar] [CrossRef]
- Vilhar, U.; Beuker, E.; Mizunuma, T.; Skudnik, M.; Lebourgeois, F.; Soudani, K.; Wilkinson, M. Tree Phenology. In Forest Monitoring—Methods for Terrestrial Investigations in Europe with an Overview of North America and Asia; Elsevier: Amsterdam, The Netherlands, 2013; Volume 12, pp. 169–182. [Google Scholar] [CrossRef]
- Myneni, R.B.; Hall, F.G.; Sellers, P.J.; Marshak, A.L. The Interpretation of Spectral Vegetation Indexes. In IEEE Transactions on Geoscience and Remote Sensing; IEEE: New York, NY, USA, 1995; Volume 33, pp. 481–486. [Google Scholar] [CrossRef]
- Bochenek, Z.; Ziolkowski, D.; Bartold, M.; Orlowska, K.; Ochtyra, A. Monitoring forest biodiversity and the impact of climate on forest environment using high-resolution satellite images. Eur. J. Remote Sens. 2017, 51, 166–181. [Google Scholar] [CrossRef] [Green Version]
- Bader, A.; El Battay, A.; Belaid, M.; Nadi, M. Comparative Study of SAVI and NDVI Vegetation Indices in Sulaibiya Area (Kuwait) Using Worldview Satellite Imagery. Int. J. Geosci. Geomat. 2013, 1, 50–53. [Google Scholar]
- Schultz, M.; Clevers, J.G.; Carter, S.; Verbesselt, J.; Avitabile, V.; Quang, H.V.; Herold, M. Performance of vegetation indices from Landsat time series in deforestation monitoring. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 318–327. [Google Scholar] [CrossRef]
- Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS J. Photogram. Remote Sens. 2013, 82, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Weiss, M.; Baret, F. S2ToolBox Level 2 Products: LAI, FAPAR, FCOVER. Version 1.1. STEP, ESA. 2 May 2016. Available online: http://step.esa.int/docs/extra/ATBD_S2ToolBox_L2B_V1.1.pdf (accessed on 15 June 2020).
- Sentinel Application Platform (SNAP). STEP, ESA, 6.0.0. Available online: https://step.esa.int/main/toolboxes/sentinel-2-toolbox/sentinel-2-toolbox-features/ (accessed on 15 June 2020).
- Konarzewski, M.; Zabielski, R.; Kowalczyk, R.; Duszyński, J. Białowieża Forest: Logging data lacking. Science 2018, 359, 646. [Google Scholar] [CrossRef] [PubMed]
- Normalized Difference Vegetation Index. Custom-Scripts. Sentinel-Hub. Available online: https://custom-scripts.sentinel-hub.com/custom-scripts/sentinel-2/ndvi (accessed on 18 June 2020).
- Pałaś, K.W. Sentinel-2 Imagery Processing in Snap Software for Environmental Analysis on the Example of Bialowieza Forest. Bachelor’s Thesis, Warsaw University of Technology, Warszawa, Poland, September 2019. [Google Scholar]
Band Number | Band Description | Wavelength Range (nm) | Resolution (m) |
---|---|---|---|
B1 | Coastal aerosol | 433–453 | 60 |
B2 | Blue | 458–523 | 10 |
B3 | Green | 543–578 | 10 |
B4 | Red | 650–680 | 10 |
B5 | Red-edge 1 | 698–713 | 20 |
B6 | Red-edge 2 | 733–748 | 20 |
B7 | Red-edge | 773–793 | 20 |
B8 | Near infrared (NIR) | 785–900 | 10 |
B8A | Near infrared narrow (NIRn) | 855–875 | 20 |
B9 | Water vapour | 935–955 | 60 |
B10 | Shortwave infrared/Cirrus | 1360–1390 | 60 |
B11 | Shortwave infrared 1 (SWIR1) | 1565–1655 | 20 |
B12 | Shortwave infrared 2 (SWIR2) | 2100–2280 | 20 |
Index Value Year | Dense Forest | Felling Site | ||
---|---|---|---|---|
2016 | 2018 | 2016 | 2018 | |
RVI | 11.029 | 9.747 | 4.105 | 2.336 |
DVI | 0.140 | 0.156 | 0.056 | 0.108 |
NDVI | 0.834 | 0.814 | 0.608 | 0.400 |
PVI | 0.099 | 0.110 | 0.040 | 0.077 |
SAVI | 0.315 | 0.338 | 0.142 | 0.211 |
GEMI | 0.485 | 0.569 | 0.351 | 0.538 |
MTCI | 2.681 | 2.802 | 1.552 | 1.152 |
MCARI | 0.061 | 0.072 | 0.028 | 0.029 |
BI | 0.0173 | 0.0226 | 0.0169 | 0.0694 |
CI | −0.176 | −0.196 | 0.074 | 0.188 |
LAI | 0.846 | 1.348 | 0.254 | 0.327 |
FAPAR | 0.564 | 0.680 | 0.305 | 0.291 |
FCOVER | 0.231 | 0.344 | 0.076 | 0.107 |
Cab (g/m2) | 52.140 | 77.093 | 28.190 | 18.719 |
CW (g/m2) | 0.020 | 0.032 | 0.0 | 0.010 |
Mean | Median | Standard Deviation | |
---|---|---|---|
RVI | |||
2016 | 11.0192 | 9.9237 | 12.0959 |
2018 | 8.2473 | 8.1417 | 2.4956 |
Difference | 2.7719 | 1.7138 | 11.8672 |
DVI | |||
2016 | 0.1470 | 0.1447 | 0.0424 |
2018 | 0.1625 | 0.1600 | 0.0465 |
Difference | −0.0156 | −0.0137 | 0.0349 |
NDVI | |||
2016 | 0.8065 | 0.8167 | 0.0723 |
2018 | 0.7661 | 0.7812 | 0.0719 |
Difference | 0.0404 | 0.0338 | 0.0696 |
PVI | |||
2016 | 0.1039 | 0.1023 | 0.0300 |
2018 | 0.1149 | 0.1131 | 0.0329 |
Difference | −0.0110 | −0.0097 | 0.0247 |
SAVI | |||
2016 | 0.3183 | 0.3192 | 0.0700 |
2018 | 0.3374 | 0.3394 | 0.0728 |
Difference | −0.0191 | −0.0178 | 0.0564 |
GEMI | |||
2016 | 0.5105 | 0.5092 | 0.0717 |
2018 | 0.5566 | 0.5550 | 0.0762 |
Difference | −0.0462 | −0.0429 | 0.0470 |
MTCI | |||
2016 | 2.4564 | 2.3383 | 1.9240 |
2018 | 2.3118 | 2.2656 | 1.6531 |
Difference | 0.1446 | 0.1890 | 2.3789 |
MCARI | |||
2016 | 0.0859 | 0.0758 | 0.0875 |
2018 | 0.0861 | 0.0772 | 0.0426 |
Difference | −0.0003 | −0.0016 | 0.0863 |
BI | |||
2016 | 0.0211 | 0.0201 | 0.0092 |
2018 | 0.0290 | 0.0274 | 0.0100 |
Difference | −0.0079 | −0.0069 | 0.0080 |
CI | |||
2016 | −0.1568 | −0.1583 | 0.1156 |
2018 | −0.1512 | −0.1559 | 0.0854 |
Difference | −0.0056 | −0.0021 | 0.1117 |
LAI | |||
2016 | 1.0009 | 0.9923 | 0.3320 |
2018 | 1.2170 | 1.2378 | 0.3712 |
Difference | −0.2161 | −0.2274 | 0.2677 |
FAPAR | |||
2016 | 0.5938 | 0.6030 | 0.5938 |
2018 | 0.6268 | 0.6441 | 0.1022 |
Difference | −0.0330 | −0.0362 | 0.0782 |
FCOVER | |||
2016 | 0.2735 | 0.2744 | 0.0808 |
2018 | 0.3302 | 0.3334 | 0.0886 |
Difference | −0.0566 | −0.0554 | 0.0593 |
Cab (g/m2) | |||
2016 | 56.8290 | 55.2143 | 17.0492 |
2018 | 60.0394 | 59.1962 | 60.0279 |
Difference | −3.2104 | −4.0140 | 15.1917 |
CW (g/m2) | |||
2016 | 0.0279 | 0.0264 | 0.0129 |
2018 | 0.0359 | 0.0350 | 0.0144 |
Difference | −0.0080 | −0.0091 | 0.0107 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pałaś, K.W.; Zawadzki, J. Sentinel-2 Imagery Processing for Tree Logging Observations on the Białowieża Forest World Heritage Site. Forests 2020, 11, 857. https://doi.org/10.3390/f11080857
Pałaś KW, Zawadzki J. Sentinel-2 Imagery Processing for Tree Logging Observations on the Białowieża Forest World Heritage Site. Forests. 2020; 11(8):857. https://doi.org/10.3390/f11080857
Chicago/Turabian StylePałaś, Klaudia Weronika, and Jarosław Zawadzki. 2020. "Sentinel-2 Imagery Processing for Tree Logging Observations on the Białowieża Forest World Heritage Site" Forests 11, no. 8: 857. https://doi.org/10.3390/f11080857
APA StylePałaś, K. W., & Zawadzki, J. (2020). Sentinel-2 Imagery Processing for Tree Logging Observations on the Białowieża Forest World Heritage Site. Forests, 11(8), 857. https://doi.org/10.3390/f11080857