Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = beyond fourth-generation/fifth-generation (B4G/5G)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 15283 KiB  
Article
A Fast Convergence Scheme Using Chebyshev Iteration Based on SOR and Applied to Uplink M-MIMO B5G Systems for Multi-User Detection
by Yung-Ping Tu and Guan-Hong Liu
Appl. Sci. 2025, 15(12), 6658; https://doi.org/10.3390/app15126658 - 13 Jun 2025
Viewed by 396
Abstract
Massive multiple input–multiple output (M-MIMO) is a promising and pivotal technology in contemporary wireless communication systems that can effectively enhance link reliability and data throughput, especially in uplink scenarios. Even so, the receiving end requires more computational complexity to reconstitute the signal. This [...] Read more.
Massive multiple input–multiple output (M-MIMO) is a promising and pivotal technology in contemporary wireless communication systems that can effectively enhance link reliability and data throughput, especially in uplink scenarios. Even so, the receiving end requires more computational complexity to reconstitute the signal. This problem has emerged in fourth-generation (4G) MIMO system; with the dramatic increase in demand for devices and data in beyond-5G (B5G) systems, this issue will become yet more obvious. To take into account both complexity and signal-revested capability at the receiver, this study uses the matrix iteration method to avoid the staggering amount of operations produced by the inverse matrix. Then, we propose a highly efficient multi-user detector (MUD) named hybrid SOR-based Chebyshev acceleration (CHSOR) for the uplink of M-MIMO orthogonal frequency-division multiplexing (OFDM) and universal filtered multi-carrier (UFMC) waveforms, which can be promoted to B5G developments. The proposed CHSOR scheme includes two stages: the first consists of successive over-relaxation (SOR) and modified successive over-relaxation (MSOR), combining the advantages of low complexity of both and generating a better initial transmission symbol, iteration matrix, and parameters for the next stage; sequentially, the second stage adopts the low-cost iterative Chebyshev acceleration method for performance refinement to obtain a lower bit error rate (BER). Under constrained evaluation settings, Section (Simulation Results and Discussion) presents the results of simulations performed in MATLAB version R2022a. Results show that the proposed detector can achieve a 91.624% improvement in BER performance compared with Chebyshev successive over-relaxation (CSOR). This is very near to the performance of the minimum mean square error (MMSE) detector and is achieved in only a few iterations. In summary, our proposed CHSOR scheme demonstrates fast convergence compared to previous works and as such possesses excellent BER and complexity performance, making it a competitive solution for uplink M-MIMO B5G systems. Full article
Show Figures

Figure 1

9 pages, 4134 KiB  
Article
5G/B5G Internet of Things MIMO Antenna Design
by Muhammad Ikram
Signals 2022, 3(1), 29-37; https://doi.org/10.3390/signals3010003 - 6 Jan 2022
Cited by 6 | Viewed by 4494
Abstract
The current and future wireless communication systems, WiFi, fourth generation (4G), fifth generation (5G), Beyond5G, and sixth generation (6G), are mixtures of many frequency spectrums. Thus, multi-functional common or shared aperture antenna modules, which operate at multiband frequency spectrums, are very desirable. This [...] Read more.
The current and future wireless communication systems, WiFi, fourth generation (4G), fifth generation (5G), Beyond5G, and sixth generation (6G), are mixtures of many frequency spectrums. Thus, multi-functional common or shared aperture antenna modules, which operate at multiband frequency spectrums, are very desirable. This paper presents a multiple-input and multiple-output (MIMO) antenna design for the 5G/B5G Internet of Things (IoT). The proposed MIMO antenna is designed to operate at multiple bands, i.e., at 3.5 GHz, 3.6 GHz, and 3.7 GHz microwave Sub-6 GHz and 28 GHz mm-wave bands, by employing a single radiating aperture, which is based on a tapered slot antenna. As a proof of concept, multiple tapered slots are placed on the corner of the proposed prototype. With this configuration, multiple directive beams pointing in different directions have been achieved at both bands, which in turn provide uncorrelated channels in MIMO communication. A 3.5 dBi realized gain at 3.6 GHz and an 8 dBi realized gain at 28 GHz are achieved, showing that the proposed design is a suitable candidate for multiple wireless communication standards at Sub-6 GHz and mm-wave bands. The final MIMO structure is printed using PCB technology with an overall size of 120 × 60 × 10 mm3, which matches the dimensions of a modern mobile phone. Full article
(This article belongs to the Special Issue Internet of Things for Smart Planet: Present and Future)
Show Figures

Figure 1

20 pages, 3900 KiB  
Article
Dynamic Set Planning for Coordinated Multi-Point in B4G/5G Networks
by Jia-Ming Liang, Ching-Kuo Hsu, Jen-Jee Chen, Po-Han Lin, Po-Min Hsu and Tzung-Shi Chen
Sensors 2021, 21(5), 1752; https://doi.org/10.3390/s21051752 - 3 Mar 2021
Cited by 1 | Viewed by 2543
Abstract
Coordinated Multi-Point (CoMP) is an important technique in B4G/5G networks. With CoMP, multiple base stations can be clustered to compose a cooperating set to improve system throughput, especially for the users in cell edges. Existed studies have discussed how to mitigate overloading scenarios [...] Read more.
Coordinated Multi-Point (CoMP) is an important technique in B4G/5G networks. With CoMP, multiple base stations can be clustered to compose a cooperating set to improve system throughput, especially for the users in cell edges. Existed studies have discussed how to mitigate overloading scenarios and enhance system throughput with CoMP statically. However, static cooperation fixes the set size and neglects the fast-changing of B4G/5G networks. Thus, this paper provides a full study of off-peak hours and overloading scenarios. During off-peak hours, we propose to reduce BSs’ transmission power and use the free radio resource to save energy while guaranteeing users’ QoS. In addition, if large-scale activities happen with crowds gathering or in peak hours, we dynamically compose the cooperating set based on instant traffic requests to adjust base stations’ BSs’ transmission power; thus, the system will efficiently offload the traffic to the member cells which have available radio resources in the cooperating set. Experimental results show that the proposed schemes enhance system throughput, radio resource utilization, and energy efficiency, compared to other existing schemes. Full article
(This article belongs to the Special Issue Energy-Efficient Resource Allocation for beyond 5G and IoT Systems)
Show Figures

Figure 1

11 pages, 2415 KiB  
Article
A Multi-Carrier Waveform Design for 5G and beyond Communication Systems
by Imran Baig, Umer Farooq, Najam Ul Hasan, Manaf Zghaibeh and Varun Jeoti
Mathematics 2020, 8(9), 1466; https://doi.org/10.3390/math8091466 - 1 Sep 2020
Cited by 17 | Viewed by 3996
Abstract
The next generation communication network (NGCN) is expected to provide higher spectral efficiency, low latency, large throughput and massive machine-to-machine type communications. In this regard, the design of the multi-carrier waveform (MCW) is posing a major research problem for the NGCN. To overcome [...] Read more.
The next generation communication network (NGCN) is expected to provide higher spectral efficiency, low latency, large throughput and massive machine-to-machine type communications. In this regard, the design of the multi-carrier waveform (MCW) is posing a major research problem for the NGCN. To overcome the stated problem, a lot of state-of-the-art work exists that proposes various MCW alternative to the standard orthogonal frequency division multiplexing (OFDM) waveform. It is true that OFDM was used in a number of real-time communication systems of fourth generation (4G) networks. However, their use in the upcoming fifth generation (5G) network is not very feasible. This is because of the strict requirements of 5G communication systems, which also extend beyond 5G systems; hence rendering the use of OFDM infeasible for newer communication standards. To satisfy the requirements of upcoming communication networks, there is a dire need for MCWs with better flexibility. In this regard, a precoding-based MCW has been proposed. The proposed MCW fulfills the requirements of the NGCN in terms of low peak-to-average power ratio (PAPR), high spectral efficiency and throughput. The MCW proposed in this work uses power-domain multiplexing such as non-orthogonal multiple access (NOMA) and phase rotation by using the selective mapping (SLM) and generalized chirp-like (GCL) precoding of the input signal to the universal filtered multi-carriers (UFMC) modulations. Statistical analysis of the PAPR is presented by using the complementary cumulative distribution function (CCDF). The MATLAB® simulations have been carried out to implement the CCDF of PAPR and results show that a PAPR gain of 5.4 dB is obtained when the proposed waveform is compared with the standard NOMA-UFMC waveform at clip rate of 10−3, using 4-QAM. Full article
Show Figures

Figure 1

Back to TopTop