Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = artificial intelligence in thyroid nodule diagnosis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 864 KB  
Review
Role of Artificial Intelligence in Thyroid Cancer Diagnosis
by Alessio Cece, Massimo Agresti, Nadia De Falco, Pasquale Sperlongano, Giancarlo Moccia, Pasquale Luongo, Francesco Miele, Alfredo Allaria, Francesco Torelli, Paola Bassi, Antonella Sciarra, Stefano Avenia, Paola Della Monica, Federica Colapietra, Marina Di Domenico, Ludovico Docimo and Domenico Parmeggiani
J. Clin. Med. 2025, 14(7), 2422; https://doi.org/10.3390/jcm14072422 - 2 Apr 2025
Cited by 3 | Viewed by 2140
Abstract
The progress of artificial intelligence (AI), particularly its core algorithms—machine learning (ML) and deep learning (DL)—has been significant in the medical field, impacting both scientific research and clinical practice. These algorithms are now capable of analyzing ultrasound images, processing them, and providing outcomes, [...] Read more.
The progress of artificial intelligence (AI), particularly its core algorithms—machine learning (ML) and deep learning (DL)—has been significant in the medical field, impacting both scientific research and clinical practice. These algorithms are now capable of analyzing ultrasound images, processing them, and providing outcomes, such as determining the benignity or malignancy of thyroid nodules. This integration into ultrasound machines is referred to as computer-aided diagnosis (CAD). The use of such software extends beyond ultrasound to include cytopathological and molecular assessments, enhancing the estimation of malignancy risk. AI’s considerable potential in cancer diagnosis and prevention is evident. This article provides an overview of AI models based on ML and DL algorithms used in thyroid diagnostics. Recent studies demonstrate their effectiveness and diagnostic role in ultrasound, pathology, and molecular fields. Notable advancements include content-based image retrieval (CBIR), enhanced saliency CBIR (SE-CBIR), Restore-Generative Adversarial Networks (GANs), and Vision Transformers (ViTs). These new algorithms show remarkable results, indicating their potential as diagnostic and prognostic tools for thyroid pathology. The future trend points to these AI systems becoming the preferred choice for thyroid diagnostics. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

16 pages, 982 KB  
Review
Thyroid Nodule Characterization: Overview and State of the Art of Diagnosis with Recent Developments, from Imaging to Molecular Diagnosis and Artificial Intelligence
by Emanuele David, Hektor Grazhdani, Giuliana Tattaresu, Alessandra Pittari, Pietro Valerio Foti, Stefano Palmucci, Corrado Spatola, Maria Chiara Lo Greco, Corrado Inì, Francesco Tiralongo, Davide Castiglione, Giampiero Mastroeni, Silvia Gigli and Antonio Basile
Biomedicines 2024, 12(8), 1676; https://doi.org/10.3390/biomedicines12081676 - 26 Jul 2024
Cited by 17 | Viewed by 4963
Abstract
Ultrasound (US) is the primary tool for evaluating patients with thyroid nodules, and the risk of malignancy assessed is based on US features. These features help determine which patients require fine-needle aspiration (FNA) biopsy. Classification systems for US features have been developed to [...] Read more.
Ultrasound (US) is the primary tool for evaluating patients with thyroid nodules, and the risk of malignancy assessed is based on US features. These features help determine which patients require fine-needle aspiration (FNA) biopsy. Classification systems for US features have been developed to facilitate efficient interpretation, reporting, and communication of thyroid US findings. These systems have been validated by numerous studies and are reviewed in this article. Additionally, this overview provides a comprehensive description of the clinical and laboratory evaluation of patients with thyroid nodules, various imaging modalities, grayscale US features, color Doppler US, contrast-enhanced US (CEUS), US elastography, FNA biopsy assessment, and the recent introduction of molecular testing. The potential of artificial intelligence in thyroid US is also discussed. Full article
(This article belongs to the Special Issue Thyroid Nodule: Updates on the Molecular Mechanism and Diagnosis)
Show Figures

Figure 1

26 pages, 6348 KB  
Review
Integrated Diagnostics of Thyroid Nodules
by Luca Giovanella, Alfredo Campennì, Murat Tuncel and Petra Petranović Ovčariček
Cancers 2024, 16(2), 311; https://doi.org/10.3390/cancers16020311 - 11 Jan 2024
Cited by 19 | Viewed by 9283
Abstract
Thyroid nodules are common findings, particularly in iodine-deficient regions. Our paper aims to revise different diagnostic tools available in clinical thyroidology and propose their rational integration. We will elaborate on the pros and cons of thyroid ultrasound (US) and its scoring systems, thyroid [...] Read more.
Thyroid nodules are common findings, particularly in iodine-deficient regions. Our paper aims to revise different diagnostic tools available in clinical thyroidology and propose their rational integration. We will elaborate on the pros and cons of thyroid ultrasound (US) and its scoring systems, thyroid scintigraphy, fine-needle aspiration cytology (FNAC), molecular imaging, and artificial intelligence (AI). Ultrasonographic scoring systems can help differentiate between benign and malignant nodules. Depending on the constellation or number of suspicious ultrasound features, a FNAC is recommended. However, hyperfunctioning thyroid nodules are presumed to exclude malignancy with a very high negative predictive value (NPV). Particularly in regions where iodine supply is low, most hyperfunctioning thyroid nodules are seen in patients with normal thyroid-stimulating hormone (TSH) levels. Thyroid scintigraphy is essential for the detection of these nodules. Among non-toxic thyroid nodules, a careful application of US risk stratification systems is pivotal to exclude inappropriate FNAC and guide the procedure on suspicious ones. However, almost one-third of cytology examinations are rendered as indeterminate, requiring “diagnostic surgery” to provide a definitive diagnosis. 99mTc-methoxy-isobutyl-isonitrile ([99mTc]Tc-MIBI) and [18F]fluoro-deoxy-glucose ([18F]FDG) molecular imaging can spare those patients from unnecessary surgeries. The clinical value of AI in the evaluation of thyroid nodules needs to be determined. Full article
(This article belongs to the Special Issue Thyroid Cancer: Diagnosis, Prognosis and Treatment)
Show Figures

Figure 1

13 pages, 994 KB  
Review
The Complex Cyto-Molecular Landscape of Thyroid Nodules in Pediatrics
by Davide Seminati, Stefano Ceola, Angela Ida Pincelli, Davide Leni, Andrea Gatti, Mattia Garancini, Vincenzo L’Imperio, Alessandro Cattoni and Fabio Pagni
Cancers 2023, 15(7), 2039; https://doi.org/10.3390/cancers15072039 - 29 Mar 2023
Cited by 4 | Viewed by 2449
Abstract
Thyroid fine-needle aspiration (FNA) is a commonly used diagnostic cytological procedure in pediatric patients for the evaluation of thyroid nodules, triaging them for the detection of thyroid cancer. In recent years, greater attention has been paid to thyroid FNA in this setting, including [...] Read more.
Thyroid fine-needle aspiration (FNA) is a commonly used diagnostic cytological procedure in pediatric patients for the evaluation of thyroid nodules, triaging them for the detection of thyroid cancer. In recent years, greater attention has been paid to thyroid FNA in this setting, including the use of updated ultrasound score algorithms to improve accuracy and yield, especially considering the theoretically higher risk of malignancy of these lesions compared with the adult population, as well as to minimize patient discomfort. Moreover, molecular genetic testing for thyroid disease is an expanding field of research that could aid in distinguishing benign from cancerous nodules and assist in determining their clinical management. Finally, artificial intelligence tools can help in this task by performing a comprehensive analysis of all the obtained data. These advancements have led to greater reliance on FNA as a first-line diagnostic tool for pediatric thyroid disease. This review article provides an overview of these recent developments and their impact on the diagnosis and management of thyroid nodules in children. Full article
Show Figures

Figure 1

18 pages, 2716 KB  
Article
Differentiation of Benign and Malignant Thyroid Nodules with ANFIS by Using Genetic Algorithm and Proposing a Novel CAD-Based Risk Stratification System of Thyroid Nodules
by Ahmet Cankat Ozturk, Hilal Haznedar, Bulent Haznedar, Seyfettin Ilgan, Osman Erogul and Adem Kalinli
Diagnostics 2023, 13(4), 740; https://doi.org/10.3390/diagnostics13040740 - 15 Feb 2023
Cited by 4 | Viewed by 2809
Abstract
The thyroid nodule risk stratification guidelines used in the literature are based on certain well-known sonographic features of nodules and are still subjective since the application of these characteristics strictly depends on the reading physician. These guidelines classify nodules according to the sub-features [...] Read more.
The thyroid nodule risk stratification guidelines used in the literature are based on certain well-known sonographic features of nodules and are still subjective since the application of these characteristics strictly depends on the reading physician. These guidelines classify nodules according to the sub-features of limited sonographic signs. This study aims to overcome these limitations by examining the relationships of a wide range of ultrasound (US) signs in the differential diagnosis of nodules by using artificial intelligence methods. An innovative method based on training Adaptive-Network Based Fuzzy Inference Systems (ANFIS) by using Genetic Algorithm (GA) is used to differentiate malignant from benign thyroid nodules. The comparison of the results from the proposed method to the results from the commonly used derivative-based algorithms and Deep Neural Network (DNN) methods yielded that the proposed method is more successful in differentiating malignant from benign thyroid nodules. Furthermore, a novel computer aided diagnosis (CAD) based risk stratification system for the thyroid nodule’s US classification that is not present in the literature is proposed. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

24 pages, 363 KB  
Review
The Use of Artificial Intelligence in the Diagnosis and Classification of Thyroid Nodules: An Update
by Maksymilian Ludwig, Bartłomiej Ludwig, Agnieszka Mikuła, Szymon Biernat, Jerzy Rudnicki and Krzysztof Kaliszewski
Cancers 2023, 15(3), 708; https://doi.org/10.3390/cancers15030708 - 24 Jan 2023
Cited by 42 | Viewed by 5813
Abstract
The incidence of thyroid nodules diagnosed is increasing every year, leading to a greater risk of unnecessary procedures being performed or wrong diagnoses being made. In our paper, we present the latest knowledge on the use of artificial intelligence in diagnosing and classifying [...] Read more.
The incidence of thyroid nodules diagnosed is increasing every year, leading to a greater risk of unnecessary procedures being performed or wrong diagnoses being made. In our paper, we present the latest knowledge on the use of artificial intelligence in diagnosing and classifying thyroid nodules. We particularly focus on the usefulness of artificial intelligence in ultrasonography for the diagnosis and characterization of pathology, as these are the two most developed fields. In our search of the latest innovations, we reviewed only the latest publications of specific types published from 2018 to 2022. We analyzed 930 papers in total, from which we selected 33 that were the most relevant to the topic of our work. In conclusion, there is great scope for the use of artificial intelligence in future thyroid nodule classification and diagnosis. In addition to the most typical uses of artificial intelligence in cancer differentiation, we identified several other novel applications of artificial intelligence during our review. Full article
(This article belongs to the Special Issue Machine Learning for Imaging-Based Cancer Diagnostics)
14 pages, 1283 KB  
Article
Novel Human Artificial Intelligence Hybrid Framework Pinpoints Thyroid Nodule Malignancy and Identifies Overlooked Second-Order Ultrasonographic Features
by Xiaohong Jia, Zehao Ma, Dexing Kong, Yamin Li, Hairong Hu, Ling Guan, Jiping Yan, Ruifang Zhang, Ying Gu, Xia Chen, Liying Shi, Xiaomao Luo, Qiaoying Li, Baoyan Bai, Xinhua Ye, Hong Zhai, Hua Zhang, Yijie Dong, Lei Xu, Jianqiao Zhou and CAAUadd Show full author list remove Hide full author list
Cancers 2022, 14(18), 4440; https://doi.org/10.3390/cancers14184440 - 13 Sep 2022
Cited by 14 | Viewed by 3471
Abstract
We present a Human Artificial Intelligence Hybrid (HAIbrid) integrating framework that reweights Thyroid Imaging Reporting and Data System (TIRADS) features and the malignancy score predicted by a convolutional neural network (CNN) for nodule malignancy stratification and diagnosis. We defined extra ultrasonographical features from [...] Read more.
We present a Human Artificial Intelligence Hybrid (HAIbrid) integrating framework that reweights Thyroid Imaging Reporting and Data System (TIRADS) features and the malignancy score predicted by a convolutional neural network (CNN) for nodule malignancy stratification and diagnosis. We defined extra ultrasonographical features from color Doppler images to explore malignancy-relevant features. We proposed Gated Attentional Factorization Machine (GAFM) to identify second-order interacting features trained via a 10 fold distribution-balanced stratified cross-validation scheme on ultrasound images of 3002 nodules all finally characterized by postoperative pathology (1270 malignant ones), retrospectively collected from 131 hospitals. Our GAFM-HAIbrid model demonstrated significant improvements in Area Under the Curve (AUC) value (p-value < 10−5), reaching about 0.92 over the standalone CNN (~0.87) and senior radiologists (~0.86), and identified a second-order vascularity localization and morphological pattern which was overlooked if only first-order features were considered. We validated the advantages of the integration framework on an already-trained commercial CNN system and our findings using an extra set of ultrasound images of 500 nodules. Our HAIbrid framework allows natural integration to clinical workflow for thyroid nodule malignancy risk stratification and diagnosis, and the proposed GAFM-HAIbrid model may help identify novel diagnosis-relevant second-order features beyond ultrasonography. Full article
(This article belongs to the Special Issue Image Analysis and Computational Pathology in Cancer Diagnosis)
Show Figures

Figure 1

15 pages, 2047 KB  
Review
Artificial Intelligence for Thyroid Nodule Characterization: Where Are We Standing?
by Salvatore Sorrenti, Vincenzo Dolcetti, Maija Radzina, Maria Irene Bellini, Fabrizio Frezza, Khushboo Munir, Giorgio Grani, Cosimo Durante, Vito D’Andrea, Emanuele David, Pietro Giorgio Calò, Eleonora Lori and Vito Cantisani
Cancers 2022, 14(14), 3357; https://doi.org/10.3390/cancers14143357 - 10 Jul 2022
Cited by 68 | Viewed by 7492
Abstract
Machine learning (ML) is an interdisciplinary sector in the subset of artificial intelligence (AI) that creates systems to set up logical connections using algorithms, and thus offers predictions for complex data analysis. In the present review, an up-to-date summary of the current state [...] Read more.
Machine learning (ML) is an interdisciplinary sector in the subset of artificial intelligence (AI) that creates systems to set up logical connections using algorithms, and thus offers predictions for complex data analysis. In the present review, an up-to-date summary of the current state of the art regarding ML and AI implementation for thyroid nodule ultrasound characterization and cancer is provided, highlighting controversies over AI application as well as possible benefits of ML, such as, for example, training purposes. There is evidence that AI increases diagnostic accuracy and significantly limits inter-observer variability by using standardized mathematical algorithms. It could also be of aid in practice settings with limited sub-specialty expertise, offering a second opinion by means of radiomics and computer-assisted diagnosis. The introduction of AI represents a revolutionary event in thyroid nodule evaluation, but key issues for further implementation include integration with radiologist expertise, impact on workflow and efficiency, and performance monitoring. Full article
(This article belongs to the Special Issue Updates in Thyroid Cancer Surgery)
Show Figures

Figure 1

13 pages, 2587 KB  
Article
Assessing Detection Accuracy of Computerized Sonographic Features and Computer-Assisted Reading Performance in Differentiating Thyroid Cancers
by Hao-Chih Tai, Kuen-Yuan Chen, Ming-Hsun Wu, King-Jen Chang, Chiung-Nien Chen and Argon Chen
Biomedicines 2022, 10(7), 1513; https://doi.org/10.3390/biomedicines10071513 - 26 Jun 2022
Cited by 3 | Viewed by 2405
Abstract
For ultrasound imaging of thyroid nodules, medical guidelines are all based on findings of sonographic features to provide clinicians management recommendations. Due to the recent development of artificial intelligence and machine learning (AI/ML) technologies, there have been computer-assisted detection (CAD) software devices available [...] Read more.
For ultrasound imaging of thyroid nodules, medical guidelines are all based on findings of sonographic features to provide clinicians management recommendations. Due to the recent development of artificial intelligence and machine learning (AI/ML) technologies, there have been computer-assisted detection (CAD) software devices available for clinical use to detect and quantify the sonographic features of thyroid nodules. This study is to validate the accuracy of the computerized sonographic features (CSF) by a CAD software device, namely, AmCAD-UT, and then to assess how the reading performance of clinicians (readers) can be improved providing the computerized features. The feature detection accuracy is tested against the ground truth established by a panel of thyroid specialists and a multiple-reader multiple-case (MRMC) study is performed to assess the sequential reading performance with the assistance of the CSF. Five computerized features, including anechoic area, hyperechoic foci, hypoechoic pattern, heterogeneous texture, and indistinct margin, were tested, with AUCs ranging from 0.888~0.946, 0.825~0.913, 0.812~0.847, 0.627~0.77, and 0.676~0.766, respectively. With the five CSFs, the sequential reading performance of 18 clinicians is found significantly improved, with the AUC increasing from 0.720 without CSF to 0.776 with CSF. Our studies show that the computerized features are consistent with the clinicians’ findings and provide additional value in assisting sonographic diagnosis. Full article
(This article belongs to the Special Issue Recent Advances in Thyroid Cancer: From Diagnosis to Treatment)
Show Figures

Figure 1

24 pages, 1670 KB  
Review
Personalized Diagnosis in Differentiated Thyroid Cancers by Molecular and Functional Imaging Biomarkers: Present and Future
by Laura Teodoriu, Letitia Leustean, Maria-Christina Ungureanu, Stefana Bilha, Irena Grierosu, Mioara Matei, Cristina Preda and Cipriana Stefanescu
Diagnostics 2022, 12(4), 944; https://doi.org/10.3390/diagnostics12040944 - 10 Apr 2022
Cited by 3 | Viewed by 4257
Abstract
Personalized diagnosis can save unnecessary thyroid surgeries, in cases of indeterminate thyroid nodules, when clinicians tend to aggressively treat all these patients. Personalized diagnosis benefits from a combination of imagery and molecular biomarkers, as well as artificial intelligence algorithms, which are used more [...] Read more.
Personalized diagnosis can save unnecessary thyroid surgeries, in cases of indeterminate thyroid nodules, when clinicians tend to aggressively treat all these patients. Personalized diagnosis benefits from a combination of imagery and molecular biomarkers, as well as artificial intelligence algorithms, which are used more and more in our timeline. Functional imaging diagnosis such as SPECT, PET, or fused images (SPECT/CT, PET/CT, PET/MRI), is exploited at maximum in thyroid nodules, with a long history in the past and a bright future with many suitable radiotracers that could properly contribute to diagnosing malignancy in thyroid nodules. In this way, patients will be spared surgery complications, and apparently more expensive diagnostic workouts will financially compensate each patient and also the healthcare system. In this review we will summarize essential available diagnostic tools for malignant and benignant thyroid nodules, beginning with functional imaging, molecular analysis, and combinations of these two and other future strategies, including AI or NIS targeted gene therapy for thyroid carcinoma diagnosis and treatment as well. Full article
(This article belongs to the Special Issue New Insights in Thyroid Diagnostics 2nd Edition)
Show Figures

Figure 1

23 pages, 4257 KB  
Article
Ultrasound Image-Based Diagnosis of Malignant Thyroid Nodule Using Artificial Intelligence
by Dat Tien Nguyen, Jin Kyu Kang, Tuyen Danh Pham, Ganbayar Batchuluun and Kang Ryoung Park
Sensors 2020, 20(7), 1822; https://doi.org/10.3390/s20071822 - 25 Mar 2020
Cited by 105 | Viewed by 15125
Abstract
Computer-aided diagnosis systems have been developed to assist doctors in diagnosing thyroid nodules to reduce errors made by traditional diagnosis methods, which are mainly based on the experiences of doctors. Therefore, the performance of such systems plays an important role in enhancing the [...] Read more.
Computer-aided diagnosis systems have been developed to assist doctors in diagnosing thyroid nodules to reduce errors made by traditional diagnosis methods, which are mainly based on the experiences of doctors. Therefore, the performance of such systems plays an important role in enhancing the quality of a diagnosing task. Although there have been the state-of-the art studies regarding this problem, which are based on handcrafted features, deep features, or the combination of the two, their performances are still limited. To overcome these problems, we propose an ultrasound image-based diagnosis of the malignant thyroid nodule method using artificial intelligence based on the analysis in both spatial and frequency domains. Additionally, we propose the use of weighted binary cross-entropy loss function for the training of deep convolutional neural networks to reduce the effects of unbalanced training samples of the target classes in the training data. Through our experiments with a popular open dataset, namely the thyroid digital image database (TDID), we confirm the superiority of our method compared to the state-of-the-art methods. Full article
Show Figures

Figure 1

24 pages, 6554 KB  
Article
Artificial Intelligence-Based Thyroid Nodule Classification Using Information from Spatial and Frequency Domains
by Dat Tien Nguyen, Tuyen Danh Pham, Ganbayar Batchuluun, Hyo Sik Yoon and Kang Ryoung Park
J. Clin. Med. 2019, 8(11), 1976; https://doi.org/10.3390/jcm8111976 - 14 Nov 2019
Cited by 80 | Viewed by 8286
Abstract
Image-based computer-aided diagnosis (CAD) systems have been developed to assist doctors in the diagnosis of thyroid cancer using ultrasound thyroid images. However, the performance of these systems is strongly dependent on the selection of detection and classification methods. Although there are previous researches [...] Read more.
Image-based computer-aided diagnosis (CAD) systems have been developed to assist doctors in the diagnosis of thyroid cancer using ultrasound thyroid images. However, the performance of these systems is strongly dependent on the selection of detection and classification methods. Although there are previous researches on this topic, there is still room for enhancement of the classification accuracy of the existing methods. To address this issue, we propose an artificial intelligence-based method for enhancing the performance of the thyroid nodule classification system. Thus, we extract image features from ultrasound thyroid images in two domains: spatial domain based on deep learning, and frequency domain based on Fast Fourier transform (FFT). Using the extracted features, we perform a cascade classifier scheme for classifying the input thyroid images into either benign (negative) or malign (positive) cases. Through expensive experiments using a public dataset, the thyroid digital image database (TDID) dataset, we show that our proposed method outperforms the state-of-the-art methods and produces up-to-date classification results for the thyroid nodule classification problem. Full article
(This article belongs to the Special Issue Imaging and Imaging-Based Management of Thyroid Nodules)
Show Figures

Figure 1

Back to TopTop