Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = ball turbulators

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6823 KB  
Article
Design Optimization of Valve Assemblies in Downhole Rod Pumps to Enhance Operational Reliability in Oil Production
by Seitzhan Zaurbekov, Kadyrzhan Zaurbekov, Doszhan Balgayev, Galina Boiko, Ertis Aksholakov, Roman V. Klyuev and Nikita V. Martyushev
Energies 2025, 18(15), 3976; https://doi.org/10.3390/en18153976 - 25 Jul 2025
Viewed by 472
Abstract
This study focuses on the optimization of valve assemblies in downhole rod pumping units (DRPUs), which remain the predominant artificial lift technology in oil production worldwide. The research addresses the critical issue of premature failures in DRPUs caused by leakage in valve pairs, [...] Read more.
This study focuses on the optimization of valve assemblies in downhole rod pumping units (DRPUs), which remain the predominant artificial lift technology in oil production worldwide. The research addresses the critical issue of premature failures in DRPUs caused by leakage in valve pairs, i.e., a problem that accounts for approximately 15% of all failures, as identified in a statistical analysis of the 2022 operational data from the Uzen oilfield in Kazakhstan. The leakage is primarily attributed to the accumulation of mechanical impurities and paraffin deposits between the valve ball and seat, leading to concentrated surface wear and compromised sealing. To mitigate this issue, a novel valve assembly design was developed featuring a flow turbulizer positioned beneath the valve seat. The turbulizer generates controlled vortex motion in the fluid flow, which increases the rotational frequency of the valve ball during operation. This motion promotes more uniform wear across the contact surfaces and reduces the risk of localized degradation. The turbulizers were manufactured using additive FDM technology, and several design variants were tested in a full-scale laboratory setup simulating downhole conditions. Experimental results revealed that the most effective configuration was a spiral plate turbulizer with a 7.5 mm width, installed without axis deviation from the vertical, which achieved the highest ball rotation frequency and enhanced lapping effect between the ball and the seat. Subsequent field trials using valves with duralumin-based turbulizers demonstrated increased operational lifespans compared to standard valves, confirming the viability of the proposed solution. However, cases of abrasive wear were observed under conditions of high mechanical impurity concentration, indicating the need for more durable materials. To address this, the study recommends transitioning to 316 L stainless steel for turbulizer fabrication due to its superior tensile strength, corrosion resistance, and wear resistance. Implementing this design improvement can significantly reduce maintenance intervals, improve pump reliability, and lower operating costs in mature oilfields with high water cut and solid content. The findings of this research contribute to the broader efforts in petroleum engineering to enhance the longevity and performance of artificial lift systems through targeted mechanical design improvements and material innovation. Full article
(This article belongs to the Special Issue Petroleum and Natural Gas Engineering)
Show Figures

Figure 1

29 pages, 11497 KB  
Article
Study on the Characteristics of Downwash Field Range and Consistency of Spray Deposition of Agricultural UAVs
by Zongru Liu, Rong Gao, Yinwei Zhao, Han Wu, Yunting Liang, Ke Liang, Dong Liu, Taoran Huang, Shaoqiang Xie, Jia Lv and Jiyu Li
Agriculture 2024, 14(6), 931; https://doi.org/10.3390/agriculture14060931 - 13 Jun 2024
Cited by 3 | Viewed by 2643
Abstract
Agricultural unmanned aerial vehicles (UAVs), increasingly integral to crop protection through spraying operations, are significantly influenced by their downwash fields, which in turn affect the distribution of spray droplets. The key parameters impacting spray deposition patterns are the velocity of the downwash airflow [...] Read more.
Agricultural unmanned aerial vehicles (UAVs), increasingly integral to crop protection through spraying operations, are significantly influenced by their downwash fields, which in turn affect the distribution of spray droplets. The key parameters impacting spray deposition patterns are the velocity of the downwash airflow and its spatial extent. Understanding the interplay of these parameters can enhance the efficacy of UAV applications in agriculture. Previous research has predominantly focused on downwash airflow velocity, often neglecting the spatial scope of the downwash. This paper presents an applied foundational study grounded in the compressible Reynolds-averaged Navier–Stokes (RANS) equations. Leveraging a dependable k-ε turbulence model and dynamic mesh technology, it develops an effective three-dimensional computational fluid dynamics (CFD) approach to analyze the downwash field’s distribution characteristics during UAV hover. To validate the CFD method, a visualization test was conducted using EPS (expanded polystyrene foam) balls dispersed in the airspace beneath the UAV, illustrating the airflow’s spatial distribution. Additionally, a parameter η was introduced to quantify changes in the wind field’s range, enabling the mapping of the cross-sectional area of the downwash airflow at various velocities within the UAV’s airspace. The study reveals that the downwash field’s overall shape evolves from a “four-point type” to a “square-like” and then to an “ellipse-like” configuration. Lower downwash airflow velocities exhibit a more rapid expansion of the wind field area. High-velocity downwash areas are concentrated beneath each rotor, while lower-velocity zones coalesce under each rotor and extend downward, forming a continuous expanse. Within the UAV’s downwash area, the deposition of droplets is more pronounced. At a given nozzle position, an increase in downwash airflow velocity correlates with greater droplet deposition within the downwash field. This research bridges a gap in downwash field studies, offering a solid theoretical foundation for the development of future UAV downwash field models. Full article
(This article belongs to the Special Issue Application of UAVs in Precision Agriculture—2nd Edition)
Show Figures

Figure 1

26 pages, 119432 KB  
Article
The Effect of High-Velocity Air-Fuel WC-12Co Coatings on the Wear and Corrosion Resistance of TC18 Titanium Alloy
by Haisheng Jiang, Xiaoyu Zhao, Hua Song and Chang Li
Coatings 2023, 13(4), 755; https://doi.org/10.3390/coatings13040755 - 10 Apr 2023
Cited by 3 | Viewed by 2420
Abstract
TC18 titanium alloy is an essential material for aircraft landing gear. To reveal the wear and corrosion mechanisms of landing gear in service, a WC-12Co coating on a TC18 substrate was prepared by High-Velocity Air-Fuel (HVAF) spraying based on optimized process parameters, and [...] Read more.
TC18 titanium alloy is an essential material for aircraft landing gear. To reveal the wear and corrosion mechanisms of landing gear in service, a WC-12Co coating on a TC18 substrate was prepared by High-Velocity Air-Fuel (HVAF) spraying based on optimized process parameters, and an analysis of the microscopic characterization results for the materials involved was performed. Based on the computational fluid dynamics (CFD) method, the combustion reaction and discrete phase models of HVAF spraying were established. The flame characteristics under compressible turbulence and the flight temperature and velocity of particles were calculated. The effect of the spraying parameters on the flight temperature and velocity of particles was evaluated based on the response surface method (RSM) through multiple groups of orthogonal experiments, and the optimized process parameters were determined. The mass flow rate of reactants was 0.051 kg/s, the oxygen/fuel ratio was 2.83, the mass flow rate of the nitrogen was 0.000325 kg/s, the pressure of oxygen and fuel inlet was 1 MPa, the pressure at the particles inlet was 0.6 MPa and the maximum temperature and velocity of spraying particles were 1572 K and 417 m/s, respectively. The coatings prepared with the optimized process were subjected to the Scanning Electron Microscope (SEM), Energy Dispersive Spectroscopy (EDS), X-Ray Diffraction (XRD), wear, hardness, artificial seawater soaking and neutral salt spray experiments. The results showed that the mean hardness of the TC18 substrate was 401.2 HV0.3, the mean hardness of the WC-12Co coating was 1121 HV0.3, the friction coefficient between the TC18 substrate and the Si3N4 ceramic ball was 0.55 and the friction coefficient between the WC-12Co coating and the Si3N4 ceramic ball was 0.4. Compared to the TC18 substrate, the hardness of the WC-12Co coating was increased by 720 HV0.3, the friction coefficient with the Si3N4 ceramic ball decreased by 0.11, the corrosion resistance significantly improved and the maximum depth of the corrosion pits was 5 μm. The properties of the TC18 titanium alloy were effectively improved by the WC-12Co coating. The results of this study provide guidance for surface protection technologies of aircraft landing gear. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Figure 1

19 pages, 4454 KB  
Article
New Approaches to Project Risk Assessment Utilizing the Monte Carlo Method
by Andrea Senova, Alica Tobisova and Robert Rozenberg
Sustainability 2023, 15(2), 1006; https://doi.org/10.3390/su15021006 - 5 Jan 2023
Cited by 26 | Viewed by 10652
Abstract
An environment of turbulence in the market in recent years and increasing inflation, mainly as a result of the post-COVID period and the ongoing military operation in Ukraine, represents a significant financial risk factor for many companies, which has a negative impact on [...] Read more.
An environment of turbulence in the market in recent years and increasing inflation, mainly as a result of the post-COVID period and the ongoing military operation in Ukraine, represents a significant financial risk factor for many companies, which has a negative impact on managerial decisions. A lot of enterprises are forced to look for ways to effectively assess the riskiness of the projects that they would like to implement in the future. The aim of the article is to present a new approach for companies with which to assess the riskiness of projects. The basis of this is the use of the new Crystal Ball software tool and the effective application of the Monte Carlo method. The article deals with the current issues of investment and financial planning, which are the basic pillars for effective management decisions with the goal of sustainability. The article has verified a methodology that allows companies to make effective investment decisions based on assessing the level of risk. For practical application, the Monte Carlo method was chosen, as it uses sensitivity analysis and simulations, which were evaluated for two types of projects. Both simulations were primarily carried out based on a deterministic approach through traditional mathematical models. Subsequently, stochastic modeling was performed using the Crystal Ball software tool. As a result of the sensitivity analysis, two tornado graphs were created, which display risk factors according to the degree of their influence on the criterion value. The output of this article is the presentation of these new approaches for financial decision-making within companies. Full article
Show Figures

Figure 1

16 pages, 12151 KB  
Article
Study on Influencing Factors of Helicopter Brownout Evolution Based on CFD-DEM
by Yihua Cao, Gaozhan Wang and Chongwen Jiang
Appl. Sci. 2022, 12(1), 126; https://doi.org/10.3390/app12010126 - 23 Dec 2021
Cited by 6 | Viewed by 3342
Abstract
The gas-solid two-phase flow model is constructed based on the Euler-Lagrangian framework. The SST kω two-equation turbulence model and the soft ball model are coupled by computational fluid dynamics (CFD) and a discrete element model (DEM). Brownout is [...] Read more.
The gas-solid two-phase flow model is constructed based on the Euler-Lagrangian framework. The SST kω two-equation turbulence model and the soft ball model are coupled by computational fluid dynamics (CFD) and a discrete element model (DEM). Brownout is then simulated by the above method with sliding mesh. As the calculation examples show, the simulations and experiments of the Lynx rotor and the Caradonna–Tung rotor are compared. The coupling method is verified through calculation of the rotor lift coefficient, blade section pressure coefficient and tip vortex shedding position. The results show that when the helicopter is hovering at a height of 0.52R from the ground, it will cause brownout and the pilot’s vision will be obscured by sand. When the hovering height is 1R, the phenomenon of brownout is not serious. The movement speed of most sand dust is about 12 m/s, and the height of the sand dust from the ground will gradually increase over time. Large particles of sand are more difficult to be entrained into the air than the small particles, and the particles with a radius of 50 um are basically accumulated on the ground. Moreover, the slotted-Tip rotor has an effect on restraining brownout. Full article
(This article belongs to the Topic Dynamical Systems: Theory and Applications)
Show Figures

Figure 1

19 pages, 6692 KB  
Article
Measurement of Heat Transfer and Flow Resistance for a Packed Bed of Horticultural Products with the Implementation of a Single Blow Technique
by Adam Łapiński, Kamil Śmierciew, Huiming Zou and Dariusz Butrymowicz
Processes 2021, 9(12), 2151; https://doi.org/10.3390/pr9122151 - 28 Nov 2021
Viewed by 2343
Abstract
This paper provides the practical implementation of the single blow technique as an effective approach of average convective heat transfer coefficient measurement for a packed bed of horticultural products. The measurement approach was positively validated for the case of a packed bed of [...] Read more.
This paper provides the practical implementation of the single blow technique as an effective approach of average convective heat transfer coefficient measurement for a packed bed of horticultural products. The measurement approach was positively validated for the case of a packed bed of balls. The presented results cover heat transfer coefficient results for carrots stored in packed beds for two various arrangements (regular and irregular) and bed of apples under conditions of various turbulent intensity at the inlet to the bed. The turbulent intensity (defined as the ratio of the root mean square of the turbulent fluctuation of the air velocity to the mean air velocity) varied from 0.02 to 0.14. The applied velocity ranges for the tests refers to the conventional storage conditions. The heat transfer correlations were proposed based on the obtained results for each arrangement. It was demonstrated that due to flow laminarization inside the bed, the turbulence intensity has no significant effect on heat transfer inside the bed. Heat transfer enhancement of up to 25% was demonstrated for the case of the irregular carrot arrangement in the tested bed. The flow resistance correlations were additionally proposed for the tested beds. It was demonstrated that the product arrangement does not produce an important effect on the pressure drop. Full article
Show Figures

Figure 1

15 pages, 4480 KB  
Article
Micronization of Hard Coal with the Use of a High-Pressure Water Jet
by Przemysław J. Borkowski and Wiesław Szada-Borzyszkowski
Energies 2021, 14(16), 4745; https://doi.org/10.3390/en14164745 - 4 Aug 2021
Cited by 7 | Viewed by 2212
Abstract
This paper presents an original method for the micronization of coal particles in a hydro-jet mill, which allows effective comminuting of coal in the pressure range of 100–250 MPa, at a variable water flow rate of 0.2–0.5 dm3/s. The discussed high-pressure [...] Read more.
This paper presents an original method for the micronization of coal particles in a hydro-jet mill, which allows effective comminuting of coal in the pressure range of 100–250 MPa, at a variable water flow rate of 0.2–0.5 dm3/s. The discussed high-pressure water jet mill (HPWJM) allows the comminution of standard fines, with a grain size up to 2 mm, and at a relatively high comminuting efficiency of 8 to 55 g/s. In addition, the paper presents energy-consumption ratios, and indicates the advantage of this method over mechanical grinding in a planetary ball-mill. At optimum conditions, coal comminution at an efficiency of Qc = 38.4 g/s and at an energy input of EH = 1.1 MJ/kg provides an average particle size of about 40 µm. The degree of comminution was further improved by applying roto-turbulent micronization, which resulted in an average size of comminuted coal particles of only 17 µm. As an additional result, the actual surface area of the particles increased by 10–30 thousand times when compared to ground fines—this fact is of significance for the application of micronized particles in quasi-liquid coal-water fuel. Full article
(This article belongs to the Section K: State-of-the-Art Energy Related Technologies)
Show Figures

Figure 1

10 pages, 2727 KB  
Article
Aerodynamic Differences between New and Used Soccer Balls
by Sungchan Hong and Takeshi Asai
Appl. Sci. 2021, 11(16), 7204; https://doi.org/10.3390/app11167204 - 4 Aug 2021
Cited by 2 | Viewed by 4510
Abstract
The surface structure of soccer balls, such as the number and shapes of the ball panels, has recently changed, and research on the aerodynamics and flight trajectories of new soccer balls is actively proceeding. However, these studies are focused on new soccer balls, [...] Read more.
The surface structure of soccer balls, such as the number and shapes of the ball panels, has recently changed, and research on the aerodynamics and flight trajectories of new soccer balls is actively proceeding. However, these studies are focused on new soccer balls, whereas the used soccer balls were never studied. In this study, the aerodynamic characteristics of soccer balls kicked 1000 times by a robot were investigated through wind tunnel tests. The results were compared with those obtained using new soccer balls. Regarding the aerodynamic characteristics of the soccer balls, it was found that the critical Reynold number, Recrit, changes with usage. This is related to the transition from laminar to turbulent flow of airflow around the ball. The comparison of the drag coefficients of the balls at Recrit showed that the drag coefficients of the new and used Telstar18 balls were 0.15 (Re = 2.5 × 105) and 0.14 (Re = 2.2 × 105), respectively; those of the new and used Merlin were 0.13 (Re = 2.8 × 105) and 0.13 (Re = 2.2 × 105), respectively; and finally, those of the new and used Derbystar were 0.14 (Re = 2.1 × 105) and 0.14 (Re = 2.1 × 105), respectively. The surface conditions of a soccer ball, such as the surface roughness and surface damages, are essential factors to determine the aerodynamics of the soccer balls. Full article
(This article belongs to the Special Issue Sports Fluid Mechanics)
Show Figures

Figure 1

11 pages, 3656 KB  
Proceeding Paper
Development of an Analytical Line Source Dispersion Model to Predict Ground Level Concentrations for Particulate Matter (PM) of Different Particle Size Ranges
by Saisantosh Vamshi Harsha Madiraju and Ashok Kumar
Environ. Sci. Proc. 2021, 8(1), 13; https://doi.org/10.3390/ecas2021-10355 - 22 Jun 2021
Viewed by 1627
Abstract
Particulate matter (PM) is released in varying quantities from mobile sources depending on the type of fossil fuel used in combustion. According to the USEPA, PM exposure could cause a variety of problems such as premature deaths, nonfatal heart attacks, irregular heartbeat, asthma, [...] Read more.
Particulate matter (PM) is released in varying quantities from mobile sources depending on the type of fossil fuel used in combustion. According to the USEPA, PM exposure could cause a variety of problems such as premature deaths, nonfatal heart attacks, irregular heartbeat, asthma, reduced lung function, and respiratory issues. Therefore, it is necessary to predict the downwind concentrations near highways from mobile sources to protect the public from adverse health effects. The current study concentrates on developing an analytical line source dispersion model to account for different particle size ranges for particulate matter released from mobile sources. Available line source models do not explicitly consider different ranges of particle sizes present in the exhaust. The present study discusses the development of a dispersion model to predict downwind concentrations of PM by incorporating a range of particle sizes for an infinite and a finite-length mobile source. The dry deposition of particles is also considered during development. The emission rate, wind speed, wind direction, atmospheric turbulence, and dry deposition velocity of the particles are the model inputs. The sensitivity of the model is determined by simultaneously varying the independent input variables using Monte Carlo simulation by Crystal Ball software. The sensitivity analysis results generated using Crystal Ball are preliminary in nature and should be re-examined. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Atmospheric Sciences)
Show Figures

Figure 1

10 pages, 277 KB  
Review
Theoretical Chemistry and the Calculation of the Atmospheric State
by Adrian F. Tuck
Atmosphere 2021, 12(6), 727; https://doi.org/10.3390/atmos12060727 - 6 Jun 2021
Cited by 9 | Viewed by 3940
Abstract
Theoretical chemists have been actively engaged for some time in processes such as ozone photodissociation, overtone photodissociation in nitric acid, pernitric acid, sulphuric acid, clusters and in small organic acids. The last of these have shown very different behaviours in the gas phase, [...] Read more.
Theoretical chemists have been actively engaged for some time in processes such as ozone photodissociation, overtone photodissociation in nitric acid, pernitric acid, sulphuric acid, clusters and in small organic acids. The last of these have shown very different behaviours in the gas phase, liquid phase and importantly at the air–water interface in aqueous aerosols. The founder of molecular dynamics, B J Alder, pointed out long ago that hydrodynamic behaviour emerged when the symmetry of a random, thermalised population of hard spheres—billiard balls—was broken by a flux of energetic molecules. Despite this, efforts over two centuries to solve turbulence by finding top-down solutions to the Navier–Stokes equation have failed. It is time for theoretical chemistry to try a bottom-up solution. Gibbs free energy that drives the circulation arises from the entropy difference between the incoming low-entropy beam of visible and ultraviolet photons and the outgoing higher-entropy flux of infrared photons over the whole 4π solid angle. The role of the most energetic molecules with the highest velocities will affect the rovibrational line shapes of water, carbon dioxide and ozone in the far wings, where there is the largest effect on radiative transfer and hence on calculations of atmospheric temperature. The atmospheric state is determined by the interaction of radiation, chemistry and fluid dynamics on the microscopic scale, with propagation through the mesoscale to the macroscale. It will take theoretical chemistry to simulate that accurately. A challenging programme of research for theoretical chemistry is proposed, involving ab initio simulation by molecular dynamics of an air volume, starting in the upper stratosphere. The aim is to obtain scaling exponents for turbulence, providing a physical method for upscaling in numerical models. Turbulence affects chemistry, radiation and fluid dynamics at a fundamental, molecular level and is thus of basic concern to theoretical chemistry as it applies to the atmosphere, which consists of molecules in motion. Full article
(This article belongs to the Special Issue Theoretical Chemistry of Atmospheric Processes)
14 pages, 18844 KB  
Article
Effect of Soccer Ball Panels on Aerodynamic Characteristics and Flow in Drag Crisis
by Yuki Sakamoto, Masaki Hiratsuka and Shinichiro Ito
Appl. Sci. 2021, 11(1), 296; https://doi.org/10.3390/app11010296 - 30 Dec 2020
Cited by 3 | Viewed by 5305
Abstract
The panel patterns of soccer balls that change with each World Cup have a significant impact on the balls’ aerodynamic and flight characteristics. In this study, the aerodynamic forces of eleven types of soccer ball with different panel patterns were measured in a [...] Read more.
The panel patterns of soccer balls that change with each World Cup have a significant impact on the balls’ aerodynamic and flight characteristics. In this study, the aerodynamic forces of eleven types of soccer ball with different panel patterns were measured in a wind tunnel experiment. We characterized the panel shapes of soccer balls by the length, cross-sectional area, and the panel grooves’ volume. The results confirmed that the drag and drag crisis characteristics are dependent on the groove length and volumes. Flow separation points were visualized by an oil film experiment and particle image velocimetry (PIV) measurement to understand the drag crisis of the soccer balls. The results showed that the panel shape of the ball significantly changes the position of the separation point near the critical region, where the drags crisis occurs. In the critical region, laminar and turbulent flows coexist on the ball. On the other hand, the effect of panel shape on the separation point position is small in subcritical and supercritical states. Full article
(This article belongs to the Special Issue Sports Fluid Mechanics)
Show Figures

Figure 1

13 pages, 3141 KB  
Article
Heat Transfer and Friction Characteristics of Turbulent Flow through a Circular Tube with Ball Turbulators
by Wei Yuan, Guoyun Fang, Xiaoqing Zhang, Yong Tang, Zhenping Wan and Shiwei Zhang
Appl. Sci. 2018, 8(5), 776; https://doi.org/10.3390/app8050776 - 13 May 2018
Cited by 23 | Viewed by 6202
Abstract
One of the most commonly used methods of heat transfer enhancement is flow turbulization. This effect can be achieved, e.g., by placing special turbulizing elements into the channel. In this paper, the effects of ball turbulators (BTs) on the heat transfer and fluid [...] Read more.
One of the most commonly used methods of heat transfer enhancement is flow turbulization. This effect can be achieved, e.g., by placing special turbulizing elements into the channel. In this paper, the effects of ball turbulators (BTs) on the heat transfer and fluid friction characteristics in a circular tube are investigated through numerical simulation. The Reynolds number (Re) is in the range of 5000–35,000 under a condition of uniform heat-flux. BTs with different diameter ratios (e.g., 0.5, 0.75, and 1) and spacer lengths (40, 51.77, and 62.5 mm) are inserted in the circular tubes. The results show that the heat transfer rates in the tube equipped with BTs are around 1.26–2.01 times that of those in the plain tube. The BTs with a ball diameter ratio of one provide higher friction factors than 0.75 and 0.5 by about 34.6–46.2% and 51.1–63.4%, respectively. A smaller ball diameter ratio is more able to decrease the friction factor. The performance evaluation criterion (PEC) data indicate that the use of a smaller ball diameter ratio (BDR) and a smaller spacer length are preferred. The results also reveal that BTs with a larger diameter ratio and a smaller spacer length yield the highest heat transfer rate as well as the largest pressure loss. Compared with the plain tube, the fluid flow velocity near the tube wall is significantly improved when BTs are used at the same Reynolds number. Full article
(This article belongs to the Special Issue Active Flow Control Technologies for Energy and Propulsive Systems)
Show Figures

Figure 1

Back to TopTop