Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = assisted phytoextraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1493 KB  
Article
Chelator-Assisted Phytoextraction and Bioenergy Potential of Brassica napus L. and Zea mays L. on Metal-Contaminated Soils
by Agnieszka Pusz, Dominik Rogalski, Arkadiusz Kamiński, Peter Knosala and Magdalena Wiśniewska
Resources 2026, 15(1), 10; https://doi.org/10.3390/resources15010010 - 4 Jan 2026
Viewed by 346
Abstract
This study investigates the accumulation potential of Brassica napus L. and Zea mays L. cultivated on soils contaminated with Zn, Cd, Cu and Pb, using HEDTA—Hydroxyethyl Ethylenediamine Triacetic Acid—to enhance metal mobility. The research addresses a gap in the literature regarding the dual-purpose [...] Read more.
This study investigates the accumulation potential of Brassica napus L. and Zea mays L. cultivated on soils contaminated with Zn, Cd, Cu and Pb, using HEDTA—Hydroxyethyl Ethylenediamine Triacetic Acid—to enhance metal mobility. The research addresses a gap in the literature regarding the dual-purpose use of energy crops for assisted phytoextraction and bioenergy recovery. Two pot experiments were conducted on soils of different textures, with HEDTA applied at 2.5 and 5 mmol·kg−1. Metal concentrations in soil and plant tissues were measured, and indices such as the geoaccumulation index (Igeo), bioconcentration factors (BCF), translocation factor (TF), metal tolerance index (MTI), crop growth rate (CGR) and higher heating value (HHV) were calculated. Results showed that HEDTA significantly increased Cd and Zn mobility, leading to higher accumulation in rapeseed shoots. Maize demonstrated phytostabilization by retaining metals in roots. Rapeseed biomass exhibited a higher HHV (up to 20.6 MJ·kg−1) and greater carbon and hydrogen content, indicating suitability for thermochemical conversion. Maize, with lower ash content, showed potential for bioethanol production. The findings support the integration of chelate-assisted phytoextraction with energy recovery from biomass. Full article
Show Figures

Figure 1

19 pages, 2655 KB  
Article
Removal of Ibuprofen and Paracetamol by Rhizobacteria from Roots of Scirpus grossus Exposed to a Synthetic Mix in Constructed Wetlands
by Osama Abrahiem AL Falahi, Siti Rozaimah Sheikh Abdullah, Hassimi Abu Hasan, Ahmad Razi Othman, Hind Mufeed Ewadh, Nur ‘Izzati Ismail, Muhammad Fauzul Imron and Setyo Budi Kurniawan
Water 2025, 17(16), 2396; https://doi.org/10.3390/w17162396 - 13 Aug 2025
Cited by 3 | Viewed by 1079
Abstract
The presence of ibuprofen (IBP) and paracetamol (PAR) contaminants in wastewater has become an emerging issue. Traditional wastewater treatment facilities have not been adequately upgraded to remove these micropollutants. This study focused on screening and identifying effective rhizobacteria capable of assisting plants in [...] Read more.
The presence of ibuprofen (IBP) and paracetamol (PAR) contaminants in wastewater has become an emerging issue. Traditional wastewater treatment facilities have not been adequately upgraded to remove these micropollutants. This study focused on screening and identifying effective rhizobacteria capable of assisting plants in eliminating ibuprofen and paracetamol from wastewater using constructed wetlands. A total of 28 rhizobacteria were isolated from both the roots and the surrounding sand of Scirpus grossus after 30 days of pharmaceutical exposure. Among these, three isolates (Gram-negative Enterobacter aerogenes, Gram-positive Bacillus flexus, and Paenibacillus alvei) showed high tolerance to IBP and PAR with initial removal efficiencies > 75%. The addition of these three isolated rhizobacteria to a constructed wetland (planted with Scirpus grossus, 5-day HRT, 2 L/min aeration) assists the removal of IBP and PAR from wastewater. Bioaugmentation of rhizobacteria showed an increment of IBP removal (↑13%) from water (residual of 10 µg/L) and PAR (↑20%) from sand (residual 2.3 µg/L) as compared to the non-bioaugmented systems. The addition of rhizobacteria also showed the ability to significantly enhance the translocation of PAR into the shoot system of S. grossus, suggesting assisted phytoextraction mechanisms, while the removal of IBP in wetlands is suggested to occur via rhizodegradation. It is recommended that future research be conducted to elucidate the microbial degradation pathways and analyze the intermediate metabolites to accurately depict the pharmaceutical degradation mechanisms and evaluate their ecological risks. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

20 pages, 453 KB  
Review
Harnessing Biotechnology for the Remediation of Organic Pollutants in Coastal Marine Ecosystems
by Adenike A. Akinsemolu and Helen N. Onyeaka
Appl. Sci. 2025, 15(12), 6921; https://doi.org/10.3390/app15126921 - 19 Jun 2025
Cited by 2 | Viewed by 1887
Abstract
The natural and biological processes of organisms offer significant potential for the removal and remediation of environmental contaminants including organic pollutants such as persistent organic pollutants (POPs) like polychlorinated biphenyls (PCBs), pesticides, herbicides, industrial chemicals, and pharmaceuticals. Biotechnology provides various approaches to detoxify [...] Read more.
The natural and biological processes of organisms offer significant potential for the removal and remediation of environmental contaminants including organic pollutants such as persistent organic pollutants (POPs) like polychlorinated biphenyls (PCBs), pesticides, herbicides, industrial chemicals, and pharmaceuticals. Biotechnology provides various approaches to detoxify or remove these pollutants from ecosystems through the use of microorganisms and plants. This review explores the application of biotechnology for the remediation of organic pollutants in coastal marine ecosystems. A thorough analysis of the existing literature highlights bioremediation methods, such as biostimulation, bioaugmentation, and bioattenuation, and phytoremediation methods, like phytoextraction, phytostabilization, phytovolatilization, phytodegradaton, and phytofiltration. as the most widely used techniques in biotechnology. While bioremediation has advanced substantially in fields such as electrochemistry, genetic engineering, and nanotechnology, there is still limited research on the compatibility and application of these technologies in phytoremediation. This paper therefore aims to examine biotechnological methods for tackling organic pollutants in coastal marine environments with an emphasis on the need for further research on enhancing phytoremediation through microbial inoculation and nanomaterial-assisted uptake. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

21 pages, 652 KB  
Review
Enhanced Phytoextraction Technologies for the Sustainable Remediation of Cadmium-Contaminated Soil Based on Hyperaccumulators—A Review
by Xuerui Cao, Qing Dong, Lihui Mao, Xiaoe Yang, Xiaozi Wang and Qingcheng Zou
Plants 2025, 14(1), 115; https://doi.org/10.3390/plants14010115 - 3 Jan 2025
Cited by 17 | Viewed by 4536
Abstract
Heavy metal pollution in soil is a significant challenge around the world, particularly cadmium (Cd) contamination. In situ phytoextraction and remediation technology, particularly focusing on Cd hyperaccumulator plants, has proven to be an effective method for cleaning Cd-contaminated agricultural lands. However, this strategy [...] Read more.
Heavy metal pollution in soil is a significant challenge around the world, particularly cadmium (Cd) contamination. In situ phytoextraction and remediation technology, particularly focusing on Cd hyperaccumulator plants, has proven to be an effective method for cleaning Cd-contaminated agricultural lands. However, this strategy is often hindered by a long remediation cycle and low efficiency. To address these limitations, assisted phytoextraction has been proposed as a remediation strategy based on the modification of certain traits of plants or the use of different materials to enhance plant growth and increase metal absorption or bioavailability, ultimately aiming to improve the remediation efficiency of Cd hyperaccumulators. To thoroughly understand the progress of Cd hyperaccumulators in remediating Cd-polluted soils, this review article discusses the germplasm resources and assisted phytoextraction strategies for these plants, including microbial, agronomic measure, chelate, nanotechnology, and CO2-assisted phytoextraction, as well as integrated approaches. This review paper critically evaluates and analyzes the numerous approaches and the remediation potential of Cd hyperaccumulators and highlights current challenges and future research directions in this field. The goal is to provide a theoretical framework for the further development and application of Cd pollution remediation technologies in agricultural soils. Full article
(This article belongs to the Special Issue Soil Heavy Metal Pollution and Agricultural Product Quality)
Show Figures

Figure 1

18 pages, 2540 KB  
Article
Biotechnological Tool for Metal(loid)s as Cd, Cu, Ni, and P Management with Multiple Approaches: Bioremediation, Recovery of Raw Materials, and Food Safety
by Adalgisa Scotti, Ana Rosa Castaño Gañan, Vanesa Analía Silvani, Andrea Juarez, Gabriela Coria, Sofía Utge Perri, Roxana Paola Colombo, Inmaculada García-Romera, María Luisa Izaguirre-Mayoral, Alicia Godeas and Stefano Ubaldini
Metals 2024, 14(11), 1259; https://doi.org/10.3390/met14111259 - 6 Nov 2024
Viewed by 1468
Abstract
Contaminated soils are a challenge for implementing biotechnology in bioremediation, the recovery of Critical and Strategic Raw Materials (CRMs and SRMs), and food security. European Union (EU) Governments have established strict limits on As, Pb, Cd, and Hg in foods (Document 32023R0915) and [...] Read more.
Contaminated soils are a challenge for implementing biotechnology in bioremediation, the recovery of Critical and Strategic Raw Materials (CRMs and SRMs), and food security. European Union (EU) Governments have established strict limits on As, Pb, Cd, and Hg in foods (Document 32023R0915) and requested the recovery of 34 CRMs within a circular economy (CE) (5th CRMs list). This study proposed a biotechnological tool for the decontamination of soil with heavy metal(loid)s by arbuscular mycorrhizal (AM)-assisted phytoextraction and the subsequent recovery of CRMs or by phytostabilization to prevent their entry into the food chain. It consisted of placing Baccharis salicifolia plants, inoculated or non-inoculated with AM fungi, into bioreactors (BRs) containing mining soil with Cd, Ni, and Cu, according to the Argentinian Patent (AR090183B1). The bioextractive potential (BP) was also estimated at the highest Technological Readiness Level (TRL) using a vegetable depuration module (VDM, TRL 6). Inoculated plants showed significantly higher aerial bioaccumulation coefficients (Cd: 68.62; P: 2.99; Ni: 2.51; Cu: 0.18) in BRs, and the BP values reached 1.16 g, 9.75 g, 2.40 g, and 213.1 g for Ni, Cd, Cu, and P, respectively. Finally, these CRMs and SRMs could be recovered from biomass through hydrometallurgy within a CE framework. Full article
Show Figures

Figure 1

28 pages, 5836 KB  
Review
Phytoremediation of Mercury Contamination: Bibliometric Analysis
by Lina Mosquera Chaverra, Diego Paredes Cuervo, Ana López Gutiérrez, Carlos A. Arias and Pedro N. Carvalho
Sustainability 2024, 16(21), 9408; https://doi.org/10.3390/su16219408 - 30 Oct 2024
Cited by 3 | Viewed by 4754
Abstract
Mercury is classified as one of the world’s most toxic and dangerous pollutants as it tends to bioaccumulate and biomagnify within the trophic chain and is persistent. Various approaches are available to remediate Hg-affected sites including phytoremediation, which includes the use of plants [...] Read more.
Mercury is classified as one of the world’s most toxic and dangerous pollutants as it tends to bioaccumulate and biomagnify within the trophic chain and is persistent. Various approaches are available to remediate Hg-affected sites including phytoremediation, which includes the use of plants to clean up contaminated environments. The phytoremediation of mercury contamination is attracting increasing attention because of its advantages: it is environmentally friendly, inexpensive, simple, and can improve soil fertility. In this report, VOSviewer (version 1.6.1) and Bibliometrix (version 4.16) software were used to analyze 457 and 697 documents published from 2000 to 2023, retrieved from the databases WoS and Scopus, respectively. China, India, the United States, and Spain were the top four most productive countries. The largest topic area was environmental sciences, and the Chinese Academy of Sciences was the organization that contributed the most to the overall number of publications. The keywords with the highest frequency excluding phytoremediation and mercury in WoS were heavy metals, accumulation, cadmium, soils, and phytoextraction. In Scopus, the most frequent keywords were bioremediation, heavy metals, soil pollution, bioaccumulation, biodegradation, and environmental. From the above analysis, we concluded that future research should focus on (1) finding native plants, (2) genetic engineering applications, (3) increasing remediation ability through assisted phytoremediation, and (4) the detoxification mechanism of mercury. This study provides insights into trending themes and serves as a reference for future research. Full article
(This article belongs to the Topic Nature-Based Solutions-2nd Edition)
Show Figures

Figure 1

13 pages, 1035 KB  
Review
Endophytic Bacteria Improve Bio- and Phytoremediation of Heavy Metals
by Ling Liu, Shujing Quan, Liangliang Li, Gao Lei, Shanshan Li, Tao Gong, Zhilong Zhang, Yiliang Hu and Wenling Yang
Microorganisms 2024, 12(11), 2137; https://doi.org/10.3390/microorganisms12112137 - 24 Oct 2024
Cited by 14 | Viewed by 25221
Abstract
Currently, the problem of heavy metal pollution in China is becoming increasingly serious, which poses grave threats to the environment and human health. Owing to the non-biodegradability and toxicity of heavy metals, a more sustainable and ecological approach to remediate heavy metal pollution [...] Read more.
Currently, the problem of heavy metal pollution in China is becoming increasingly serious, which poses grave threats to the environment and human health. Owing to the non-biodegradability and toxicity of heavy metals, a more sustainable and ecological approach to remediate heavy metal pollution has always been a focus of attention for environmental researchers. In recent years, many scientists have found that phytoremediation aided by endophytes has high potential to remediate heavy metals owing to its low cost, effectiveness, environmental friendliness, and sustainability compared with physical and chemical methods. Indeed, the mechanism of interaction between endophytes, plants, and heavy metals in the soil is pivotal for plants to tolerate metal toxicity and thrive. In this review, we focus on the mechanism of how endophytic bacteria resist heavy metals, and the direct and indirect mechanisms employed by endophytic bacteria to promote the growth of plants and enhance phytoextraction and phytostabilization. Moreover, we also discuss the application of combinations of endophytic bacteria and plants that have been used to remediate heavy metal pollution. Finally, it is pointed out that although there have been many studies on phytoremediation systems that have been assisted by endophytes, large-scale field trials are important to deliver “real” results to evaluate and improve phytoremediation assisted with microorganisms in polluted natural environments. Full article
Show Figures

Graphical abstract

14 pages, 3746 KB  
Article
Gamma-Aminobutyric Acid Enhances Cadmium Phytoextraction by Coreopsis grandiflora by Remodeling the Rhizospheric Environment
by Yingqi Huang, Boqun Li, Huafang Chen, Jingxian Li, Jianchu Xu and Xiong Li
Plants 2023, 12(7), 1484; https://doi.org/10.3390/plants12071484 - 28 Mar 2023
Cited by 9 | Viewed by 3128
Abstract
Gamma-aminobutyric acid (GABA) significantly affects plant responses to heavy metals in hydroponics or culture media, but its corresponding effects in plant–soil systems remain unknown. In this study, different GABA dosages (0–8 g kg−1) were added to the rhizosphere of Coreopsis grandiflora [...] Read more.
Gamma-aminobutyric acid (GABA) significantly affects plant responses to heavy metals in hydroponics or culture media, but its corresponding effects in plant–soil systems remain unknown. In this study, different GABA dosages (0–8 g kg−1) were added to the rhizosphere of Coreopsis grandiflora grown in Cd-contaminated soils. Cd accumulation in the shoots of C. grandiflora was enhanced by 38.9–159.5% by GABA in a dose-dependent approach because of accelerated Cd absorption and transport. The increase in exchangeable Cd transformed from Fe-Mn oxide and carbonate-bound Cd, which may be mainly driven by decreased soil pH rather than GABA itself, could be a determining factor responsible for this phenomenon. The N, P, and K availability was affected by multiple factors under GABA treatment, which may regulate Cd accommodation and accumulation in C. grandiflora. The rhizospheric environment dynamics remodeled the bacterial community composition, resulting in a decline in overall bacterial diversity and richness. However, several important plant growth-promoting rhizobacteria, especially Pseudomonas and Sphingomonas, were recruited under GABA treatment to assist Cd phytoextraction in C. grandiflora. This study reveals that GABA as a soil amendment remodels the rhizospheric environment (e.g., soil pH and rhizobacteria) to enhance Cd phytoextraction in plant–soil systems. Full article
(This article belongs to the Special Issue New Insight into Cadmium Phytoremediation)
Show Figures

Graphical abstract

13 pages, 3052 KB  
Article
Accumulation Potential Cadmium and Lead by Sunflower (Helianthus annuus L.) under Citric and Glutaric Acid-Assisted Phytoextraction
by Zhixin Niu, Xiaojun Li and Mohammad Mahamood
Int. J. Environ. Res. Public Health 2023, 20(5), 4107; https://doi.org/10.3390/ijerph20054107 - 25 Feb 2023
Cited by 14 | Viewed by 3928
Abstract
Organic acid assistance is one of the effective methods for phytoremediation of heavy metal contaminated soil. In this experiment, the addition of citric and glutaric acids was selected to improve the accumulation of cadmium and lead by Helianthus annuus L. Results showed that [...] Read more.
Organic acid assistance is one of the effective methods for phytoremediation of heavy metal contaminated soil. In this experiment, the addition of citric and glutaric acids was selected to improve the accumulation of cadmium and lead by Helianthus annuus L. Results showed that citric and glutaric acids elevated the growth of the plants and stimulated Cd/Pb uptake by plant in single Cd/Pb treatments, but glutaric acid showed inhibitory action on the uptake of metals in complex treatments. Organic acids impacted the translocation of Cd/Pb differently, and citric acids (30 mg·L−1) enhanced the translocation of Cd to aerial parts of the plants in Cd (5 mg·kg−1) and Cd (10 mg·kg−1) plus Pb treatments. Glutaric acid (30 mg·L−1) could promote the translocation factors in the complex treatments of Cd (5 mg·kg−1) with Pb (50, 100 mg·kg−1) added. The application of citric and glutaric acid could be conducive to increase floral growth when proper doses are used, and incorporation of these organic acids can be a useful approach to assist cadmium and lead uptake by sunflower. However, growth, bioaccumulation, and translocation of metals may differ due to the metals’ property, kinds, and concentrations of organic acids. Full article
(This article belongs to the Special Issue Advances in Biodegradation of Pollutants)
Show Figures

Figure 1

14 pages, 1557 KB  
Article
Calcium Enhances Thallium Uptake in Green Cabbage (Brassica oleracea var. capitata L.)
by Yanlong Jia, Tangfu Xiao, Jialong Sun, Zengping Ning, Enzong Xiao, Xiaolong Lan and Yuxiao Chen
Int. J. Environ. Res. Public Health 2023, 20(1), 4; https://doi.org/10.3390/ijerph20010004 - 20 Dec 2022
Cited by 4 | Viewed by 2431
Abstract
Thallium (Tl) is a nonessential and toxic trace metal that is detrimental to plants, but it can be highly up-taken in green cabbage (Brassica oleracea L. var. capitata L.). It has been proven that there is a significant positive correlation between Tl and [...] Read more.
Thallium (Tl) is a nonessential and toxic trace metal that is detrimental to plants, but it can be highly up-taken in green cabbage (Brassica oleracea L. var. capitata L.). It has been proven that there is a significant positive correlation between Tl and Calcium (Ca) contents in plants. However, whether Ca presents a similar role for alleviating Tl toxicity in plants remains unclear, and little is known in terms of evidence for both Ca-enhanced uptake of Tl from soils to green cabbage and associated geochemical processes. In this study, we investigated the influence of Ca in soils on Tl uptake in green cabbage and the associated geochemical process. The pot experiments were conducted in 12 mg/kg Tl(I) and 8 mg/kg Tl(III) treatments with various Ca dosages. The results showed that Ca in soils could significantly enhance Tl uptake in green cabbage, increasing 210% in content over the control group. The soluble concentrations of Tl were largely increased by 210% and 150%, respectively, in 3.0 g/kg Ca treatment, compared with the corresponding treatment without Ca addition. This was attributed to the geochemical process in which the enhanced soluble Ca probably replaces Tl held on the soil particles, releasing more soluble Tl into the soil solution. More interestingly, the bioconcentration factor of the leaves and whole plant for the 2.0, 2.5, 3.0 g/kg Ca dosage group were greatly higher than for the non-Ca treatment, which could reach 207%, implying the addition of Ca can improve the ability of green cabbage to transfer Tl from the stems to the leaves. Furthermore, the pH values dropped with the increasing Ca concentration treatment, and the lower pH in soils also increased Tl mobilization, which resulted in Tl accumulation in green cabbage. Therefore, this work not only informs the improvement of agricultural safety management practices for the farming of crops in Tl-polluted and high-Ca-content areas, but also provides technical support for the exploitation of Ca-assisted phytoextraction technology. Full article
(This article belongs to the Special Issue Environmental Geochemistry of Toxic Elements in the Environment)
Show Figures

Figure 1

18 pages, 2343 KB  
Article
Assisted Phytostabilization of Mine-Tailings with Prosopis laevigata (Fabaceae) and Biochar
by Juan Ramírez-Zamora, Patricia Mussali-Galante, Alexis Rodríguez, María Luisa Castrejón-Godínez, Leticia Valencia-Cuevas and Efraín Tovar-Sánchez
Plants 2022, 11(24), 3441; https://doi.org/10.3390/plants11243441 - 9 Dec 2022
Cited by 19 | Viewed by 2954
Abstract
Phytoremediation is a cost-effective technique to remediate heavy metal (HM) polluted sites. However, the toxic effects of HM can limit plant establishment and development, reducing phytoremediation effectiveness. Therefore, the addition of organic amendments to mine wastes, such as biochar, improves the establishment of [...] Read more.
Phytoremediation is a cost-effective technique to remediate heavy metal (HM) polluted sites. However, the toxic effects of HM can limit plant establishment and development, reducing phytoremediation effectiveness. Therefore, the addition of organic amendments to mine wastes, such as biochar, improves the establishment of plants and reduces the bioavailability of toxic HM and its subsequent absorption by plants. Prosopis laevigata can establish naturally in mine tailings and accumulate different HM; however, these individuals show morphological and genetic damage. In this study, the effect of biochar on HM bioaccumulation in roots and aerial tissues, HM translocation, morphological characters and plant growth were evaluated, after three and six months of exposure. Plants grown on mine tailings with biochar presented significantly higher values for most of the evaluated characters, in respect to plants that grew on mine tailing substrate. Biochar addition reduced the bioaccumulation and translocation of Cu, Pb, and Cd, while it favored the translocation of essential metals such as Fe and Mn. The addition of biochar from agro-industrial residues to mine tailings improves the establishment of plants with potential to phytoextract and phytostabilize metals from polluted soils. Using biochar and heavy metal accumulating plants constitutes an assisted phytostabilization strategy with great potential for HM polluted sites such as Cd and Pb. Full article
(This article belongs to the Special Issue Application of Plants in Remediation Processes)
Show Figures

Figure 1

17 pages, 2031 KB  
Article
Acidified Cow Dung-Assisted Phytoextraction of Heavy Metals by Ryegrass from Contaminated Soil as an Eco-Efficient Technique
by Sana Ashraf, Sajid Rashid Ahmad, Qasim Ali, Sobia Ashraf, Muzaffar Majid and Zahir Ahmad Zahir
Sustainability 2022, 14(23), 15879; https://doi.org/10.3390/su142315879 - 29 Nov 2022
Cited by 6 | Viewed by 2927
Abstract
Heavy metal contamination of soil is an alarming environmental dilemma all over the world. With increasing industrialization, timely development of low-cost and eco-friendly remedial techniques for heavy metal-contaminated soil is needed. Phytoremediation is an emerging technique to remove heavy metals from contaminated soil [...] Read more.
Heavy metal contamination of soil is an alarming environmental dilemma all over the world. With increasing industrialization, timely development of low-cost and eco-friendly remedial techniques for heavy metal-contaminated soil is needed. Phytoremediation is an emerging technique to remove heavy metals from contaminated soil for environmental sustainability. In the present study, ryegrass was used for phytoextraction of lead and cadmium from contaminated soil in a pot experiment. To enhance the bioavailability of heavy metals, cow dung was acidified by amending with elemental sulfur and molasses and also bioaugmented with an SS-16 sulfur-oxidizing strain to boost biological sulfur oxidation and, hence, four chemically different organic products were prepared. The pot experiment was conducted for a period of 60 days under Pb- and Cd-spiked soil for growing ryegrass with the application of a 10% slurry of each acidified organic product. A significant increase in root and shoot fresh mass as well as Pb and Cd accumulation in the root and shoot of the ryegrass was recorded. As compared to the control and the acidified organic product, P4 was the most effective product overall. Bioconcentration and translocation factors of ryegrass for Pb and Cd were also calculated. At the same time, acidified cow dung slurry (10%) also improved the antioxidative defense mechanism of ryegrass. The results suggest that acidified organic products could be effective for phytoextraction of lead and cadmium from contaminated soil, and in the future acidified cow dung slurry can be used to restore heavy metal-polluted soils in an environmentally sustainable way. Full article
(This article belongs to the Special Issue Sustainable Ecological Environment Restoration)
Show Figures

Figure 1

15 pages, 2160 KB  
Article
Comparative Evaluation of Technologies at a Heavy Metal Contaminated Site: The Role of Feasibility Studies
by Francesca Pedron, Martina Grifoni, Meri Barbafieri, Elisabetta Franchi, Marco Vocciante and Gianniantonio Petruzzelli
Environments 2022, 9(11), 139; https://doi.org/10.3390/environments9110139 - 8 Nov 2022
Cited by 4 | Viewed by 4067
Abstract
Many agricultural areas are contaminated by heavy metals to such a level that the growth of plants is drastically reduced. Based on the site’s specific characteristics, feasibility studies were carried out to choose the most effective technologies. Feasibility tests showed that soil washing [...] Read more.
Many agricultural areas are contaminated by heavy metals to such a level that the growth of plants is drastically reduced. Based on the site’s specific characteristics, feasibility studies were carried out to choose the most effective technologies. Feasibility tests showed that soil washing and phytoremediation technologies could be used at the agricultural site under study. The efficiency of the technologies is highly dependent on soil characteristics, which determine the chemical form of the metals. The results indicate that water-based soil washing can be successfully used with the possibility of reaching the remediation objectives quickly. However, the technology in the first step essentially breaks down the soil. Moreover, phytoremediation cannot be used directly to overcome the toxicity derived from the very high bioavailability of the heavy metals. Still, there is the need to use “assisted” phytoremediation by adding compost that reduces metal bioavailability, allowing phytoextraction. In this case, a longer time is needed to reach the remediation target. The results provide a preliminary scenario for decision-makers and stakeholders to assess possible technologies applicable and a possible scheme to be applied in similar cases of polluted agricultural areas. Full article
Show Figures

Graphical abstract

12 pages, 750 KB  
Article
QTL Pyramiding and Its Use in Breeding for Increasing the Phytoextraction Efficiency of Soil Cd via High-Cd-Accumulating Rice
by Tadashi Abe, Masashi Ito, Ryuichi Takahashi, Toshimitsu Honma, Masato Kuramata and Satoru Ishikawa
Plants 2022, 11(16), 2178; https://doi.org/10.3390/plants11162178 - 22 Aug 2022
Cited by 5 | Viewed by 2130
Abstract
Phytoextraction by high-Cd-accumulating rice lacking a functional OsHMA3 allele is promising for Cd removal from paddy soils. To increase rice Cd extraction efficiency, we developed a new high-Cd variety, TJN25-11. For this, we pyramided a nonfunctional OsHMA3 allele from a high-Cd variety, Jarjan, [...] Read more.
Phytoextraction by high-Cd-accumulating rice lacking a functional OsHMA3 allele is promising for Cd removal from paddy soils. To increase rice Cd extraction efficiency, we developed a new high-Cd variety, TJN25-11. For this, we pyramided a nonfunctional OsHMA3 allele from a high-Cd variety, Jarjan, and two QTLs for increased shoot Cd concentrations, which were discovered in a mapping population derived from a high-Cd variety, Nepal 555, and a low-Cd variety, Tachisugata. In two Cd-contaminated paddy fields under drained aerobic soil conditions, TJN25-11 presented significantly higher Cd concentrations in the straw and panicles than the OsHMA3-deficient varieties TJTT8 and Cho-ko-koku. Among the varieties, TJN25-11 had a relatively high shoot biomass, resulting in the highest Cd accumulation in the shoots. The soil Cd decreased by approximately 20% after TJN25-11 growth. The amount of Cd that accumulated in the TJN25-11 aerial parts was much greater than the amount of Cd that decreased in the topsoil, suggesting that Cd was absorbed from deeper soil layers. Thus, we revealed the effects of QTL pyramiding on shoot Cd accumulation and Cd phytoextraction efficiency. Since TJN25-11 has favorable agronomic traits for compatibility with Japanese cultivation systems, this variety could be useful for Cd phytoextraction in Cd-contaminated paddy fields. Full article
(This article belongs to the Special Issue New Insight into Cadmium Phytoremediation)
Show Figures

Figure 1

16 pages, 16192 KB  
Article
Screening of Plants and Indigenous Bacteria to Improve Arsenic Phytoextraction
by Elisabetta Franchi, Meri Barbafieri, Gianniantonio Petruzzelli, Sergio Ferro and Marco Vocciante
Appl. Sci. 2022, 12(14), 7267; https://doi.org/10.3390/app12147267 - 19 Jul 2022
Cited by 6 | Viewed by 2310
Abstract
Arsenic (As) is one of the most common inorganic pollutants; unfortunately, it is also one of the most toxic and is therefore a cause of great concern for the health risks that could result from it. Removing arsenic from the soil using phytoremediation [...] Read more.
Arsenic (As) is one of the most common inorganic pollutants; unfortunately, it is also one of the most toxic and is therefore a cause of great concern for the health risks that could result from it. Removing arsenic from the soil using phytoremediation approaches is an effective strategy, and several studies demonstrate the ability of Cannabis sativa (TSN 19109, hemp) to tolerate this harmful contaminant. The aim of this work was to identify the best experimental conditions for a phytoremediation plan to be applied in a disused area located in Sicily (Italy) and contaminated by As, comparing Cannabis sativa with Brassica juncea (TSN 23059) and Zea mays (TSN 42269, corn). To assist the process, several chelating agents were tested to improve arsenic mobility, and two different sets of arsenic-tolerant bacteria were isolated from the rhizospheric soil of indigenous herbaceous species and used to promote plant growth, leading to a significant improvement in terms of biomass produced and phytoextraction. After the combined treatment, the arsenic content in the aerial part of the plants increased by more than two orders of magnitude (e.g., from 0.05 to 6.57 mg kg−1, from 0.04 to 6.69 mg kg−1, and from 0.03 to 5.57 mg kg−1 for brassica, corn, and hemp, respectively), confirming the marked increase in the total absorption of As by plants. Full article
(This article belongs to the Special Issue Sustainable Environmental Solutions II)
Show Figures

Figure 1

Back to TopTop