Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = azimuth deramping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6875 KiB  
Article
A Near-Real-Time Imaging Algorithm for Focusing Spaceborne SAR Data in Multiple Modes Based on an Embedded GPU
by Yunju Zhang, Mingyang Shang, Yini Lv and Xiaolan Qiu
Remote Sens. 2025, 17(9), 1495; https://doi.org/10.3390/rs17091495 - 23 Apr 2025
Cited by 1 | Viewed by 471
Abstract
To achieve on-board real-time processing for sliding-spotlight mode synthetic aperture radar (SAR), on the one hand, this paper proposes an adaptive and efficient imaging algorithm for the sliding-spotlight mode. On the other hand, a batch processing method was designed and optimized based on [...] Read more.
To achieve on-board real-time processing for sliding-spotlight mode synthetic aperture radar (SAR), on the one hand, this paper proposes an adaptive and efficient imaging algorithm for the sliding-spotlight mode. On the other hand, a batch processing method was designed and optimized based on the AGX Orin platform to implement the algorithm effectively. Based on the chirp scaling (CS) algorithm, sliding-spotlight mode imaging can be achieved by adding Deramp preprocessing along with either zero-padding or performing an extra chirp scaling operation. This article analyzes the computational complexity of the two algorithms and provides a criterion called the Method Choice Indicator (MCI) for selecting the appropriate method. Additionally, the mathematical expressions for time–frequency transformation are derived, providing the theoretical basis for calculating the equivalent PRF and the azimuth width represented by a single pixel. To increase the size of the data that AGX Orin can process, the batch processing method was proposed to reduce peak memory usage during imaging, so that the limited memory could be better utilized. Meanwhile, this algorithm was also compatible with strip mode and TOPSAR (Terrain Observation by Progressive scans SAR) mode imaging. While batch processing increased data transfers, the integrated architecture of AGX Orin minimized the negative impact. Subsequently, through a series of optimizations of the algorithm, the efficiency of the algorithm was further improved. As a result, it took 19.25 s to complete the imaging process for sliding-spotlight mode data with a size of 42,966 × 27,648. Since satellite data acquisition time was 11.43 s, it can be considered that this method achieved near-real-time imaging. The experimental results demonstrate the feasibility of on-board processing. Full article
Show Figures

Graphical abstract

24 pages, 7521 KiB  
Article
High-Resolution High-Squint Large-Scene Spaceborne Sliding Spotlight SAR Processing via Joint 2D Time and Frequency Domain Resampling
by Mingshan Ren, Heng Zhang and Weidong Yu
Remote Sens. 2025, 17(1), 163; https://doi.org/10.3390/rs17010163 - 6 Jan 2025
Viewed by 922
Abstract
A frequency domain imaging algorithm, featured as joint two-dimensional (2D) time and frequency domain resampling, used for high-resolution high-squint large-scene (HHL) spaceborne sliding spotlight synthetic aperture radar (SAR) processing is proposed in this paper. Due to the nonlinear beam rotation during HHL data [...] Read more.
A frequency domain imaging algorithm, featured as joint two-dimensional (2D) time and frequency domain resampling, used for high-resolution high-squint large-scene (HHL) spaceborne sliding spotlight synthetic aperture radar (SAR) processing is proposed in this paper. Due to the nonlinear beam rotation during HHL data acquisition, the Doppler centroid varies nonlinearly with azimuth time and traditional sub-aperture approaches and two step approach fail to remove the inertial Doppler aliasing of spaceborne sliding spotlight SAR data. In addition, curved orbit effect and long synthetic aperture time make the range histories difficult to model and introduce space-variants in both range and azimuth. In this paper, we use the azimuth deramping and 2D time-domain azimuth resampling, collectively referred to as preprocessing, to eliminate the aliasing in Doppler domain and correct the range-dependent azimuth-variants of range histories. After preprocessing, the squint sliding spotlight SAR data could be considered as equivalent broadside strip-map SAR during processing. Frequency domain focusing, mainly involves phase multiplication and resampling in 2D frequency and RD domain, is then applied to compensate for the residual space-variants and achieve the focusing of SAR data. Moreover, in order to adapt higher resolution and larger scene cases, the combination of the proposed algorithm and partitioning strategy is also discussed in this paper. Processing results of simulation data and Gaofen-3 experimental data are presented to demonstrate the feasibility of the proposed methods. Full article
Show Figures

Figure 1

28 pages, 16484 KiB  
Review
A Review of Spaceborne High-Resolution Spotlight/Sliding Spotlight Mode SAR Imaging
by Baolong Wu, Chengjin Liu and Jianlai Chen
Remote Sens. 2025, 17(1), 38; https://doi.org/10.3390/rs17010038 - 26 Dec 2024
Cited by 3 | Viewed by 1947
Abstract
Spotlight/sliding spotlight modes can achieve higher resolution than the other imaging modes and are widely used in object detection and recognition applications. This paper reviews the progress of the spaceborne spotlight/sliding spotlight SAR imaging field. The three steps of the current spaceborne spotlight/sliding [...] Read more.
Spotlight/sliding spotlight modes can achieve higher resolution than the other imaging modes and are widely used in object detection and recognition applications. This paper reviews the progress of the spaceborne spotlight/sliding spotlight SAR imaging field. The three steps of the current spaceborne spotlight/sliding spotlight SAR imaging algorithm framework are discussed in this paper. These include the following: eliminating the azimuth spectral aliasing by azimuth deramp preprocessing; implementing imaging processing using imaging kernels (RD, CS, RMA, etc.); and degrading the back-folded phenomenon in the final focused image domain by reference function multiplication post-processing. The different imaging kernels, consisting of RD, CS, RMA, BAS, FS, and PFA, are presented. The phase errors in high-resolution spaceborne spotlight/sliding spotlight SAR imaging, especially the stop-and-go error, curved orbit error, and tropospheric delay error, are analyzed in detail. Furthermore, the autofocus methods are described. In addition, some new imaging SAR systems based on spotlight/sliding spotlight SAR mode, which have more advantages than the classic spaceborne spotlight/sliding spotlight SAR imaging, were shown in this paper. These include FMCW-based systems, multichannel systems, varying-PRF systems, and bistatic systems. Full article
(This article belongs to the Special Issue Spaceborne High-Resolution SAR Imaging (Second Edition))
Show Figures

Figure 1

24 pages, 5746 KiB  
Article
A Novel SAR Imaging Method for GEO Satellite–Ground Bistatic SAR System with Severe Azimuth Spectrum Aliasing and 2-D Spatial Variability
by Jingjing Ti, Zhiyong Suo, Yi Liang, Bingji Zhao and Jiabao Xi
Remote Sens. 2024, 16(15), 2853; https://doi.org/10.3390/rs16152853 - 3 Aug 2024
Cited by 1 | Viewed by 1584
Abstract
The satellite–ground bistatic configuration, which uses geosynchronous synthetic aperture radar (GEO SAR) for illumination and ground equipment for reception, can achieve wide coverage, high revisit, and continuous illumination of interest areas. Based on the analysis of the signal characteristics of GEO satellite–ground bistatic [...] Read more.
The satellite–ground bistatic configuration, which uses geosynchronous synthetic aperture radar (GEO SAR) for illumination and ground equipment for reception, can achieve wide coverage, high revisit, and continuous illumination of interest areas. Based on the analysis of the signal characteristics of GEO satellite–ground bistatic SAR (GEO SG-BiSAR), it is found that the bistatic echo signal has problems of azimuth spectrum aliasing and 2-D spatial variability. Therefore, to overcome those problems, a novel SAR imaging method for a GEO SG-BiSAR system with severe azimuth spectrum aliasing and 2-D spatial variability is proposed. Firstly, based on the geometric configuration of the GEO SG-BiSAR system, the time-domain and frequency-domain expressions of the signal are derived in detail. Secondly, in order to avoid the increasing cost caused by traditional multi-channel reception technology and the processing burden caused by inter-channel errors, the azimuth deramping is executed to solve the azimuth spectrum aliasing of the signal under the special geometric structure of GEO SG-BiSAR. Thirdly, based on the investigation of azimuth and range spatial variability characteristics of GEO SG-BiSAR in the Range Doppler (RD) domain, the azimuth spatial variability correction strategy is proposed. The signal corrected by the correction strategy has the same migration characteristics as monostatic radar. Therefore, the traditional chirp scaling function (CSF) is also modified to solve the range spatial variability of the signal. Finally, the two-dimensional spectrum of GEO SG-BiSAR with modified chirp scaling processing is derived, followed by the SPECAN operation to obtain the focused SAR image. Furthermore, the completed flowchart is also given to display the main composed parts for GEO SG-BiSAR imaging. Both azimuth spectrum aliasing and 2-D spatial variability are taken into account in the imaging method. The simulated data and the real data obtained by the Beidou navigation satellite are used to verify the effectiveness of the proposed method. Full article
Show Figures

Graphical abstract

27 pages, 9576 KiB  
Article
A Unified Algorithm for the Sliding Spotlight and TOPS Modes Data Processing in Bistatic Configuration of the Geostationary Transmitter with LEO Receivers
by Feng Tian, Zhiyong Suo, Yuekun Wang, Zheng Lu, Zhen Wang and Zhenfang Li
Remote Sens. 2022, 14(9), 2006; https://doi.org/10.3390/rs14092006 - 21 Apr 2022
Cited by 5 | Viewed by 2027
Abstract
This paper deals with the imaging problem for sliding spotlight (SS) and terrain observation by progressive scan (TOPS) modes in bistatic configuration of the geostationary (GEO) transmitter with a low earth orbit satellite (LEO) receiver, named GTLR-BiSAR system. A unified imaging algorithm is [...] Read more.
This paper deals with the imaging problem for sliding spotlight (SS) and terrain observation by progressive scan (TOPS) modes in bistatic configuration of the geostationary (GEO) transmitter with a low earth orbit satellite (LEO) receiver, named GTLR-BiSAR system. A unified imaging algorithm is proposed to process the GTLR-BiSAR data acquired in SS or TOPS modes. Our main contributions include four aspects. Firstly, the imaging geometry of this novel configuration is described in detail. Furthermore, the GTLR-BiSAR signal expressions were deduced in both time and frequency domains. These signal expressions provide great support for the design of processing the algorithm theoretically. Secondly, we present a unified deramping-based technique according to the special geometry of GTLR-BiSAR to overcome the azimuth spectrum aliasing phenomenon, which typically affects SS and TOPS data. Thirdly, the spatial variance of GTLR-BiSAR data were thoroughly analyzed based on the range-Doppler (RD) geolocation functions. On the basis of a former analysis, we put forward the azimuth variance correction strategy and modified the conventional chirp scaling function to solve the range variance problem. Finally, we completed the derivation of the two-dimensional spectrum after the range chirp scaling. On the basis of spectrum expressions, we compensated for the quadratic and residue phase, and the azimuth compression was completed by SPECAN operation. In addition, we provide a flow diagram to visually exhibit the processing procedures. At the end of this paper, the simulation and real data experiment results are presented to validate the effectiveness of the proposed algorithm. Full article
(This article belongs to the Special Issue Distributed Spaceborne SAR: Systems, Algorithms, and Applications)
Show Figures

Figure 1

29 pages, 11473 KiB  
Article
Efficient Algorithm for SAR Refocusing of Ground Fast-Maneuvering Targets
by Jun Wan, Yu Zhou, Linrang Zhang, Zhanye Chen and Hengli Yu
Remote Sens. 2019, 11(19), 2214; https://doi.org/10.3390/rs11192214 - 22 Sep 2019
Cited by 7 | Viewed by 3481
Abstract
The synthetic aperture radar (SAR) image of moving targets will defocus due to the unknown motion parameters. For fast-maneuvering targets, the range cell migration (RCM), Doppler frequency migration and Doppler ambiguity are complex problems. As a result, focusing of fast-maneuvering targets is difficult. [...] Read more.
The synthetic aperture radar (SAR) image of moving targets will defocus due to the unknown motion parameters. For fast-maneuvering targets, the range cell migration (RCM), Doppler frequency migration and Doppler ambiguity are complex problems. As a result, focusing of fast-maneuvering targets is difficult. In this work, an efficient SAR refocusing algorithm is proposed for fast-maneuvering targets. The proposed algorithm mainly contains three steps. Firstly, the RCM is corrected using sequence reversing, matrix complex multiplication and an improved second-order RCM correction function. Secondly, a 1D scaled Fourier transform is introduced to estimate the remaining chirp rate. Thirdly, a matched filter based on the estimated chirp rate is proposed to focus the maneuvering target in the range–azimuth time domain. The proposed method is computationally efficient because it can be implemented by the fast Fourier transform (FFT), inverse FFT and non-uniform FFT. A new deramp function is proposed to further address the serious problem of Doppler ambiguity. A spurious peak recognition procedure is proposed on the basis of the cross-term analysis. Simulated and real data processing results demonstrate the validity of the proposed target focusing algorithm and spurious peak recognition procedure. Full article
(This article belongs to the Special Issue Radar and Sonar Imaging and Processing)
Show Figures

Graphical abstract

19 pages, 3738 KiB  
Article
A Fast High-Resolution Imaging Algorithm for Helicopter-Borne Rotating Array SAR Based on 2-D Chirp-Z Transform
by Mengyi Qin, Dong Li, Xianhui Tang, Cao Zeng, Wenjun Li and Liying Xu
Remote Sens. 2019, 11(14), 1669; https://doi.org/10.3390/rs11141669 - 13 Jul 2019
Cited by 8 | Viewed by 3059
Abstract
In view of the azimuth resolution of the helicopter-borne rotating array synthetic aperture radar (RoASAR) depending on the azimuth reconstruction angle and the sector distortion caused by the azimuth Deramp processing, this paper proposes an efficient helicopter-borne RoASAR high-resolution imaging algorithm based on [...] Read more.
In view of the azimuth resolution of the helicopter-borne rotating array synthetic aperture radar (RoASAR) depending on the azimuth reconstruction angle and the sector distortion caused by the azimuth Deramp processing, this paper proposes an efficient helicopter-borne RoASAR high-resolution imaging algorithm based on two-dimensional (2-D) chirp-z transform (CZT). First, the high-order Taylor series expansion is performed on the slant range, and the accurate 2-D spectral expression of the point target is obtained by using the method of series reversion (MSR). Based on that, the space-variant characteristics of the range cell migration (RCM) terms are analyzed. After that, the space-variant RCM and the sector distortion effect caused by the azimuth Deramp processing are removed by using efficient 2-D CZT, thereby increasing the azimuth reconstruction angle and improving the azimuth resolution. The proposed algorithm is efficient without the interpolation operation, and it is easy to implement in real-time. Finally, the simulations are provided to verify the effectiveness of the proposed algorithm. Full article
(This article belongs to the Section Engineering Remote Sensing)
Show Figures

Figure 1

19 pages, 2921 KiB  
Article
Focusing of Ultrahigh Resolution Spaceborne Spotlight SAR on Curved Orbit
by Yulei Qian and Daiyin Zhu
Electronics 2019, 8(6), 628; https://doi.org/10.3390/electronics8060628 - 3 Jun 2019
Cited by 6 | Viewed by 3076
Abstract
Aiming to acquire ultrahigh resolution images, algorithms for spaceborne spotlight synthetic aperture radar (SAR) imaging typically confront challenges of curved orbit and azimuth spectral aliasing. In order to conquer these difficulties, a method is proposed in this paper to obtain ultrahigh resolution spaceborne [...] Read more.
Aiming to acquire ultrahigh resolution images, algorithms for spaceborne spotlight synthetic aperture radar (SAR) imaging typically confront challenges of curved orbit and azimuth spectral aliasing. In order to conquer these difficulties, a method is proposed in this paper to obtain ultrahigh resolution spaceborne SAR images on a curved orbit, which is composed of the modified RMA (Range Migration Algorithm) and the modified deramping-based approach. The modified RMA is developed to deal with the effect introduced by a curved orbit and the modified deramping-based approach is utilized to handle the problem of azimuth spectral aliasing. In the modified RMA, the polynomial expression of SAR two-dimensional spectrum on a curved orbit is derived with fourth-order azimuth phase history model and series reversion. Then, the singular value decomposition (SVD) is applied to decompose the expression of SAR two-dimensional spectrum numerically in order to acquire coordinates for Stolt interpolation in the scenario of curved orbit. In addition, the modified deramping-based approach is derived by introducing orbital state vectors in order to accommodate the situation of curved orbit in the proposed method. Experiments are implemented on point target simulation in order to verify the effectiveness of the presented method. In experiments, the range and azimuth resolution can achieve 0.15 m and 0.14 m, with focused scene size of 3 km by 3 km. Full article
Show Figures

Figure 1

15 pages, 2720 KiB  
Article
Imaging for Small UAV-Borne FMCW SAR
by Xianyang Hu, Changzheng Ma, Ruizhi Hu and Tat Soon Yeo
Sensors 2019, 19(1), 87; https://doi.org/10.3390/s19010087 - 27 Dec 2018
Cited by 18 | Viewed by 4570
Abstract
Unmanned aerial vehicle borne frequency modulated continuous wave synthetic aperture radars are attracting more and more attention due to their low cost and flexible operation capacity, including the ability to capture images at different elevation angles for precise target identification. However, small unmanned [...] Read more.
Unmanned aerial vehicle borne frequency modulated continuous wave synthetic aperture radars are attracting more and more attention due to their low cost and flexible operation capacity, including the ability to capture images at different elevation angles for precise target identification. However, small unmanned aerial vehicles suffer from large trajectory deviation and severe range-azimuth coupling due to their simple navigational control and susceptibility to air turbulence. In this paper, we utilize the squint minimization technique to reduce this coupling while simultaneously eliminating intra-pulse motion-induced effects with an additional spectrum scaling. After which, the modified range doppler algorithm is derived for second order range compression and block-wise range cell migration correction. Raw data-based motion compensation is carried out with a doppler tracker. Squinted azimuth dependent phase gradient algorithm is employed to deal with azimuth dependent parameters and inexact deramping, with minimum entropy-based autofocusing algorithms. Finally, azimuth nonlinear chirp scaling is used for azimuth compression. Simulation and real data experiment results presented verify the effectiveness of the above signal processing approach. Full article
Show Figures

Figure 1

17 pages, 2659 KiB  
Article
A Wide-Swath Spaceborne TOPS SAR Image Formation Algorithm Based on Chirp Scaling and Chirp-Z Transform
by Wei Yang, Jie Chen, Hong Cheng Zeng, Peng Bo Wang and Wei Liu
Sensors 2016, 16(12), 2095; https://doi.org/10.3390/s16122095 - 9 Dec 2016
Cited by 8 | Viewed by 6091
Abstract
Based on the terrain observation by progressive scans (TOPS) mode, an efficient full-aperture image formation algorithm for focusing wide-swath spaceborne TOPS data is proposed. First, to overcome the Doppler frequency spectrum aliasing caused by azimuth antenna steering, the range-independent derotation operation is adopted, [...] Read more.
Based on the terrain observation by progressive scans (TOPS) mode, an efficient full-aperture image formation algorithm for focusing wide-swath spaceborne TOPS data is proposed. First, to overcome the Doppler frequency spectrum aliasing caused by azimuth antenna steering, the range-independent derotation operation is adopted, and the signal properties after derotation are derived in detail. Then, the azimuth deramp operation is performed to resolve image folding in azimuth. The traditional dermap function will introduce a time shift, resulting in appearance of ghost targets and azimuth resolution reduction at the scene edge, especially in the wide-swath coverage case. To avoid this, a novel solution is provided using a modified range-dependent deramp function combined with the chirp-z transform. Moreover, range scaling and azimuth scaling are performed to provide the same azimuth and range sampling interval for all sub-swaths, instead of the interpolation operation for the sub-swath image mosaic. Simulation results are provided to validate the proposed algorithm. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Graphical abstract

11 pages, 4271 KiB  
Letter
Experiments on a Ground-Based Tomographic Synthetic Aperture Radar
by Hoonyol Lee, Younghun Ji and Hyangsun Han
Remote Sens. 2016, 8(8), 667; https://doi.org/10.3390/rs8080667 - 18 Aug 2016
Cited by 9 | Viewed by 5161
Abstract
This paper presents the development and experiment of three-dimensional image formation by using a ground-based tomographic synthetic aperture radar (GB-TomoSAR) system. GB-TomoSAR formulates two-dimensional synthetic aperture by the motion of antennae, both in azimuth and vertical directions. After range compression, three-dimensional image focusing [...] Read more.
This paper presents the development and experiment of three-dimensional image formation by using a ground-based tomographic synthetic aperture radar (GB-TomoSAR) system. GB-TomoSAR formulates two-dimensional synthetic aperture by the motion of antennae, both in azimuth and vertical directions. After range compression, three-dimensional image focusing is performed by applying Deramp-FFT (Fast Fourier Transform) algorithms, both in azimuth and vertical directions. Geometric and radiometric calibrations were applied to make an image cube, which is then projected into range-azimuth and range-vertical cross-sections for visualization. An experiment with a C-band GB-TomoSAR system with a scan length of 2.49 m and 1.86 m in azimuth and vertical-direction, respectively, shows distinctive three-dimensional radar backscattering of stable buildings and roads with resolutions similar to the theoretical values. Unstable objects such as trees and moving cars generate severe noise due to decorrelation during the eight-hour image-acquisition time. Full article
Show Figures

Graphical abstract

Back to TopTop