A Review of Spaceborne High-Resolution Spotlight/Sliding Spotlight Mode SAR Imaging
Abstract
:1. Introduction
2. Spaceborne Spotlight/Sliding Spotlight Imaging Methods
2.1. RD Kernel-Based Spaceborne Spotlight/Sliding Spotlight Imaging Method
2.2. CS Kernel-Based Spaceborne Spotlight/Sliding Spotlight Imaging Method
2.3. RMA Kernel-Based Spaceborne Spotlight/Sliding Spotlight Imaging Method
2.4. BAS-Based Spaceborne Spotlight/Sliding Spotlight Imaging Method
2.5. FS Kernel-Based and PFA-Based Spaceborne Spotlight/Sliding Spotlight Imaging Method
3. Errors and Motions Compensation in Spaceborne Spotlight/Sliding Spotlight Imaging Model
3.1. Autofocus Imaging Methods for Errors and Motions Compensation
3.2. Compensation Approaches of Stop-and-Go, Curved Orbit, and Troposheric Delay Errors
4. New Imaging Systems in Spaceborne Spotlight/Sliding Spotlight SAR Mode
4.1. Multichannel Spotlight/Sliding Spotlight SAR Models
4.2. FMCW-Based Spotlight/Sliding Spotlight Systems
4.3. Bistatic Spotlight/Sliding Spotlight Models
4.4. Varying-PRF Spotlight/Sliding Spotlight Models
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zink, M.; Moreira, A.; Hajnsek, I.; Rizzoli, P.; Bachmann, M.; Kahle, R.; Fritz, T.; Huber, M.; Krieger, G.; Lachaise, M.; et al. TanDEM-X: 10 years of formation flying bistatic SAR interferometry. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3546–3565. [Google Scholar] [CrossRef]
- Xia, J.; Yokoya, N.; Adriano, B.; Zhang, L.; Li, G.; Wang, Z. A benchmark high-resolution GaoFen-3 SAR dataset for building semantic segmentation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 5950–5963. [Google Scholar] [CrossRef]
- Pyne, B.; Saito, H.; Akbar, P.R.; Hirokawa, J.; Tomura, T.; Tanaka, K. Development and performance evaluation of small SAR system for 100-kg class satellite. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3879–3891. [Google Scholar] [CrossRef]
- Xu, L.; Liu, P.; Jin, Y. A New Nonlocal Iterative Trilateral Filter for SAR Images Despeckling. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5213319. [Google Scholar] [CrossRef]
- Wu, B.; Wang, H.; Chen, J. Feature Enhancement Using Multi-Baseline SAR Interferometry-Correlated Synthesis Images for Power Transmission Tower Detection in Mountain Layover Area. Remote Sens. 2023, 15, 3823. [Google Scholar] [CrossRef]
- Chen, J.; Xiong, R.; Yu, H.; Xu, G.; Xing, M. Nonparametric Full-Aperture Autofocus Imaging for Microwave Photonic SAR. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5214815. [Google Scholar] [CrossRef]
- Chen, J.; Li, M.; Yu, H.; Xing, M. Full-Aperture Processing of Airborne Microwave Photonic SAR Raw Data. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5218812. [Google Scholar] [CrossRef]
- Argenti, F.; Lapini, A.; Bianchi, T.; Alparone, L. A Tutorial on Speckle Reduction in Synthetic Aperture Radar Images. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–35. [Google Scholar] [CrossRef]
- Fracastoro, G.; Magli, E.; Poggi, G.; Scarpa, G.; Valsesia, D.; Verdoliva, L. Deep Learning Methods For Synthetic Aperture Radar Image Despeckling: An Overview Of Trends And Perspectives. IEEE Geosci. Remote Sens. Mag. 2021, 9, 29–51. [Google Scholar] [CrossRef]
- Wu, B.; Tong, L.; Chen, Y.; He, L. New methods in multibaseline polarimetric SAR interferometry coherence optimization. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2016–2020. [Google Scholar]
- Baumgartner, S.V.; Krieger, G. Simultaneous high-resolution widefield SAR imaging and ground moving target indication: Processing approaches and system concepts. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 5015–5029. [Google Scholar] [CrossRef]
- Cristea, A.; Johansson, A.M.; Doulgeris, A.P.; Brekke, C. Automatic detection of low-backscatter targets in the arctic using wide swath Sentinel-1 imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 8870–8883. [Google Scholar] [CrossRef]
- AlShaya, M.; Yaghoobi, M.; Mulgrew, B. Ultrahigh resolution wide swath MIMO-SAR. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5358–5368. [Google Scholar] [CrossRef]
- Wei, J.; Li, Y.; Yang, R.; Li, L.; Guo, L. Method of high signalto-noise ratio and wide swath SAR imaging based on continuous pulse coding. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 2185–2196. [Google Scholar] [CrossRef]
- Desai, M.D.; Jenkins, W.K. Convolution back projection image reconstruction for spotlight mode synthetic aperture radar. IEEE Trans. Image Process. 1992, 1, 505–517. [Google Scholar] [CrossRef]
- Ding, J.; Wu, Y.; Zhang, H. A fast BP algorithm for bistatic spotlight SAR based on spectrum compression. In Proceedings of the 6th Asia-Pacific Conference on Synthetic Aperture Radar, Xiamen, China, 26–29 November 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Zhang, L.; Li, H.-L.; Qiao, Z.-J.; Xu, Z.-W. A fast BP algorithm with wavenumber spectrum fusion for high-resolution spotlight SAR imaging. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1460–1464. [Google Scholar] [CrossRef]
- Wu, J.; Li, Y.; Pu, W.; Li, Z.; Yang, J. An effective autofocus method for fast factorized back-projection. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6145–6154. [Google Scholar] [CrossRef]
- Bao, M.; Zhou, S.; Yang, L.; Xing, M.; Zhao, L. Data-driven motion compensation for airborne bistatic SAR imagery under fast factorized back projection framework. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 1728–1740. [Google Scholar] [CrossRef]
- Ran, L.; Liu, Z.; Li, T.; Xie, R.; Zhang, L. An adaptive fast factorized back-projection algorithm with integrated target detection technique for high-resolution and high-squint spotlight SAR imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 171–183. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, W.; Sun, G.-C.; Chen, X.; Han, L.; Xing, M. A Fast Cartesian back-projection algorithm based on ground surface grid for GEO SAR focusing. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5217114. [Google Scholar] [CrossRef]
- Luo, Y.; Zhao, F.; Li, N.; Zhang, H. A modified Cartesian factorized back-projection algorithm for highly squint spotlight synthetic aperture radar imaging. IEEE Geosci. Remote Sens. Lett. 2019, 16, 902–906. [Google Scholar] [CrossRef]
- Dong, Q.; Yang, Z.; Sun, G.; Xing, M. Cartesian factorized back projection algorithm for synthetic aperture radar. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 10–15 July 2016; pp. 1074–1077. [Google Scholar] [CrossRef]
- Bamler, R. A comparison of range-Doppler and wavenumber domain SAR focusing algorithms. IEEE Trans. Geosci. Remote Sens. 1992, 30, 706–713. [Google Scholar] [CrossRef]
- Tan, X.; Yang, Z.; Li, D.; Liu, H.; Liao, G.; Wu, Y.; Liu, Y. An efficient range-Doppler domain ISAR imaging approach for rapidly spinning targets. IEEE Trans. Geosci. Remote Sens. 2020, 58, 2670–2681. [Google Scholar] [CrossRef]
- Fan, W.; Zhang, M.; Li, J.; Wei, P. Modified range-Doppler algorithm for high squint SAR echo processing. IEEE Geosci. Remote Sens. Lett. 2019, 16, 422–426. [Google Scholar] [CrossRef]
- Li, C.; Zhang, H.; Deng, Y.; Wang, R.; Liu, K.; Liu, D.; Jin, G.; Zhang, Y. Focusing the L-band spaceborne bistatic SAR mission data using a modified RD algorithm. IEEE Trans. Geosci. Remote Sens. 2020, 58, 294–306. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Xu, F.; Yang, J. A new nonlinear chirp scaling algorithm for high-squint high-resolution SAR imaging. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2225–2229. [Google Scholar] [CrossRef]
- Chen, P.-C.; Kiang, J.-F. Chirp scaling algorithms for SAR imaging under high squint angles. In Proceedings of the IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, SanDiego, CA, USA, 9–14 July 2017; pp. 203–204. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, L.; Liu, N.; Chen, G.; Zhang, Y. Focusing highly squinted data using the extended nonlinear chirp scaling algorithm. IEEE Geosci. Remote Sens. Lett. 2013, 10, 342–346. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, T.; Yuan, M.; Li, Y. A modified nonlinear chirp scaling algorithm for highly squinted SAR on maneuvering platform. In Proceedings of the IGARSS IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 2035–2038. [Google Scholar] [CrossRef]
- Wu, Y.; Song, H.; Shang, X.; Zheng, J. Improved RMA based on nonuniform fast Fourier Transforms (NUFFT’s). In Proceedings of the 9th International Conference on Signal Processing, Beijing, China, 26–29 October 2008; pp. 2489–2492. [Google Scholar] [CrossRef]
- Mao, X.; He, X.; Li, D. Knowledge-aided 2-D autofocus for spotlight SAR range migration algorithm imagery. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5458–5470. [Google Scholar] [CrossRef]
- Yang, J.; Sun, G.; Chen, J.; Wu, Y.; Xing, M. A subaperture imaging scheme for wide azimuth beam airborne SAR based on modified RMA with motion compensation. In Proceedings of the Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 608–611. [Google Scholar] [CrossRef]
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A tutorial on synthetic aperture radar. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–43. [Google Scholar] [CrossRef]
- Sun, G.; Liu, Y.; Xiang, J.; Liu, W.; Xing, M.; Chen, J. Spaceborne Synthetic Aperture Radar Imaging Algorithms: An overview. IEEE Geosci. Remote Sens. Mag. 2022, 10, 161–184. [Google Scholar] [CrossRef]
- Prati, C.; Guarnieri, A.M.; Rocca, F. Spot mode SAR focusing with the W–K technique. In Proceedings of the Remote Sensing: Global Monitoring for Earth Management, Espoo, Finland, 3–6 June 1991; pp. 631–634. [Google Scholar] [CrossRef]
- Mittermayer, J.; Moreira, A.; Loffeld, O. Spotlight SAR data processing using the frequency scaling algorithm. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2198–2214. [Google Scholar] [CrossRef]
- Mittermayer, J.; Lord, R.; Borner, E. Sliding spotlight SAR processing for TerraSAR-X using a new formulation of the extended chirp scaling algorithm. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003; pp. 1462–1464. [Google Scholar] [CrossRef]
- Lanari, R.; Tesauro, M.; Sansosti, E.; Fornaro, G. Spotlight SAR data focusing based on a two-step processing approach. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1993–2004. [Google Scholar] [CrossRef]
- Lanari, R.; Zoffoli, S.; Sansosti, E.; Fornaro, G.; Serafino, F. New approach for hybrid strip-map/spotlight SAR data focusing. IEE Proc. Radar Sonar Navig. 2001, 148, 363–372. [Google Scholar] [CrossRef]
- Luo, Y.; Zhao, B.; Han, X.; Wang, R.; Song, H.; Deng, Y. A Novel High-Order Range Model and Imaging Approach for High-Resolution LEO SAR. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3473–3485. [Google Scholar] [CrossRef]
- Davidson, G.; Cumming, I. Signal properties of spaceborne squint-mode SAR. IEEE Trans. Geosci. Remote Sens. 1997, 35, 611–617. [Google Scholar] [CrossRef]
- An, D.; Huang, X.; Jin, T.; Zhou, Z. Extended Nonlinear Chirp Scaling Algorithm for High-Resolution Highly Squint SAR Data Focusing. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3595–3609. [Google Scholar] [CrossRef]
- Chen, J.; Kuang, H.; Yang, W.; Liu, W.; Wang, P. A Novel Imaging Algorithm for Focusing High-Resolution Spaceborne SAR Data in Squinted Sliding-Spotlight Mode. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1577–1581. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, P.; Men, Z.; He, T.; Chen, J. A Hybrid Chirp Scaling Algorithm for Squint Sliding Spotlight SAR Data Imaging. IEEE Geosci. Remote Sens. Lett. 2024, 21, 4005005. [Google Scholar] [CrossRef]
- Xu, W.; Deng, Y.; Huang, P.; Wang, R. Full-Aperture SAR Data Focusing in the Spaceborne Squinted Sliding-Spotlight Mode. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4596–4607. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, W.; Wei, Q.; Zeng, H.; Liu, W.; Chen, J.; Li, C.; Wang, W.; Ji, W. High-Squinted Spaceborne SAR Data Focusing in the Sliding-Spotlight Mode. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5210114. [Google Scholar] [CrossRef]
- Prats, P.; Scheiber, R.; Mittermayer, J.; Meta, A.; Moreira, A. Processing of Sliding Spotlight and TOPS SAR Data Using Baseband Azimuth Scaling. IEEE Trans. Geosci. Remote Sens. 2010, 48, 770–780. [Google Scholar] [CrossRef]
- He, F.; Dong, Z.; Zhang, Y.; Jin, G.; Yu, A. Processing of Spaceborne Squinted Sliding Spotlight and HRWS TOPS Mode Data Using 2-D Baseband Azimuth Scaling. IEEE Trans. Geosci. Remote Sens. 2020, 58, 938–955. [Google Scholar] [CrossRef]
- Kang, Y.; Park, S. A Full-Aperture Frequency Scaling Algorithm for Processing Dechirped Sliding Spotlight SAR Data. IEEE Access 2023, 11, 92550–92564. [Google Scholar] [CrossRef]
- Meng, Z.; Zhang, L.; Chen, L. Widefield Parametric Polar Format Algorithm for Spotlight SAR Imaging. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 7293–7302. [Google Scholar] [CrossRef]
- Carrara, W.; Goodman, R.; Majewski, R.M. Spotlight Synthetic Aperture Radar: Signal Processing Algorithms; Artech House: Norwood, MA, USA, 1995. [Google Scholar]
- Denny, M.; Scott, I. Anomalous propagation limitations to high resolution SAR performance. In Proceedings of the IEEE Radar Conference, Long Beach, CA, USA, 25 April 2002; pp. 249–254. [Google Scholar]
- Mao, X.; Zhu, D.; Zhu, Z. Autofocus correction of ape and residual RCM in spotlight SAR polar format imagery. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 2693–2706. [Google Scholar] [CrossRef]
- Han, S.; Zhu, D.; Mao, X. Squint Spotlight SAR Imaging by Two-Step Scaling Transform-Based Extended PFA and 2-D Autofocus. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 1295–1307. [Google Scholar] [CrossRef]
- Lin, H.; Xue, X.; Li, N.; Xing, M. Two-Dimensional Autofocus Combined with the TSA for Spotlight SAR. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 9563–9573. [Google Scholar] [CrossRef]
- Zhu, D.; Xiang, T.; Wei, W.; Ren, Z.; Yang, M.; Zhang, Y.; Zhu, Z. An Extended Two Step Approach to High-Resolution Airborne and Spaceborne SAR Full-Aperture Processing. IEEE Trans. Geosci. Remote Sens. 2021, 59, 8382–8397. [Google Scholar] [CrossRef]
- Zamparelli, V.; Agram, P.; Fornaro, G. Estimation and Compensation of Phase Shifts in SAR Focusing of Spotlight Data Acquired With Discrete Antenna Steering. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1921–1925. [Google Scholar] [CrossRef]
- Li, G.; Fang, S.; Han, B.; Zhang, Z.; Hong, W.; Wu, Y. Compensation of Phase Errors for Spotlight SAR With Discrete Azimuth Beam Steering Based on Entropy Minimization. IEEE Geosci. Remote Sens. Lett. 2021, 18, 841–845. [Google Scholar] [CrossRef]
- Prats-Iraola, P.; Scheiber, R.; Rodriguez-Cassola, M.; Mittermayer, J.; Wollstadt, S.; De Zan, F.; Brautigam, B.; Schwerdt, M.; Reigber, A.; Moreira, A. On the Processing of Very High Resolution Spaceborne SAR Data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6003–6016. [Google Scholar] [CrossRef]
- Liu, Y.; Xing, M.; Sun, G.; Lv, X.; Bao, Z.; Hong, W.; Wu, Y. Echo Model Analyses and Imaging Algorithm for High-Resolution SAR on High-Speed Platform. IEEE Trans. Geosci. Remote Sens. 2012, 50, 933–950. [Google Scholar] [CrossRef]
- Liang, D.; Zhang, H.; Fang, T.; Deng, Y.; Yu, W.; Zhang, L.; Fan, H. Processing of Very High Resolution GF-3 SAR Spotlight Data With Non-Start–Stop Model and Correction of Curved Orbit. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2112–2122. [Google Scholar] [CrossRef]
- Moreira, A.; Huang, Y. Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation. IEEE Trans. Geosci. Remote Sens. 1994, 32, 1029–1040. [Google Scholar] [CrossRef]
- Fornaro, G. Trajectory deviations in airborne SAR: Analysis and compensation. IEEE Trans. Aerosp. Electron. Syst. 1999, 35, 997–1009. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, G.; Yang, C.; Yang, J.; Xing, M.; Bao, Z. Processing of Very High Resolution Spaceborne Sliding Spotlight SAR Data Using Velocity Scaling. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1505–1518. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, G.-C.; Guo, L.; Xing, M.; Yu, H.; Fang, R.; Wang, S. High-Resolution Real-Time Imaging Processing for Spaceborne Spotlight SAR With Curved Orbit via Subaperture Coherent Superposition in Image Domain. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 1992–2003. [Google Scholar] [CrossRef]
- Jehle, M.; Perler, D.; Small, D.; Schubert, A.; Meier, E. Estimation of atmospheric path delays in TerraSAR-X data using models vs. measurements. Sensors 2008, 8, 8479–8491. [Google Scholar] [CrossRef]
- Breit, H.; Fritz, T.; Balss, U.; Lachaise, M.; Niedermeier, A.; Vonavka, M. TerraSAR-X SAR processing and products. IEEE Trans. Geosci. Remote Sens. 2010, 48, 727–740. [Google Scholar] [CrossRef]
- Eineder, M.; Minet, C.; Steigenberger, P.; Cong, X.; Fritz, T. Imaging geodesy-Toward centimeter-level ranging accuracy with TerraSAR-X. IEEE Trans. Geosci. Remote Sens. 2011, 49, 661–671. [Google Scholar] [CrossRef]
- Chen, Q.; Deng, Y.; Wang, R.; Liu, Y. Investigation of Multichannel Sliding Spotlight SAR for Ultrahigh-Resolution and Wide-Swath Imaging. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1339–1343. [Google Scholar] [CrossRef]
- Xu, W.; Huang, P.; Wang, R.; Deng, Y. Processing of Multichannel Sliding Spotlight and TOPS Synthetic Aperture Radar Data. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4417–4429. [Google Scholar] [CrossRef]
- Fang, T.; Deng, Y.; Liang, D.; Zhang, L.; Zhang, H.; Fan, H.; Yu, W. Multichannel Sliding Spotlight SAR Imaging: First Result of GF-3 Satellite. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5204716. [Google Scholar] [CrossRef]
- Fan, H.; Zhang, L.; Zhang, Z.; Yu, W.; Deng, Y. On the Processing of Gaofen-3 Spaceborne Dual-Channel Sliding Spotlight SAR Data. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5202912. [Google Scholar] [CrossRef]
- Xu, W.; Hu, J.; Huang, P.; Tan, W.; Dong, Y. Processing of Multichannel Sliding Spotlight SAR Data with Large Pulse Bandwidth and Azimuth Steering Angle. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5202414. [Google Scholar] [CrossRef]
- Fang, T.; Zhang, H.; Liang, D.; Zhang, L.; Fan, H. A Channel Phase Error Estimation Method for Multichannel TOPS and Multichannel Sliding Spotlight SAR Imaging. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4010505. [Google Scholar] [CrossRef]
- Meta, A.; Hoogeboom, P.; Ligthart, L. Signal Processing for FMCW SAR. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3519–3532. [Google Scholar] [CrossRef]
- Ribalta, A. Time-Domain Reconstruction Algorithms for FMCW-SAR. IEEE Geosci. Remote Sens. Lett. 2011, 8, 396–400. [Google Scholar] [CrossRef]
- Wang, H.; Chen, X.; Sun, J. FMCW SAR Imaging Algorithm of Sliding Spotlight Mode. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4020205. [Google Scholar] [CrossRef]
- Neo, Y.; Wong, F.; Cumming, I. Processing of azimuth-invariant bistatic SAR data using the range Doppler algorithm. IEEE Trans. Geosci. Remote Sens. 2008, 46, 14–21. [Google Scholar] [CrossRef]
- Wu, J.; Li, Z.; Huang, Y.; Yang, J.; Liu, Q. An Omega-K algorithm for translational invariant bistatic SAR based on generalized Loffeld’s bistatic formula. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6699–6714. [Google Scholar]
- Bamler, R.; Meyer, F.; Liebhart, W. Processing of bistatic SAR data from quasi-stationary configurations. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3350–3358. [Google Scholar] [CrossRef]
- Wang, R.; Loffeld, O.; Nies, H.; Knedlik, S.; Ender, J. Chirp-scaling algorithm for bistatic SAR data in the constant-offset configuration. IEEE Trans. Geosci. Remote Sens. 2009, 47, 952–964. [Google Scholar] [CrossRef]
- Natroshvili, K.; Loffeld, O.; Nies, H.; Ortiz, A.; Knedlik, S. Focusing of general bistatic SAR configuration data with 2-D inverse scaled FFT. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2718–2727. [Google Scholar] [CrossRef]
- Wu, J.; Pu, W.; Huang, Y.; Yang, J.; Yang, H. Bistatic forward- looking SAR focusing using ω − κ based on spectrum modeling and optimization. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 4500–4512. [Google Scholar] [CrossRef]
- Wu, J.; Li, Z.; Huang, Y.; Yang, J.; Liu, Q. Omega-K imaging algorithm for one-stationary bistatic SAR. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 33–52. [Google Scholar] [CrossRef]
- Wu, J.; Li, Z.; Huang, Y.; Yang, J.; Yang, H.; Liu, Q. Focusing bistatic forward-looking SAR with stationary transmitter based on key stone transform and nonlinear chirp scaling. IEEE Geosci. Remote Sens. Lett. 2014, 11, 148–152. [Google Scholar] [CrossRef]
- Li, D.; Wang, W.; Liu, H.; Cao, H.; Lin, H. Focusing highly squinted azimuth variant bistatic SAR. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 2715–2730. [Google Scholar] [CrossRef]
- Wu, J.; Li, Z.; Huang, Y.; Yang, J.; Liu, Q. A generalized Omega-K algorithm to process translationally variant bistatic-SAR data based on two-dimensional Stolt mapping. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6597–6614. [Google Scholar]
- Wang, R.; Loffeld, O.; Nies, H.; Ender, J. Focusing space-borne/airborne hybrid bistatic SAR data using wavenumber-domain algorithm. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2275–2283. [Google Scholar] [CrossRef]
- Xiong, Y.; Liang, B.; Yu, H.; Chen, J.; Jin, Y.; Xing, M. Processing of bistatic SAR data with nonlinear trajectory using a controlled-SVD algorithm. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 5750–5759. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, T.; Mei, H.; Quan, Y.; Xing, M. Focusing translational-variant bistatic forward-looking SAR data using the modified Omega-K algorithm. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5203916. [Google Scholar] [CrossRef]
- Lian, M.; Jiang, Y.; Hu, B. Resolution analysis of GEO spaceborne-airborne bistatic SAR based on sliding spotlight mode. J. Syst. Eng. Electron. 2016, 27, 352–361. [Google Scholar] [CrossRef]
- Zhang, H.; Deng, Y.; Wang, R.; Li, N.; Zhao, S.; Hong, F.; Wu, L.; Loffeld, O. Spaceborne/Stationary Bistatic SAR Imaging with TerraSAR-X as an Illuminator in Staring-Spotlight Mode. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5203–5216. [Google Scholar] [CrossRef]
- Guo, Y.; Yu, Z.; Li, J.; Li, C. Focusing Spotlight-Mode Bistatic GEO SAR With a Stationary Receiver Using Time-Doppler Resampling. IEEE Sens. J. 2020, 20, 10766–10778. [Google Scholar] [CrossRef]
- Sun, Z.; Chen, T.; Sun, H.; Wu, J.; Lu, Z.; Li, Z.; An, H.; Yang, J. A Novel Frequency-Domain Focusing Method for Geosynchronous Low-Earth-Orbit Bistatic SAR in Sliding-Spotlight Mode. Remote Sens. 2022, 14, 3178. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, L.; Cao, Y.; Yeo, T.-S.; Lu, J.; Han, J.; Peng, Z. High-Resolution Bistatic Spotlight SAR Imagery with General Configuration and Accelerated Track. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5213218. [Google Scholar] [CrossRef]
- Villano, M.; Krieger, G.; Moreira, A. Staggered SAR: High resolution wide-swath imaging by continuous PRI variation. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4462–4479. [Google Scholar] [CrossRef]
- Villano, M.; Krieger, G.; Moreira, A. A novel processing strategy for staggered SAR. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1891–1895. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, P.; Zhou, X.; He, T.; Chen, J. An Improved Imaging Algorithm for HRWS Space-Borne SAR Data Processing Based on CVPRI. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 126–140. [Google Scholar] [CrossRef]
- Zhou, Z.; Deng, Y.; Wang, W.; Jia, X.; Wang, R. Analysis of Varying-PRI Spotlight SAR Data. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5221020. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, W.; Wu, X.; Deng, Y.; Xiao, D. A Novel SV-PRI Strategy and Signal Processing Approach for High-Squint Spotlight SAR. Remote Sens. 2024, 16, 871. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Yang, J.; Sun, B. A Novel Spaceborne Sliding Spotlight Range Sweep Synthetic Aperture Radar: System and Imaging. Remote Sens. 2017, 9, 783. [Google Scholar] [CrossRef]
- Ding, Z.; Yin, W.; Zeng, T.; Long, T. Radar parameter design for geosynchronous SAR in squint mode and elliptical orbit. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2720–2732. [Google Scholar] [CrossRef]
- Men, Z.; Wang, P.; Li, C.; Chen, J.; Liu, W.; Fang, Y. High temporal-resolution high-spatial-resolution spaceborne SAR based on continuously varying PRF. Sensors 2017, 17, 1700. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, Z.; Xu, P.; Chen, K.; Zeng, T.; Long, T. Strip layering diagram-based optimum continuously varying pulse interval sequence design for extremely high-resolution spaceborne sliding spotlight SAR. IEEE Trans. Geosci. Remote Sens. 2021, 59, 6751–6770. [Google Scholar] [CrossRef]
- Zou, H.; Zhao, F.; Jia, X.; Wang, W.; Zhang, H. Continuous pulse repetition interval variation for highly squint high-resolution spotlight SAR imaging. Remote Sens. Lett. 2021, 12, 199–208. [Google Scholar] [CrossRef]
Publication Topics | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 |
---|---|---|---|---|---|---|---|---|---|---|---|
Spaceborne spotlight/sliding spotlight mode SAR imaging | 8 | 11 | 7 | 7 | 7 | 6 | 7 | 12 | 12 | 10 | 9 |
Publication Topics | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 |
---|---|---|---|---|---|---|---|---|---|---|---|
Imaging methods | 3 | 6 | 2 | 3 | 3 | 2 | 4 | 6 | 4 | 2 | 6 |
Errors and motions compensation methods | 4 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 5 | 2 | 0 |
New imaging systems | 1 | 4 | 4 | 3 | 2 | 2 | 2 | 5 | 3 | 6 | 3 |
Sattellite | Frequency Band | Spotlight Mode Resolution (m) | Coverage (km × km) | Country |
---|---|---|---|---|
RadarSat-2 | C-band | 1 | 18 × 8 | Canada |
COSMO-SkyMed | X-band | 1 | 10 × 10 | Italy |
TerraSAR and TanDEM-X | X-band | Up to 0.25 | 10 × 5 | Germany |
ALOS-2 | L-band | 1 | 25 × 25 | Japan |
Capella | X-band | Up to 0.25 | 20 × 5 and 10 × 10 | America |
ICEYE | X-band | 1 | 15 × 15 | Finland |
GF-3 | C-band | 1 | 10 × 10 | China |
HiSea-1 | C-band | 1 | 5 × 5 | China |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, B.; Liu, C.; Chen, J. A Review of Spaceborne High-Resolution Spotlight/Sliding Spotlight Mode SAR Imaging. Remote Sens. 2025, 17, 38. https://doi.org/10.3390/rs17010038
Wu B, Liu C, Chen J. A Review of Spaceborne High-Resolution Spotlight/Sliding Spotlight Mode SAR Imaging. Remote Sensing. 2025; 17(1):38. https://doi.org/10.3390/rs17010038
Chicago/Turabian StyleWu, Baolong, Chengjin Liu, and Jianlai Chen. 2025. "A Review of Spaceborne High-Resolution Spotlight/Sliding Spotlight Mode SAR Imaging" Remote Sensing 17, no. 1: 38. https://doi.org/10.3390/rs17010038
APA StyleWu, B., Liu, C., & Chen, J. (2025). A Review of Spaceborne High-Resolution Spotlight/Sliding Spotlight Mode SAR Imaging. Remote Sensing, 17(1), 38. https://doi.org/10.3390/rs17010038