Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = basalt fiber-reinforced polymer rebar

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 15835 KiB  
Article
Explainable Boosting Machine Learning for Predicting Bond Strength of FRP Rebars in Ultra High-Performance Concrete
by Alireza Mahmoudian, Maryam Bypour and Mahdi Kioumarsi
Computation 2024, 12(10), 202; https://doi.org/10.3390/computation12100202 - 9 Oct 2024
Cited by 5 | Viewed by 1900
Abstract
Aiming at evaluating the bond strength of fiber-reinforced polymer (FRP) rebars in ultra-high-performance concrete (UHPC), boosting machine learning (ML) models have been developed using datasets collected from previous experiments. The considered variables in this study are rebar type and diameter, elastic modulus and [...] Read more.
Aiming at evaluating the bond strength of fiber-reinforced polymer (FRP) rebars in ultra-high-performance concrete (UHPC), boosting machine learning (ML) models have been developed using datasets collected from previous experiments. The considered variables in this study are rebar type and diameter, elastic modulus and tensile strength of rebars, concrete compressive strength and cover, embedment length, and test method. The dataset contains two test methods: pullout tests and beam tests. Four types of rebar, including carbon fiber-reinforced polymer (CFRP), glass fiber-reinforced polymer (GFRP), basalt, and steel rebars, were considered. The boosting ML models applied in this study include AdaBoost, CatBoost, Gradient Boosting, XGBoost, and Hist Gradient Boosting. After hyperparameter tuning, these models demonstrated significant improvements in predictive accuracy, with XGBoost achieving the highest R2 score of 0.95 and the lowest Root Mean Square Error (RMSE) of 2.21. Shapley values analysis revealed that tensile strength, elastic modulus, and embedment length are the most critical factors influencing bond strength. The findings offer valuable insights for applying ML models in predicting bond strength in FRP-reinforced UHPC, providing a practical tool for structural engineering. Full article
(This article belongs to the Special Issue Computational Methods in Structural Engineering)
Show Figures

Figure 1

14 pages, 4710 KiB  
Article
Behavior of a Precast Bridge Pier with Basalt Fiber-Reinforced Polymer (BFRP)-Strengthened Segments under Seismic Loading
by Chao Li, Yaowei Peng, Pengyu Yang, Hao Zhou and Ningbo Wang
Polymers 2024, 16(14), 2018; https://doi.org/10.3390/polym16142018 - 15 Jul 2024
Viewed by 1344
Abstract
The precast segmental column (PSC) has been proposed for reducing onsite construction time and minimizing impacts on traffic and the environment. It has been proven to have good seismic performance according to previous studies. However, due to the rocking behavior of the column, [...] Read more.
The precast segmental column (PSC) has been proposed for reducing onsite construction time and minimizing impacts on traffic and the environment. It has been proven to have good seismic performance according to previous studies. However, due to the rocking behavior of the column, the toe of the bottom segment could experience excessive compressive damage. In addition, the commonly used steel rebars in the PSC could experience corrosion problems during the service life of the structure. Moreover, ordinary Portland cement concrete (OPC) is normally used in the construction of the PSC, but the manufacturing processes of the OPC could emit a lot of carbon dioxide. This paper investigates the seismic performance of PSCs incorporating Basalt Fiber Reinforced Polymer (BFRP) bars and geopolymer concrete (GPC) segments. To mitigate the concrete crushing damage of the segment, the BFRP sheet was used to wrap the bottom segment of one of the specimens. The results revealed that the BFRP-reinforced geopolymer concrete PSC exhibited good seismic performance with minimal damage and small residual displacement. Strengthening the bottom segment with BFRP wrapping proved to be effective in reducing concrete damage. As a result, the column with BFRP wrap demonstrated the ability to withstand ground motions with higher Peak Ground Acceleration (PGA) compared to the column without strengthening. Full article
Show Figures

Figure 1

18 pages, 15014 KiB  
Article
A Study of the Shear Behavior of Concrete Beams with Synthetic Fibers Reinforced with Glass and Basalt Fiber-Reinforced Polymer Bars
by Isabela Oliveira Duarte, Nadia Cazarim da Silva Forti, Lia Lorena Pimentel and Ana Elisabete Paganelli Guimarães de Avila Jacintho
Buildings 2024, 14(7), 2123; https://doi.org/10.3390/buildings14072123 - 11 Jul 2024
Cited by 3 | Viewed by 1685
Abstract
The use of synthetic materials with high corrosion resistance in a concrete matrix yields structures that are more durable and suitable for use in aggressive environments, eliminating the need for frequent maintenance. Examples of such materials include glass (GFRP) and basalt (BFRP) fiber-reinforced [...] Read more.
The use of synthetic materials with high corrosion resistance in a concrete matrix yields structures that are more durable and suitable for use in aggressive environments, eliminating the need for frequent maintenance. Examples of such materials include glass (GFRP) and basalt (BFRP) fiber-reinforced polymer bars (FRP). Due to the low modulus of elasticity of these bars, concrete elements reinforced with FRP longitudinal rebars tend to exhibit cracks with wider openings and greater depths compared to those reinforced with steel rebars, which diminishes the element’s shear resistance. The addition of discontinuous fibers into the concrete aims to maintain stress transfer across the cracks, thereby enhancing the shear capacity and ductility of FRP-reinforced structures. This study evaluates the impact of fiber addition on the shear resistance of concrete beams reinforced with FRP rebars. An experimental investigation was conducted, focusing on the partial and complete substitution of stirrups with polypropylene macro fibers in concrete beams reinforced with FRP longitudinal rebars and stirrups. This research examined beams reinforced with glass (GFRP) and basalt (BFRP) fiber-reinforced polymer bars. For the initial set of beams, all stirrups were replaced with synthetic macro fibers. In the subsequent set, macro fibers were added to beams with insufficient stirrups. Although the complete replacement of GFRP and BFRP stirrups with polypropylene macro fibers did not alter the brittle shear failure mode, it did enhance the shear resistance capacity by 78.5% for GFRP-reinforced beams and 60.4% for BFRP-reinforced beams. Furthermore, the addition of macro fibers to beams with insufficient stirrups, characterized by excessive spacing, changed the failure mode from brittle shear to pseudo-ductile flexural failure due to concrete crushing. In such instances, the failure load increased by 18.8% for beams with GFRP bars and 22.8% for beams with BFRP bars. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

25 pages, 12502 KiB  
Article
Bond Behavior of Recycled Tire Steel-Fiber-Reinforced Concrete and Basalt-Fiber-Reinforced Polymer Rebar after Prolonged Seawater Exposure
by Fatemeh Soltanzadeh, Ali Edalat-Behbahani, Kasra Hosseinmostofi, Ibrahim Fatih Cengiz, Joaquim Miguel Oliveira and Rui L. Reis
Sustainability 2023, 15(22), 15856; https://doi.org/10.3390/su152215856 - 11 Nov 2023
Cited by 1 | Viewed by 1983
Abstract
The integration of basalt-fiber-reinforced polymer (BFRP) rebars into concrete design standards still remains unrealized due to limited knowledge on the performance of the rebars in concrete, particularly in terms of bond durability in harsh conditions. In this work, we investigated the bond durability [...] Read more.
The integration of basalt-fiber-reinforced polymer (BFRP) rebars into concrete design standards still remains unrealized due to limited knowledge on the performance of the rebars in concrete, particularly in terms of bond durability in harsh conditions. In this work, we investigated the bond durability characteristics of BFRP rebars in fiber-reinforced self-compacting concrete (FRSCC) structures. To this aim, a number of 24 FRSCC pullout specimens reinforced with either BFRP rebar or glass-fiber-reinforced polymer, GFRP, rebar, which is a commonly used type of FRP, were fabricated. Half of these specimens were submerged in simulated seawater for a two-year span, while the other 12 similar specimens were maintained in standard laboratory conditions for comparative purposes. Subsequently, all 24 specimens underwent monotonic and fatigue pull-out tests. The exploration in this study focused on investigating the influence of the environmental condition, reinforcement type, and loading type on the bond stress versus slip relationship, maximum bond stress, and failure mode of the specimens. Based on the results obtained and by adopting the durability approach of industry standards for prediction of the bond retention of FRP-reinforced concrete, the bond strength retention between BFRP/GFRP and FRSCC after 50 years of exposure to seawater was estimated. The outcomes of the study are expected to enhance engineers’ confidence in the use of FRP, especially BFRP, for constructing durable and sustainable reinforced concrete structures in aggressive environments. Full article
(This article belongs to the Special Issue Concrete with Recycled and Sustainable Materials)
Show Figures

Figure 1

17 pages, 4786 KiB  
Article
Experimental Study and Numerical Analysis on the Shear Resistance of Bamboo Fiber Reinforced Steel-Wire-Mesh BFRP Bar Concrete Beams
by Wei Chen, Guohui Qin, Fei Luo, Yuxian Zhu, Gangrui Fu, Siqi Yao and Haohan Ma
Materials 2023, 16(9), 3446; https://doi.org/10.3390/ma16093446 - 28 Apr 2023
Cited by 4 | Viewed by 2152
Abstract
Bamboo fiber is a natural and environmentally friendly material made from cheap and widely available resources and is commonly selected as the reinforcement material for steel-wire-mesh BFRPbar concrete beams. In this work, the effects of various fiber lengths and fiber volume rates on [...] Read more.
Bamboo fiber is a natural and environmentally friendly material made from cheap and widely available resources and is commonly selected as the reinforcement material for steel-wire-mesh BFRPbar concrete beams. In this work, the effects of various fiber lengths and fiber volume rates on the shear properties of bamboo-fiber-reinforced steel-wire-mesh basalt fiber composite reinforcement concrete beams were studied through a combination of shear tests and numerical simulations. The findings demonstrate that the addition of bamboo fiber improves the cracking performance of the beam. The improvement effect of 45 mm bamboo fiber mixed with a 1% volume rate was the most obvious at about 31%. Additionally, the test beam’s total stiffness was increased, and the deflection was decreased. However, the use of bamboo fiber was found to decrease the concrete’s compressive strength, lowering the final shear capacity for the majority of beams. A method for estimating the shear capacity of the bamboo-fiber-reinforced steel-wire-mesh BFRPbar concrete beams is provided and lays the foundation for engineering practice, in accordance with the impact of bamboo fiber and steel wire mesh on beams that suffer shear breaks. Full article
Show Figures

Figure 1

18 pages, 4375 KiB  
Article
Comparison of the Prediction of Effective Moment of Inertia of FRP Rebar-Reinforced Concrete by an Optimization Algorithm
by Nag-Seop Jang, Young-Hwan Kim and Hong-Seob Oh
Materials 2023, 16(2), 621; https://doi.org/10.3390/ma16020621 - 9 Jan 2023
Cited by 2 | Viewed by 2315
Abstract
FRP (fiber-reinforced polymer)-reinforced concrete members have larger deflection than reinforced concrete members because of the low modulus of elasticity of the FRP bar. In this paper, we proposed a new effective moment of inertia equation to predict the deflection of FRP-reinforced concrete members [...] Read more.
FRP (fiber-reinforced polymer)-reinforced concrete members have larger deflection than reinforced concrete members because of the low modulus of elasticity of the FRP bar. In this paper, we proposed a new effective moment of inertia equation to predict the deflection of FRP-reinforced concrete members based on the harmony search algorithm. The harmony search algorithm is used to optimize a function that minimizes the error between the deflection value of the experimental result and the deflection value expected from the specimen’s specifications. In the experimental part, four GFRP (Glass Fiber-Reinforced Polymer)- and BFRP (Basalt Fiber-Reinforced Polymer)-reinforced concrete slab specimens were manufactured and tested. FRP-reinforced concrete slabs were reinforced with GFRP and BFRP rebars on spiral rib surfaces. The effects of the FRP reinforcement ratio and balanced reinforcement ratio (ρf/ρfb), the moment of inertia of the transformed cracked section and the gross moment of inertia (Icr/Ig), and the cracking moment and the maximum service load moment (Mcr/Ma) on the effective moment of inertia have been considered. The experimental results and predicted results of the flexural testing of concrete slabs reinforced with FRP rebars were compared, and the experimental results were in good agreement with the calculated values using the proposed effective moment of inertia equation. Full article
Show Figures

Figure 1

20 pages, 1498 KiB  
Review
A Comprehensive Review of the Effects of Different Simulated Environmental Conditions and Hybridization Processes on the Mechanical Behavior of Different FRP Bars
by Mohammadamin Mirdarsoltany, Farid Abed, Reza Homayoonmehr and Seyed Vahid Alavi Nezhad Khalil Abad
Sustainability 2022, 14(14), 8834; https://doi.org/10.3390/su14148834 - 19 Jul 2022
Cited by 12 | Viewed by 2992
Abstract
When it comes to sustainability, steel rebar corrosion has always been a big issue, especially when they are exposed to harsh environmental conditions, such as marine and coastal environments. Moreover, the steel industry is to blame for being one of the largest producers [...] Read more.
When it comes to sustainability, steel rebar corrosion has always been a big issue, especially when they are exposed to harsh environmental conditions, such as marine and coastal environments. Moreover, the steel industry is to blame for being one of the largest producers of carbon in the world. To supplant this material, utilizing fiber-reinforced polymer (FRP) and hybrid FRP bars as a reinforcement in concrete elements is proposed because of their appropriate mechanical behavior, such as their durability, high tensile strength, high-temperature resistance, and lightweight-to-strength ratio. This method not only improves the long performance of reinforced concrete (RC) elements but also plays an important role in achieving sustainability, thus reducing the maintenance costs of concrete structures. On the other hand, FRP bars do not show ductility under tensile force. This negative aspect of FRP bars causes a sudden failure in RC structures, acting as a stumbling block to the widespread use of these bars in RC elements. This research, at first, discusses the effects of different environmental solutions, such as alkaline, seawater, acid, salt, and tap water on the tensile and bonding behavior of different fiber-reinforced polymer (FRP) bars, ranging from glass fiber-reinforced polymer (GFRP) bars, and basalt fiber-reinforced polymer (BFRP) bars, to carbon fiber-reinforced polymer (CFRP) bars, and aramid fiber-reinforced polymer (AFRP) bars. Furthermore, the influence of the hybridization process on the ductility, tensile, and elastic modulus of FRP bars is explored. The study showed that the hybridization process improves the tensile strength of FRP bars by up to 224% and decreases their elastic modulus by up to 73%. Finally, future directions on FRP and hybrid FRP bars are recommended. Full article
(This article belongs to the Special Issue Advanced Composites and Sustainability)
Show Figures

Figure 1

16 pages, 28750 KiB  
Article
Investigation of Biofouling and Its Effect on the Properties of Basalt Fiber Reinforced Plastic Rebars Exposed to Extremely Cold Climate Conditions
by Anatoly K. Kychkin, Larisa Anatoljevna Erofeevskaya, Aisen Kychkin, Elena D. Vasileva, Nikolay F. Struchkov and Mikhail P. Lebedev
Polymers 2022, 14(3), 369; https://doi.org/10.3390/polym14030369 - 18 Jan 2022
Cited by 3 | Viewed by 1923
Abstract
For the first time, the possibility of penetration of mold fungi mycelium and spore-forming bacteria into the structure of basalt fiber reinforced plastic rebars has been shown in laboratory and field experiments. Biological contamination at the “fiber-binding” border reveals areas of swelling and [...] Read more.
For the first time, the possibility of penetration of mold fungi mycelium and spore-forming bacteria into the structure of basalt fiber reinforced plastic rebars has been shown in laboratory and field experiments. Biological contamination at the “fiber-binding” border reveals areas of swelling and penetration of mold fungi mycelium and bacterial spore cells into the binder component. After the exposure of samples at extremely low temperatures, strains of mold fungi of the genus Aspergillus were also isolated from the surface of the rebars. Additionally, spore-forming bacteria of the genus Bacillus immobilized for samples from two years ago. This indicates the high viability of immobilized strains in cold climates. Aboriginal microflora isolated by the enrichment culture technique from the samples was represented by: actinobacteria of the genera Nocardia and Streptomyces; yeast of the genus Rhodotorula; and mold fungi of the genus Penicillium. It was shown that the enrichment culture technique is a highly informative method of diagnosing the bio-infection of polymer composite materials during their operation in extremely low temperatures. The metabolic activity of the cells of cryophilic microorganisms isolated from experimental samples of basalt fiber reinforced plastic rebars was associated with the features of the enzymes and fatty acid composition of the lipid bilayer of cell membranes. In the case of temperature conditions when conventional (mesophilic) microorganisms stop developing vegetative cells, the process of transition of the lipid bilayer of cell membranes into a gel-like state was activated. This transition of the lipid bilayer to a gel-like state allowed the prevention of crystallization and death of the microbial cell when the ambient temperature dropped to negative values and as a result, after thawing, growth resumed and the metabolic activity of the microorganisms was restored. Studies have been carried out on the effect of biodepletion on the elastic strength characteristics, porosity and monolithicity of these materials, while at the same time, after a two year exposure, the strength preservation coefficient was k = 0.82 and the porosity increased by more than two times. The results show that the selected strains affect the properties of polymeric materials in cold climates in relation to the organic components in the structure of polymer composites. Full article
(This article belongs to the Special Issue Advances in Bio-Based Polymeric Materials)
Show Figures

Figure 1

15 pages, 9340 KiB  
Article
Assessment of Extremely Cold Subarctic Climate Environment Destruction of the Basalt Fiber Reinforced Epoxy (BFRE) Rebar Using Its Moisture Uptake Kinetics
by Anatoly K. Kychkin, Anna A. Gavrilieva, Alina A. Vasilieva, Aisen A. Kychkin, Mikhail P. Lebedev and Anastasia V. Sivtseva
Polymers 2021, 13(24), 4325; https://doi.org/10.3390/polym13244325 - 10 Dec 2021
Cited by 3 | Viewed by 2448
Abstract
A quite simple method is proposed for the assessment of extremely cold subarctic climate environment destruction of the basalt fiber reinforced epoxy (BFRE) rebar. The method involves the comparison of experimentally obtained long-term moisture uptake kinetic curves of unexposed and exposed BFRP rebars. [...] Read more.
A quite simple method is proposed for the assessment of extremely cold subarctic climate environment destruction of the basalt fiber reinforced epoxy (BFRE) rebar. The method involves the comparison of experimentally obtained long-term moisture uptake kinetic curves of unexposed and exposed BFRP rebars. A moisture uptake test was carried out at the temperature of 60 °C and relative humidity of 98 ± 2% for 306 days. The plasticization can be neglected because of low-level moisture saturation (<0.41% wt.); the swelling and structural relaxation of the polymer network can be neglected due to the high fiber content of BFRP rebar; moisture diffusion into the basalt fibers can be neglected since it is a much lesser amount than in the epoxy binder. These assumptions made it possible to build a three-stage diffusion model. It is observed that an increase in the density of defects with an increase in the diameter of the BFRP rebar is the result of the technology of manufacturing a periodic profile. The diffusion coefficient of the BFRP rebar with a 6, 10, or 18 mm diameter increased at an average of 82.7%, 56.7%, and 30%, respectively, after exposure to the climate of Yakutsk during 28 months, whereas it was known that the strength indicators had been increased. Full article
Show Figures

Figure 1

13 pages, 5723 KiB  
Article
Investigating Tensile Behavior of Sustainable Basalt–Carbon, Basalt–Steel, and Basalt–Steel-Wire Hybrid Composite Bars
by Mohammadamin Mirdarsoltany, Alireza Rahai, Farzad Hatami, Reza Homayoonmehr and Farid Abed
Sustainability 2021, 13(19), 10735; https://doi.org/10.3390/su131910735 - 27 Sep 2021
Cited by 9 | Viewed by 3083
Abstract
One of the main disadvantages of steel bars is rebar corrosion, especially when they are exposed to aggressive environmental conditions such as marine environments. One of the suggested ways to solve this problem is to use composite bars. However, the use of these [...] Read more.
One of the main disadvantages of steel bars is rebar corrosion, especially when they are exposed to aggressive environmental conditions such as marine environments. One of the suggested ways to solve this problem is to use composite bars. However, the use of these bars is ambiguous due to some weaknesses, such as low modulus of elasticity and linear behavior in the tensile tests. In this research, the effect of the hybridization process on mechanical behavior, including tensile strength, elastic modulus, and energy absorbed of composite bars, was evaluated. In addition, using basalt fibers because of their appropriate mechanical behavior, such as elastic modulus, tensile strength, durability, and high-temperature resistance, compared to glass fibers, as the main fibers in all types of composite hybrid bars, was investigated. A total of 12 hybrid composite bars were made in four different groups. Basalt and carbon T300 composite fibers, steel bars with a diameter of 6 mm, and steel wires with a diameter of 1.5 mm were used to fabricate hybrid composite bars, and vinyl ester 901 was used as the resin. The results show that, depending on composite fibers used for fabrication of hybrid composite bars, the modulus of elasticity and the tensile strength increased compared to glass-fiber-reinforced-polymer (GFRP) bars by 83% to 120% and 6% to 26%, respectively. Moreover, hybrid composite bars with basalt and steel wires witnessed higher absorbed energy compared to other types of hybrid composite bars. Full article
Show Figures

Figure 1

11 pages, 2608 KiB  
Article
Nano- and Micro-Modification of Building Reinforcing Bars of Various Types
by Aleksandr Rudenko, Alexander Biryukov, Oleg Kerzhentsev, Roman Fediuk, Nikolai Vatin, Yuriy Vasilev, Sergey Klyuev, Mugahed Amran and Maciej Szelag
Crystals 2021, 11(4), 323; https://doi.org/10.3390/cryst11040323 - 24 Mar 2021
Cited by 14 | Viewed by 3360
Abstract
Fiber-reinforced plastic (FRP) rebar has drawbacks that can limit its scope, such as poor heat resistance, decrease its strength over time, and under the influence of substances with an alkaline medium, as well as the drawback of a low modulus of elasticity and [...] Read more.
Fiber-reinforced plastic (FRP) rebar has drawbacks that can limit its scope, such as poor heat resistance, decrease its strength over time, and under the influence of substances with an alkaline medium, as well as the drawback of a low modulus of elasticity and deformation. Thus, the aim of the article is the nano- and micro-modification of building reinforcing bars using FRP rebars made of basalt fibers, which were impregnated with a thermosetting polymer binder with micro- or nanoparticles. The research discusses the major results of the developed composite reinforcement with the addition of micro- and nanosized particles. The microstructure of FRP has been studied using scanning electron microscopy. It was revealed that dispersion-strengthened polymer composites with the inclusion of microsilica (SiO2) and nanosized aluminum oxide (Al2O3) particles have a much higher modulus of elasticity and strength when compared with the original polymer materials. In the course of the experiment, we also studied the retained plastic properties that are characterized by the absence of fragility. However, it was found that the high strength of materials was attained with a particle size of 10–500 nm, evenly distributed in the matrix, with an average distance between particles of 100–500 nm. It was also exhibited that composite reinforcement had improved the adhesion characteristics in comparison with both steel reinforcement (1.5–2 times, depending on the diameter), and with traditional unmodified FRP rebar (about 1.5 times). Thus, the use of micro-/nanosized powders increased the limit of the possible temperature range for the use and application of polymeric materials by almost two times, up to 286–320 °C, which will undoubtedly expand the range of the technological applications of products made of these materials. Full article
Show Figures

Figure 1

15 pages, 10241 KiB  
Article
Post-Fire Characteristics of Concrete Beams Reinforced with Hybrid FRP Bars
by Kostiantyn Protchenko and Elżbieta Szmigiera
Materials 2020, 13(5), 1248; https://doi.org/10.3390/ma13051248 - 10 Mar 2020
Cited by 21 | Viewed by 4010
Abstract
One of the main concerns of experimental and numerical investigations regarding the behavior of fiber-reinforced polymer reinforced concrete (FRP-RC) members is their fire resistance to elevated temperatures and structural performance at and after fire exposure. However, the data currently available on the behavior [...] Read more.
One of the main concerns of experimental and numerical investigations regarding the behavior of fiber-reinforced polymer reinforced concrete (FRP-RC) members is their fire resistance to elevated temperatures and structural performance at and after fire exposure. However, the data currently available on the behavior of fiber-reinforced polymer (FRP) reinforced members related to elevated temperatures are scarce, specifically relating to the strength capacity of beams after being subjected to elevated temperatures. This paper investigates the residual strength capacity of beams strengthened internally with various (FRP) reinforcement types after being subjected to high temperatures, reflecting the conditions of a fire. The testing was made for concrete beams reinforced with three different types of FRP bars: (i) basalt-FRP (BFRP), (ii) hybrid FRP with carbon and basalt fibers (HFRP) and (iii) nano-hybrid FRP (nHFRP), with modification of the epoxy matrix of the rebar. Tested beams were first loaded at 50% of their ultimate strength capacity, then unloaded before being heated in a furnace and allowed to cool, and finally reloaded flexurally until failure. The results show an atypical behavior observed for HFRP bars and nHFRP bars reinforced beams, where after a certain temperature threshold the deflection began to decrease. The authors suggest that this phenomenon is connected with the thermal expansion coefficient of the carbon fibers present in HFRP and nHFRP bars and therefore creep can appear in those fibers, which causes an effect of “prestressing” of the beams. Full article
(This article belongs to the Special Issue Fiber Reinforced Polymers for Structural Strengthening)
Show Figures

Figure 1

Back to TopTop