Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = asymmetrical laminates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1809 KB  
Article
Multistage Static and Dynamic Optimization Framework for Composite Laminates in Lightweight Urban Rail Vehicle Car Bodies
by Alessio Cascino, Francesco Distaso, Enrico Meli and Andrea Rindi
Materials 2026, 19(3), 531; https://doi.org/10.3390/ma19030531 - 29 Jan 2026
Viewed by 68
Abstract
This paper presents a robust multistage optimization framework for the integration of composite laminates into the car body shell of a low-floor light rail vehicle (LRV). While structural design in low-floor vehicles is typically complex, this methodology successfully balances both static and dynamic [...] Read more.
This paper presents a robust multistage optimization framework for the integration of composite laminates into the car body shell of a low-floor light rail vehicle (LRV). While structural design in low-floor vehicles is typically complex, this methodology successfully balances both static and dynamic requirements through a sequential optimization process. Developed in strict accordance with reference European standards, the methodology addresses the structural challenges inherent in low-floor architectures, where complex load paths and redistributed equipment masses require targeted reinforcement. The proposed approach sequentially addresses dynamic and static requirements through a structural optimization process. Two distinct 10-ply laminate configurations, one symmetric and one asymmetric, were investigated. The results demonstrate that the multistage optimization successfully converged to a highly mass-efficient solution, achieving a 66% reduction in laminate thickness compared to the baseline design. This significant result was accomplished while maintaining full regulatory compliance; the failure index increased by approximately 22.5% and 23.3% for the two composite laminate configurations, respectively, effectively maximizing material utilization. A key finding of this study is the preservation of structural dynamic integrity; the fundamental natural frequency was maintained at approximately 16 Hz, with a high correlation across the first ten vibration modes, confirming that the global dynamic behaviour remains unaffected. These observations provide critical insights into the synergy between hybridization and structural constraints, suggesting a systematic pathway for designers to achieve an optimal trade-off between manufacturing costs, weight reduction, and performance in advanced urban transit platforms. Full article
Show Figures

Figure 1

14 pages, 4119 KB  
Article
Influence of FeSiB Layer Thickness on Magnetoelectric Response of Asymmetric and Symmetric Structures of Magnetostrictive/Piezoelectric Composites
by Lei Chen, Yingjie Cheng and Fujian Qin
J. Compos. Sci. 2025, 9(12), 693; https://doi.org/10.3390/jcs9120693 - 12 Dec 2025
Viewed by 351
Abstract
Asymmetric and symmetric magnetoelectric (ME)-laminated composites with magnetostrictive layer FeNi and piezoelectric layer PZT are prepared. The longitudinal resonance ME voltage coefficient in the symmetric composite is approximately 1.57 times that in the asymmetric composite with same constituents due to the flexural deformation [...] Read more.
Asymmetric and symmetric magnetoelectric (ME)-laminated composites with magnetostrictive layer FeNi and piezoelectric layer PZT are prepared. The longitudinal resonance ME voltage coefficient in the symmetric composite is approximately 1.57 times that in the asymmetric composite with same constituents due to the flexural deformation and asymmetric stress distribution in the asymmetric structure. By bonding an additional high-permeability FeSiB, combining FeSiB with FeNi forms magnetization-graded ferromagnetic materials. A stronger maximum ME voltage coefficient, a dual-peak phenomenon, and a self-bias ME effect are observed. The maximum ME voltage coefficients for asymmetric and symmetric composites reach 3.10 V/Oe and 5.67 V/Oe by adjusting the thickness of the FeCuNbSiB layer. The maximum zero-bias ME voltage coefficients for asymmetrical and symmetrical composite materials reach 2.19 V/Oe at 25 µm thickness of FeSiB and 2.87 V/Oe at 75 µm thickness of FeSiB. Such high performances enable the ME composites to possess ideal sensing and make them promising for self-bias current sensor applications. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

10 pages, 1539 KB  
Article
A Compact L-Band Reconfigurable Dual-Mode Patch Filter
by Abdel Fattah Sheta, Majeed A. S. Alkanhal and Ibrahim Elshafiey
Micromachines 2025, 16(11), 1294; https://doi.org/10.3390/mi16111294 - 19 Nov 2025
Viewed by 2097
Abstract
This research presents a novel dual-mode filter design that offers significant advantages in terms of frequency agility and miniaturization compared to conventional fixed multi-resonator filters. The design and implementation of a compact tunable bandpass filter are presented. The basic design structure is based [...] Read more.
This research presents a novel dual-mode filter design that offers significant advantages in terms of frequency agility and miniaturization compared to conventional fixed multi-resonator filters. The design and implementation of a compact tunable bandpass filter are presented. The basic design structure is based on a slotted non-degenerate dual-mode microstrip square patch. The slots are etched symmetrically, which makes the slotted dual-mode square patch equivalent to a two-coupled-resonator filter. The asymmetrical feed lines enable the excitation of dual resonant modes. The patch length, slot size, and dielectric material properties primarily determine the filter’s center frequency and bandwidth. Tunability is achieved by loading the slotted square patch with reversed bias varactor diodes located at the square patch corners, allowing electronic control of the filter center frequency. The design utilizes RT/Duroid 6010.2 laminates with a dielectric constant of 10.2 and a thickness of 0.635 mm. A bias tee at one of the filter ports is used to provide reverse bias to varactor diodes. Simulations and experimental results demonstrate tunable characteristics. Among the attractive features of the proposed design, good levels of insertion loss and impedance matching are noticed in the entire tunable band. The advantages of the proposed design make it well-suited for modern wireless technology applications in communication, radar, and satellite systems. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

16 pages, 4810 KB  
Article
Thermal Influence on the Mechanical Performance and Deformation Characteristics of Symmetric and Asymmetric GFRP Laminates
by Juveriya Sayyed, Prashantha Acharya, Sriharsha Hegde, Gururaj Bolar, Manjunath Shetty, Thara Reshma I. V. and Padmaraj N. H.
J. Compos. Sci. 2025, 9(11), 636; https://doi.org/10.3390/jcs9110636 - 18 Nov 2025
Viewed by 663
Abstract
The present study investigated the tensile behavior, failure mechanisms and deformation characteristics of glass fiber-reinforced polymer (GFRP) composites with symmetric [0°/90°/90°/0°] and asymmetric [0°/90°/0°/90°] stacking sequences across a temperature range of 30–150 °C. Tensile testing revealed superior mechanical performance in the symmetric lay-up, [...] Read more.
The present study investigated the tensile behavior, failure mechanisms and deformation characteristics of glass fiber-reinforced polymer (GFRP) composites with symmetric [0°/90°/90°/0°] and asymmetric [0°/90°/0°/90°] stacking sequences across a temperature range of 30–150 °C. Tensile testing revealed superior mechanical performance in the symmetric lay-up, with higher tensile strength and failure strain sustained across elevated temperatures. Failure mode analysis revealed a transition from ductile failure to brittle failure with increasing temperature, which was more pronounced in the asymmetric lay-up, along with increased delamination and reduced fiber pull-out. Failure surface examination supported these findings, revealing better interfacial bonding and matrix integrity in the symmetric lay-up. Deformation analysis further confirmed a more homogeneous distribution of strain and longer failure time in symmetric laminates. Across all the metrics, including toughness, energy absorption, and strain uniformity, the symmetric configuration outperformed the asymmetric counterpart, underscoring the critical role of balanced stacking in enhancing the thermal durability. The observed temperature-induced degradation and its impact on mechanical and failure behavior emphasize the need for temperature-sensitive design strategies in GFRP-based structures. Full article
(This article belongs to the Special Issue Polymer Composites and Fibers, 3rd Edition)
Show Figures

Figure 1

18 pages, 9314 KB  
Article
Damage Mechanism and Modeling of CFRP Laminates Impacted by Single Waterjets: Effect of the Impact Direction
by Naidan Hou, Yulong Li and Ping Liu
Materials 2025, 18(15), 3495; https://doi.org/10.3390/ma18153495 - 25 Jul 2025
Cited by 1 | Viewed by 635
Abstract
In engineering practice, liquid droplet impingement typically occurs at an oblique angle relative to the target surface, yet the influence of impact orientation on damage outcomes remains contentious and exhibits target-material dependency. In this paper, a typical single-waterjet-generating technique is applied to liquid [...] Read more.
In engineering practice, liquid droplet impingement typically occurs at an oblique angle relative to the target surface, yet the influence of impact orientation on damage outcomes remains contentious and exhibits target-material dependency. In this paper, a typical single-waterjet-generating technique is applied to liquid impact tests on a unidirectional carbon fiber-reinforced polymer (CFRP) laminate, with special focus on the effects of the impingement angle and the fiber orientation. Finite-element simulation is employed to help reveal the failure mechanism of oblique impacts. The results show that, in most cases, the damage caused by a 15° oblique impact is slightly larger than that of a normal impact, while the increase amplitude varies with different impact speeds. Resin removal is more prone to occur when the projection of the waterjet velocity on the impact surface is perpendicular (marked as the fiber orientation PE) rather than parallel (marked as the fiber orientation PA) to the fiber direction of the top layer. A PE fiber orientation can lead to mass material peeling in comparison with PA, and the damage range is even much larger than for a normal impact. The underlying mechanism can be attributed to the increased lateral jet-particle velocity and resultant shear stress along the impact projection direction. The distinct damage modes observed on the CFRP laminate with the different fiber orientations PE and PA originate from the asymmetric tensile properties in the longitudinal/transverse directions of laminates coupled with dissimilar fiber–matrix interfacial characteristics. A theoretical model for the surface damage area under a single-jet impact was established through experimental data fitting based on a modified water-hammer pressure contact-radius formulation. The model quantitatively characterizes the influence of critical parameters, including the jet velocity, diameter, and impact angle, on the central area of the surface failure ring. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

26 pages, 3269 KB  
Article
Dynamic Characteristics of Additive Manufacturing Based on Dual Materials of Heterogeneity
by Hsien-Hsiu Hung, Shih-Han Chang and Yu-Hsi Huang
Polymers 2025, 17(13), 1793; https://doi.org/10.3390/polym17131793 - 27 Jun 2025
Viewed by 792
Abstract
This study aims to establish a methodology that integrates experimental measurements with finite element analysis (FEA) to investigate the mechanical behavior and dynamic characteristics of soft–hard laminated composites fabricated via additive manufacturing (AM) under dynamic excitation. A hybrid AM technique was employed, using [...] Read more.
This study aims to establish a methodology that integrates experimental measurements with finite element analysis (FEA) to investigate the mechanical behavior and dynamic characteristics of soft–hard laminated composites fabricated via additive manufacturing (AM) under dynamic excitation. A hybrid AM technique was employed, using the PolyJet process based on stereolithography (SLA) to fabricate composite beam structures composed of alternating soft and hard materials. Initially, impact tests using a steel ball on cantilever beams made of hard material were conducted to inversely calculate the first natural frequency via time–frequency analysis, thereby identifying Young’s modulus and Poisson’s ratio. For the viscoelastic soft material, tensile and stress relaxation tests were performed to construct a Generalized Maxwell Model, from which the Prony series parameters were derived. Subsequently, symmetric and asymmetric multilayer composite beams were fabricated and subjected to impact testing. The experimental results were compared with FEA simulations to evaluate the accuracy and validity of the identified material parameters of different structural configurations under vibration modes. The research focuses on the time- and frequency-dependent stiffness response of the composite by hard and soft materials and integrating this behavior into structural dynamic simulations. The specific objectives of the study include (1) establishing the Prony series parameters for the soft material integrated with hard material and implementing them in the FE model, (2) validating the accuracy of resonant frequencies and dynamic responses through combined experimental and simulation, (3) analyzing the influence of composite material symmetry and thickness ratio on dynamic modals, and (4) comparing simulation results with experimental measurements to assess the reliability and accuracy of the proposed modeling framework. Full article
(This article belongs to the Special Issue Polymeric Materials and Their Application in 3D Printing, 2nd Edition)
Show Figures

Figure 1

19 pages, 15506 KB  
Article
The Analysis of Plastic Forming in the Rolling Process of Difficult-to-Deform Ti + Ni Layered Composites
by Dariusz Rydz, Sebastian Mróz, Piotr Szota, Grzegorz Stradomski, Tomasz Garstka and Tomasz Cyryl Dyl
Materials 2025, 18(9), 1926; https://doi.org/10.3390/ma18091926 - 24 Apr 2025
Cited by 2 | Viewed by 927
Abstract
The article presents the results of experimental studies on the symmetrical and asymmetrical rolling process of composite laminate sheets consisting of difficult-to-deform Ti and Ni materials. Composite sheets joined by explosive welding were used for the tests. The aim of the research was [...] Read more.
The article presents the results of experimental studies on the symmetrical and asymmetrical rolling process of composite laminate sheets consisting of difficult-to-deform Ti and Ni materials. Composite sheets joined by explosive welding were used for the tests. The aim of the research was to determine the impact of plastic shaping conditions in the rolling process on the quality and selected functional properties of the materials constituting the layered composite. The rolling process was carried out cold on a duo laboratory rolling mill with a roll diameter of 300 mm. During the rolling process, the influence of the rolling process conditions on the distribution of metal pressure forces on the rolls was determined, as well as the shear strength and microstructural studies of the joint area of the layered composites. As part of the conducted considerations, residual stress tests were carried out using the Barkhausen noise method. The scientific aim of the presented work was to determine the optimal conditions for the plastic processing of multi-layer Ti-Ni sheets. The results presented in the work allowed for determining the most favorable conditions for the rolling process. Full article
(This article belongs to the Special Issue Achievements in Foundry Materials and Technologies)
Show Figures

Graphical abstract

25 pages, 8472 KB  
Article
Ply Optimization of Composite Laminates for Processing-Induced Deformation and Buckling Eigenvalues Based on Improved Genetic Algorithm
by Qingchuan Liu, Xiaodong Wang, Zhidong Guan, Zengshan Li and Lingxiao Yang
Materials 2025, 18(2), 345; https://doi.org/10.3390/ma18020345 - 14 Jan 2025
Cited by 2 | Viewed by 2146
Abstract
The structure of thermoset composite laminated plates is made by stacking layers of plies with different fiber orientations. Similarly, the stiffened panel structure is assembled from components with varying ply configurations, resulting in thermal residual stresses and processing-induced deformations (PIDs) during manufacturing. To [...] Read more.
The structure of thermoset composite laminated plates is made by stacking layers of plies with different fiber orientations. Similarly, the stiffened panel structure is assembled from components with varying ply configurations, resulting in thermal residual stresses and processing-induced deformations (PIDs) during manufacturing. To mitigate the residual stresses caused by the geometric features of corner structures and the mismatch between the stiffener-skin ply orientations, which lead to PIDs in composite-stiffened panels, this study proposes a multi-objective stacking optimization strategy based on an improved adaptive genetic algorithm (IAGA). The viscoelastic constitutive model was employed to describe the modulus variation during the curing process to ensure computational accuracy. In this study, the IAGA was proposed to optimize the ply-stacking sequence of L-shaped stiffeners in composite laminated structures. The results demonstrate a reduction in the spring-in angle to 0.12°, a 50% improvement compared to symmetric balanced stacking designs, while the buckling eigenvalues were improved by 20%. Additionally, the IAGA outperformed the traditional non-dominated sorting genetic algorithm (NSGA), achieving a threefold increase in the Pareto solution diversity under identical constraints and reducing the convergence time by 70%. These findings validate the effectiveness of asymmetric ply design and provide a robust framework for enhancing the structural performance and manufacturability of composite laminates. Full article
Show Figures

Figure 1

22 pages, 25960 KB  
Article
A New Method for Compression Testing of Reinforced Polymers
by Ciprian Ionuț Morăraș, Dorin Husaru, Viorel Goanță, Paul Doru Bârsănescu, Fabian Cezar Lupu, Corneliu Munteanu, Nicanor Cimpoesu and Elena Roxana Cosau
Polymers 2024, 16(21), 3071; https://doi.org/10.3390/polym16213071 - 31 Oct 2024
Cited by 2 | Viewed by 2757
Abstract
Compressive testing of specimens taken from relatively thin composite plates is difficult, especially due to the occurrence of buckling. To prevent buckling, the central portion of the specimens used for the compression test has smaller dimensions, and the specimens can be guided along [...] Read more.
Compressive testing of specimens taken from relatively thin composite plates is difficult, especially due to the occurrence of buckling. To prevent buckling, the central portion of the specimens used for the compression test has smaller dimensions, and the specimens can be guided along their entire length. For these reasons, optical methods, such as digital image correlation (DIC), cannot be used for the compression test and strain rosettes cannot be glued onto the samples to determine Poisson’s ratio. In this study, compression tests of a glass fiber-reinforced polymer (GFRP) were conducted using both the ASTM D695 (Boeing version) and a newly proposed method. The new method involves using special specimens that allow T-type rosettes to be bonded to determine Poisson’s ratio, whose value of 0.14 was thus determined. SEM images of the failure surfaces were presented and interpreted. A finite element analysis (FEA) of the specimens tested in compression is also presented. The first analyzed case considers the homogeneous and orthotropic composite, loaded with a uniformly distributed force. The normal stress in the central section of the specimen, determined with FEA, has an error of 6.52% compared to that determined experimentally. Additionally, the strain in the center of the strain gauge, determined with FEA, has an error of 4.76% compared to the measured one. In the second case studied with FEA, the sample is loaded with a quasi-concentrated force, which can move in the direction of the symmetry axes of the cross-section, to study the effect of the eccentricity of the compression force on the state of stress. It was shown that the eccentricity of the force has a great influence: the stress distribution in the section of the specimen becomes strongly non-uniform. For a force eccentricity of 0.4 mm in the direction of the OX axis, the minimum stress decreases by 53.7%, and the maximum stress increases by 55.4%. In order to analyze the influence of some manufacturing defects, two other cases were analyzed by FEA, in which it was assumed that the thicknesses of the outer resin layers were modified, making them asymmetrical. For this final FEA, the specimen was considered to be composed of laminates. These results demonstrate the special attention that must be paid to the centric application of force in compression testing. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

16 pages, 469 KB  
Article
Frequency Analysis of Asymmetric Circular Organic Solar Cells Embedded in an Elastic Medium under Hygrothermal Conditions
by Muneer Alali, Mohammad A. Abazid and Mohammed Sobhy
Symmetry 2024, 16(5), 577; https://doi.org/10.3390/sym16050577 - 7 May 2024
Cited by 2 | Viewed by 1424
Abstract
This research represents the first theoretical investigation about the vibration behavior of circular organic solar cells. Therefore, the vibration response of asymmetric circular organic solar cells that represent a perfect renewable energy source is demonstrated. For this purpose, the differential quadrature method (DQM) [...] Read more.
This research represents the first theoretical investigation about the vibration behavior of circular organic solar cells. Therefore, the vibration response of asymmetric circular organic solar cells that represent a perfect renewable energy source is demonstrated. For this purpose, the differential quadrature method (DQM) is employed. The organic solar cell is modeled as a laminated plate consisting of five layers of Al, P3HT:PCBM, PEDOT:PSS, ITO, and Glass. This cell is rested on a Winkler–Pasternak elastic foundation and assumed to be exposed to various types of hygrothermal loadings. There are three different kinds of temperature and moisture variations that are taken into account: uniform, linear, and nonlinear distribution throughout the cell’s thickness. The displacement field is presented based on a new inverse hyperbolic shear deformation theory considering only two unknowns. The motion equations including hygrothermal effect and plate–foundation interaction are established within the framework of Hamilton’s principle. The DQM is utilized to solve these equations. In order to ensure the accuracy of the proposed theory, the present results are compared with those reported by other higher-order theories. A comprehensive parametric illustration is conducted on the impacts of different parameters involving the geometrical configuration, elastic foundation parameters, temperature, and moisture concentration on the deduced eigenfrequency of the circular organic solar cells. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

16 pages, 5327 KB  
Article
Control and Analysis of a Hybrid-Rotor Bearingless Switched Reluctance Motor with One-Phase Full-Period Suspension
by Zeyuan Liu, Xingcheng Wu, Wenfeng Zhang, Yan Yang and Chengzi Liu
Symmetry 2024, 16(3), 369; https://doi.org/10.3390/sym16030369 - 18 Mar 2024
Viewed by 1823
Abstract
In the traditional control scheme of a 12/8-pole bearingless switched reluctance motor (BSRM), radial force and torque are usually controlled as a compromise due to the conflict between their effective output areas. Additionally, each phase requires individual power circuits and is excited in [...] Read more.
In the traditional control scheme of a 12/8-pole bearingless switched reluctance motor (BSRM), radial force and torque are usually controlled as a compromise due to the conflict between their effective output areas. Additionally, each phase requires individual power circuits and is excited in turn to produce a continuous levitation force, resulting in high power device requirements and high controller costs. This paper discusses a 12/8-pole single-winding hybrid-rotor bearingless switched reluctance motor (HBSRM) with a hybrid rotor consisting of cylindrical and salient-pole lamination segments. The asymmetric rotor of the HBSRM slightly increases the complexity of its structure and magnetic circuit, but makes it possible to generate the desired radial force at any rotor angular position. A control scheme for the HBSRM is developed to utilize the independent excitation of the four windings in one phase to generate the desired levitation force at any rotor angular position, and it requires only half the number of power circuits used in the conventional control scheme of a 12/8-pole single-winding BSRM. Different from the average torque chosen to be controlled in traditional methods, this scheme directly regulates the instantaneous total torque produced by all excited phases together and presents a current algorithm to optimize the torque contribution of each phase so as to reduce torque pulsation, and the improved performance of this bearingless motor is finally validated by simulation analysis. Full article
(This article belongs to the Special Issue Research on Motor and Special Electromagnetic Device of Symmetry II)
Show Figures

Figure 1

17 pages, 5471 KB  
Article
Buckling Analysis of Laminated Plates with Asymmetric Layup by Approximation Method
by Katarzyna Falkowicz, Pawel Wysmulski and Hubert Debski
Materials 2023, 16(14), 4948; https://doi.org/10.3390/ma16144948 - 11 Jul 2023
Cited by 11 | Viewed by 2685
Abstract
This study investigated thin-walled plate elements with a central cut-out under axial compression. The plates were manufactured from epoxy/carbon laminate (CFRP) with an asymmetric layup. The study involved analyzing the buckling and post-buckling behavior of the plates using experimental and numerical methods. The [...] Read more.
This study investigated thin-walled plate elements with a central cut-out under axial compression. The plates were manufactured from epoxy/carbon laminate (CFRP) with an asymmetric layup. The study involved analyzing the buckling and post-buckling behavior of the plates using experimental and numerical methods. The experiments provided the post-buckling equilibrium paths (P-u), which were then used to determine the critical load using the straight-line intersection method. Along with the experiments, a numerical analysis was conducted using the Finite Element Method (FEM) and using the ABAQUS® software. A linear analysis of an eigenvalue problem was conducted, the results of which led to the determination of the critical loads for the developed numerical model. The second part of the calculations involved conducting a non-linear analysis of a plate with an initial geometric imperfection corresponding to structural buckling. The numerical results were validated by the experimental findings, which showed that the numerical model of the structure was correct. Full article
(This article belongs to the Special Issue Numerical Methods and Modeling Applied for Composite Structures)
Show Figures

Figure 1

27 pages, 6021 KB  
Article
Numerical and Experimental Analysis of the Mode I Interlaminar Fracture Toughness in Multidirectional 3D-Printed Thermoplastic Composites Reinforced with Continuous Carbon Fiber
by Jonnathan D. Santos, José M. Guerrero, Norbert Blanco, Jorge I. Fajardo and César A. Paltán
Polymers 2023, 15(10), 2403; https://doi.org/10.3390/polym15102403 - 22 May 2023
Cited by 18 | Viewed by 4806
Abstract
It is well known that the use of continuous reinforcing fibers can largely improve the typical low in-plane mechanical properties of 3D-printed parts. However, there is very limited research on the characterization of the interlaminar fracture toughness of 3D-printed composites. In this study, [...] Read more.
It is well known that the use of continuous reinforcing fibers can largely improve the typical low in-plane mechanical properties of 3D-printed parts. However, there is very limited research on the characterization of the interlaminar fracture toughness of 3D-printed composites. In this study, we investigated the feasibility of determining the mode I interlaminar fracture toughness of 3D-printed cFRP composites with multidirectional interfaces. First, elastic calculations and different FE simulations of Double Cantilever Beam (DCB) specimens (using cohesive elements for the delamination, in addition to an intralaminar ply failure criterion) were carried out to choose the best interface orientations and laminate configurations. The objective was to ensure a smooth and stable propagation of the interlaminar crack, while preventing asymmetrical delamination growth and plane migration, also known as crack jumping. Then, the best three specimen configurations were manufactured and tested experimentally to validate the simulation methodology. The experimental results confirmed that, with the appropriate stacking sequence for the specimen arms, it is possible to characterize the interlaminar fracture toughness in multidirectional 3D-printed composites under mode I. The experimental results also show that both initiation and propagation values of the mode I fracture toughness depend on the interface angles, although a clear tendency could not be established. Full article
(This article belongs to the Special Issue Fibre-Reinforced Polymer Composite II)
Show Figures

Figure 1

20 pages, 20801 KB  
Article
Anti-Penetration Performance of Composite Structures with Metal-Packaged Ceramic Interlayer and UHMWPE Laminate
by Xin Sun, Longhui Zhang, Qitian Sun, Ping Ye, Wei Hao, Peizhuo Shi and Yongxiang Dong
Materials 2023, 16(6), 2469; https://doi.org/10.3390/ma16062469 - 20 Mar 2023
Cited by 9 | Viewed by 3439
Abstract
The impact response of a composite structure consisting of a metal-packaged ceramic interlayer and an ultra-high molecular weight polyethylene (UHMWPE) laminate has been studied through a ballistic test and numerical simulation. The studied structure exhibits 50% higher anti-penetration performance than the traditional ceramic/metal [...] Read more.
The impact response of a composite structure consisting of a metal-packaged ceramic interlayer and an ultra-high molecular weight polyethylene (UHMWPE) laminate has been studied through a ballistic test and numerical simulation. The studied structure exhibits 50% higher anti-penetration performance than the traditional ceramic/metal structure with the same areal density. The metal-packaged ceramic interlayer and the UHMWPE laminate are key components in resisting the penetration. By using a metal frame to impose three-dimensional constraints on ceramic tiles, the metal-packaged ceramic interlayer can limit the crushing of the ceramic and contain the broken ceramic fragment to improve the erosion of the projectile. The large deformation of UHMWPE laminate absorbs a large amount of energy from the projectile. By decreasing the amplitude of the shock wave and changing the distribution of the impact load in the structure, the projectile has longer residence time on the interlayer. The anti-penetration performance shows within 10% variation when the impact position is varied. Due to the asymmetric deformation and high elastic recovery ability of the UHMWPE laminate, the projectile trajectory deflection is increased, and the broken ceramic fragments are restrained, thereby mitigating after-effect damage caused by the projectile after penetrating the structure. Full article
(This article belongs to the Special Issue Impact Behaviour of Materials and Structures)
Show Figures

Figure 1

18 pages, 9315 KB  
Article
A Comprehensive Performance Comparison between Segmental and Conventional Switched Reluctance Machines with Boost and Standard Converters
by Yuanfeng Lan, Julien Croonen, Mohamed Amine Frikha, Mohamed El Baghdadi and Omar Hegazy
Energies 2023, 16(1), 43; https://doi.org/10.3390/en16010043 - 21 Dec 2022
Cited by 2 | Viewed by 2262
Abstract
This paper presents the comparisons between two types of switched reluctance machines (SRMs) and SRM converters. An SRM with a segmental rotor is compared with a conventional SRM (CSRM), and an SRM converter containing a passive boost circuit is compared with a conventional [...] Read more.
This paper presents the comparisons between two types of switched reluctance machines (SRMs) and SRM converters. An SRM with a segmental rotor is compared with a conventional SRM (CSRM), and an SRM converter containing a passive boost circuit is compared with a conventional asymmetric half-bridge (AHB) converter. The segmental SRM has an asymmetric rotor with a segmented structure. The four rotor segments are made of steel laminations. Two segments are misaligned with the other two by 15 degrees. The torque ripple of the SRM with this structure is decreased, and the static torque is increased compared to a conventional SRM. The boost converter comprises a front-end circuit and a conventional AHB converter. The front-end circuit boosts the voltage level. The boosted voltage accelerates the rising and falling progress of the phase current. In this way, the SRM can obtain a greater speed and a smaller torque ripple. The comparison is conducted in simulation and validated through the experimental results. The experiment results have demonstrated that the segmental SRM obtains a maximum 7% torque ripple reduction at a low-speed range, compared to the CSRM. With the boost converter, both the CSRM and the segmental SRM can achieve a lower torque ripple and a higher maximum speed. Full article
Show Figures

Figure 1

Back to TopTop