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Abstract: The current and future wireless communication systems, WiFi, fourth generation (4G), fifth
generation (5G), Beyond5G, and sixth generation (6G), are mixtures of many frequency spectrums.
Thus, multi-functional common or shared aperture antenna modules, which operate at multiband
frequency spectrums, are very desirable. This paper presents a multiple-input and multiple-output
(MIMO) antenna design for the 5G/B5G Internet of Things (IoT). The proposed MIMO antenna is
designed to operate at multiple bands, i.e., at 3.5 GHz, 3.6 GHz, and 3.7 GHz microwave Sub-6 GHz
and 28 GHz mm-wave bands, by employing a single radiating aperture, which is based on a tapered
slot antenna. As a proof of concept, multiple tapered slots are placed on the corner of the proposed
prototype. With this configuration, multiple directive beams pointing in different directions have
been achieved at both bands, which in turn provide uncorrelated channels in MIMO communication.
A 3.5 dBi realized gain at 3.6 GHz and an 8 dBi realized gain at 28 GHz are achieved, showing that the
proposed design is a suitable candidate for multiple wireless communication standards at Sub-6 GHz
and mm-wave bands. The final MIMO structure is printed using PCB technology with an overall size
of 120 × 60 × 10 mm3, which matches the dimensions of a modern mobile phone.

Keywords: IoT; mm-wave; Sub-6 GHz; tapered slot; 5G

1. Introduction

The exponential growth in data rates is an important aspect of modern research
in mobile Internet of Things (IoT) communication. Substantial work has been done to
improve the data rates and to fulfill ever-increasing requirements, such as 4G, 4G Long
Term Evolution (LTE), and 5G [1–3]. However, data-hungry devices in IoT still need more
and more data rates. Currently, 5G bands at Sub-6 GHz and mm-wave bands have been
officially assigned by the Federal Communication Commission (FCC) to be used for 5G
mobile communication to improve data rates [4]. Moreover, multiple-input multiple-out
(MIMO) can further enhance data rates (channel capacity) by increasing the number of
antennas [5–9].

One possible IoT-based communication scenario is shown in Figure 1, which demon-
strates that in IoT communication, microwave Sub-6 GHz and mm-wave bands will be
combined to access high data rates in large geographical coverage areas [10,11]. Therefore,
in this work, the implementation of a Sub-6 and mm-wave MIMO antenna design is re-
alized by utilizing the concept of a shared aperture antenna, as shown in Figure 1. The
proposed design operates at the Sub-6 GHz band with wider antenna beamwidth and at
the mm-wave band with a sharp directive antenna beam. The sharp directive beam with
high gain is important in sending and receiving high-frequency signals at mm-wave bands.
Additionally, high gain is required to mitigate high path loss at mm-wave bands [12,13].

Shared aperture or common aperture antennas have attracted considerable attention
and interest recently. They have been proposed to operate at microwave Sub-6 GHz and
mm-wave bands to satisfy the requirements of compact size, operating band, and directive
radiation patterns at both bands [14–17]. To date, few designs have been presented that can
simultaneously satisfy those requirements. In this article, a simple method for designing
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a dual-band tapered slot antenna is presented, targeting 3.6 GHz and 28 GHz bands for
5G/B5G applications.
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Figure 1. Integrated Sub-6 GHz and mm-wave bands IOT-based communication system and potential
utilization of the proposed MIMO antenna design.

2. MIMO Antenna & Design Procedure

The proposed design is shown in Figure 2, where it has an overall dimension of
120 × 60 × 10 mm3, which is comparable to existing designs [18,19]. The tapered slot and
its feeding 50 Ω transmission line are printed on the sidewall of the design using a RO-5880
substrate (length (l1) = 25 × width (h1) = 10 mm2) with a thickness of 0.254 mm, a loss
tangent of 0.0009, and relative permittivity (εr) of 2.2. A detailed view of the tapered slot
antenna is shown in Figure 2. The radiating antenna part contains a microstrip feedline of
50 Ω and a tapered slot antenna. The tapered slot operates as an open-ended slot antenna
at the 3.6 GHz band and, at the same time, as an end-fire Vivaldi antenna at the 28 GHz
band, resulting in a shared- aperture and dual-function design. Both the feeding microstrip
line and the tapered slot are attached with λ/4 (λ is a free space wavelength at 28 GHz)
circular stubs [20]. This circular stub is optimized to improve impedance matching. A low
pass filter is also added to the 50 Ω microstrip line to block the high-frequency signal and
to work as a stub at low frequency to improve impedance matching. Hence, the low pass
filter provides dual functionality. These features of the proposed design make it attractive
for installation in mobile phones and other handheld devices in IoT communications.
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Figure 2. The proposed MIMO antenna design: (a) full configuration; (b,c) fabricated prototype.

To achieve a pattern of diversity at both Sub-6 GHz and mm-wave bands, the tapered
slot antenna design is integrated along the four sides of the substrate, establishing an MIMO
antenna design. The performance of Ant. 1 is depicted in Figure 3. It can be seen from the
S-parameters curves that Ant. 1 operates at 3.6 GHz in the 3.5 to 3.8 GHz band as an open
slot antenna, and at 28 GHz in the 25 GHz to 29 GHz band as a Vivaldi antenna. These
observations can be verified by the 3D radiation patterns shown in Figure 3. Ant. 1 provides
a wide beam width at the 3.6 GHz band with a 4 dBi realized gain, and a narrower beam
width with a higher realized gain of 8 dBi at 28 GHz. Since Ant. 1 is based on a tapered
slot structure, the direction of the radiation is end-fire, as shown in Figure 3. The operating
band resonances can be tuned by changing the width and length of the tapered slot. A
detailed design procedure with all dimensions is provided [20].
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Due to large inter-antenna element spacing and antenna placement orientation, the
isolation (coupling) between adjacent antenna elements is low, i.e., more than 17 dB be-
tween Ant. 1 and Ant. 2. Moreover, the MIMO design has four directional radiation
beams pointing to four different locations (ϕ = 180◦, ϕ = 0◦, ϕ = −90◦, and ϕ = 90◦) in
the azimuth plane (the X-Yplane) at both the 3.6 GHz and the 28 GHz bands. This indi-
cates a low correlation coefficient ($) value between adjacent antenna radiation beams,
i.e., between Ant. 1 & Ant. 2, resulting in a design that is a favorable candidate for MIMO
communications [21–23]. This design is also justified by the 3D radiation patterns shown
in Figure 4. The verified simulation and measurement results are presented in Section 3 to
validate the design.
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Figure 4. The 3D radiation patterns of the proposed MIMO antenna at (a) 28 GHz and (b) 3.6 GHz.

3. Simulation and Measurement Results and Discussions

The proposed MIMO antenna is simulated using a high frequency structured simulator
(HFSS). The design was fabricated and tested at the University of Queensland, Australia.
A photograph of the fabricated prototype is provided in Figure 2. A DC-40 GHz 2.92 mm
connector was assembled, with each antenna feeding via soldering for measurement
purposes. Figure 5 shows the measurement setup used in an anechoic chamber for radiation
and gain patterns.
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The simulated S-parameter curves for Ant. 1, Ant. 2, Ant. 3, and Ant. 4 are shown in
Figure 6a, while the measured S-parameter curves for Ant. 1, Ant. 2, Ant. 3, and Ant. 4 are
shown in Figure 6b. These results are plotted for the Sub-6 GHz band. It can be seen that
the proposed MIMO antenna (S11, S22, S33, and S44) operates at 3.6 GHz. An impedance
matching bandwidth of approximately 300 MHz with −10 dB impedance matching is
achieved in the simulation and measured versions. A slight shift in measurements is
observed, attributable to the fabrication and measurement tolerances. Isolation in both
simulated and measured versions is more than 17 dB in the whole operated band. See
Figure 6a for S12 (Ant. 1 and Ant. 2), S13 (Ant. 1 and Ant. 3), and S24 (Ant. 1 and Ant. 2).

The simulated and measured S-parameter curves for Ant. 1, Ant. 2, Ant. 3, and
Ant. 4 for mm-wave bands are shown in Figure 7a,b. Both the simulated and measured
results show good agreement. All the antenna elements (S11, S22, S33, and S44) show −10 dB
impedance matching from 25 GHz to 29 GHz. A slight discrepancy in the measured
curves, especially for Ant. 3, is attributable to fabrication and measurement tolerances. The
isolation in the mm-wave band is more than 30 dB between all antennas (Ant. 1 to Ant. 4).
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sured.

The normalized simulated and measured 2D radiation patterns, in terms of gain for
Ant. 1, Ant. 2, Ant. 3, and Ant. 4 at 3.6 GHz, are shown in Figure 8. The simulated
plots follow the measured plot trend, showing good agreement. Each plot has a direc-
tional radiational pattern with wider beamwidth, illustrating the MIMO pattern diversity
performances.
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The normalized simulated and measured 2D radiation patterns, in terms of gain for
Ant. 1, Ant. 2, Ant. 3, and Ant. 4 at 28 GHz, are shown in Figure 9. The simulated
plots follow the measured plot trend, showing good agreement. Each plot has a more
directional radiational pattern with a narrow beamwidth, compared to the 3.6 GHz band.
This is an advantage, because more directive antennas are needed at the mm-wave band
to compensate for higher path loss. The results also indicate that MIMO radiation pattern
diversity performances are at the mm-wave band. As shown in Figure 8, at θ = 90◦ (X-Y
plane), the main beam of Ant. 1 is pointing (i.e., the propagating direction of the signal) in
the x-direction (ϕ = 180◦); Ant. 2 is pointing in the x-direction (ϕ = 0◦); Ant. 3 is pointing
in the-y-direction (ϕ = −90◦); and Ant. 4 is pointing in the y-direction (ϕ = 90◦), covering
most of the azimuth plane (X-Y plane) of special coverage.

The peak simulated and measured realized gain of each antenna is more than 3.5 dBi
in the whole covered band at Sub-6 GHz band, as shown in Figure 10a. While, the peak
simulated and measured realized gain of each antenna is more than 8 dBi in the whole
covered band at mm-wave, as shown in Figure 10b. Good agreement between simulated
and measured realized gain is achieved.
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4. Comparison with State-of-the-Art Designs

The proposed MIMO antenna design is compared with the recent state-of-the-art
shared aperture MIMO antenna designs in Table 1. The MIMO design [13] only covers
the mm-wave band and is not a shared aperture antenna, while other designs [14,16,17]
covered both Sub-6 GHz and mm-wave bands. However, [17] does not have MIMO config-
urations and others have somewhat larger-sized and comparatively complex structures.
The proposed design, which operates at Sub-6 GHz and mm-wave bands using a single
tapered slot structure and provides MIMO characteristics at both bands, has a compact size
and a simple structure.
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Table 1. Comparison of the proposed MIMO antenna design with state-of-the-art designs.

References Overall Size (mm3)
Sub-6 GHz

Bands
mm-Wave

Bands MIMO Configurations Realized Gain
@ 28 GHz

[13] 80 × 80 × 1.57 Not covered 28, 38 4-element at mm-wave 10

[14] 157.7 × 70 × 0.51 3.5 28, 38 8-element at Sub-6 GHz
8-element at mm-wave 8

[16] 150 × 75 × 0.51 0.8, 2 28 2-element at Sub-6 GHz
4-element at mm-wave 11

[17] 22.8 × 22.8 × 3.4 3.5 28 No 12

This Work 100 × 60 × 10 3.6 28 4-element at Sub-6 GHz
4-element at mm-wave 8

5. Conclusions

In this work, a multi-band and multi-beam antenna for 5G MIMO Internet of Things
(IoT) has been presented. The antenna structure consists of four tapered slots and has been
placed on the corner of a smartphone to realize pattern diversity. The tapered slot has dual
functionality: It operates as an open-ended slot antenna at band 3.6 GHz with a measured
impedance bandwidth of 300 MHz, and as an end-fire tapered slot antenna at 28 GHz, with
a measured impedance bandwidth of 4 GHz. The measured realized gains at Sub-6 GHz
and mm-wave bands are 3.5 dBi and 8 dBi, respectively. The measured results show that the
proposed design fulfills the requirements of multiple wireless communication standards
(5G/B5G) at both the Sub-6 GHz and mm-wave bands.
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