Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = arginate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 464 KiB  
Review
The Use of Ibuprofen Arginate in Pain Management Following Third Molar Surgery—A Scoping Review
by Claudia Lorenzi, Ilaria Cammarota, Vincenzo Mazzetti, Claudio Arcuri, Paolo Carosi and Alberto Maria Pujia
Appl. Sci. 2025, 15(2), 662; https://doi.org/10.3390/app15020662 - 11 Jan 2025
Viewed by 1969
Abstract
Background: The management of pain and inflammation after third molar extraction is essential for patient comfort and recovery. While conventional ibuprofen is widely used for pain relief, ibuprofen arginate, a formulation aimed at faster absorption, has shown potential for faster onset and enhanced [...] Read more.
Background: The management of pain and inflammation after third molar extraction is essential for patient comfort and recovery. While conventional ibuprofen is widely used for pain relief, ibuprofen arginate, a formulation aimed at faster absorption, has shown potential for faster onset and enhanced efficacy. The aim of the present scoping review was to assess current evidence on the effectiveness of ibuprofen arginate in reducing pain and inflammation following third molar extraction compared to conventional ibuprofen. Methods: A comprehensive literature search was conducted in the MEDLINE database for studies published between 2002 and 2024, focusing on ibuprofen arginate’s impact on postoperative sequelae after third molar extractions. The studies included randomized controlled trials, cohort studies, and case–control studies in English. Results: Four studies, with a combined sample of 1245 patients, met the inclusion criteria. The findings suggest that ibuprofen arginate (200/400 mg) offers a faster onset of pain relief, with significant effects noticeable within 1–2 h. At six hours post administration, pain control was found to be similar between ibuprofen arginate and conventional ibuprofen. Additionally, a study found that ibuprofen arginate (600 mg) reduced postoperative swelling more effectively, although its impact on trismus was limited. Conclusions: Ibuprofen arginate seems to offer quicker pain relief and better control of swelling after third molar extractions compared to regular ibuprofen, making it a promising option for faster recovery. However, more studies are needed to fully understand its benefits and potential uses. Full article
Show Figures

Figure 1

16 pages, 11278 KiB  
Article
Effect of Synthetic Polypeptide–Bio-Surfactant Composition on the Formation and Stability of Foams
by Dominik Kosior, Agata Wiertel-Pochopien, Maria Morga, Łukasz Witkowski and Jan Zawala
Minerals 2024, 14(11), 1110; https://doi.org/10.3390/min14111110 - 30 Oct 2024
Viewed by 1186
Abstract
In recent decades, numerous studies have focused on finding environmentally friendly substitutes for commonly used petrochemical-based compounds. This paper explores the potential use of poly-L-lysine/rhamnolipids and poly-L-glutamic acid/ethyl lauroyl arginate mixtures, for foam formation and stabilization. Two complementary methods were employed to investigate [...] Read more.
In recent decades, numerous studies have focused on finding environmentally friendly substitutes for commonly used petrochemical-based compounds. This paper explores the potential use of poly-L-lysine/rhamnolipids and poly-L-glutamic acid/ethyl lauroyl arginate mixtures, for foam formation and stabilization. Two complementary methods were employed to investigate the synergistic and antagonistic effects of these mixed polyelectrolyte/surfactant systems: (1) the thinning and rupture of thin foam films formed under dynamic conditions were monitored using a dynamic fluid-film interferometer (DFI), and (2) foamability tests were conducted using a standard dynamic foam analyzer (DFA). The results demonstrated that adding polyelectrolyte to an oppositely charged surfactant primarily induces a synergistic effect, enhancing foaming properties and extending foam lifetime. Furthermore, interferometric methods confirmed improved stability and slower drainage of thin foam films in systems containing synthetic polypeptides. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

10 pages, 1377 KiB  
Communication
An Adoption of the Fractional Maxwell Model for Characterizing the Interfacial Dilational Viscoelasticity of Complex Surfactant Systems
by Giuseppe Loglio, Agnieszka Czakaj, Ewelina Jarek, Volodymyr I. Kovalchuk, Marcel Krzan, Libero Liggieri, Reinhard Miller and Piotr Warszynski
Colloids Interfaces 2024, 8(4), 44; https://doi.org/10.3390/colloids8040044 - 30 Jul 2024
Cited by 1 | Viewed by 1437
Abstract
In this communication, the single-element version of the fractional Maxwell model (single FMM) is adopted to quantify the observed behaviour of the interfacial dilational viscoelasticity. This mathematical tool is applied to the results obtained by the oscillating drop method for aqueous solutions of [...] Read more.
In this communication, the single-element version of the fractional Maxwell model (single FMM) is adopted to quantify the observed behaviour of the interfacial dilational viscoelasticity. This mathematical tool is applied to the results obtained by the oscillating drop method for aqueous solutions of ethyl lauroyl arginate (LAE). The single FMM adequately fits the experimental results, fairly well characterizing the frequency dependence of the modulus and the inherent phase-shift angle of the complex physical quantity, i.e., the interfacial dilational viscoelasticity. Further speculations are envisaged to apply the FMM to step perturbations in the time domain, allowing for the same parameter set as in the frequency domain. Full article
Show Figures

Graphical abstract

18 pages, 11990 KiB  
Article
Mechanism of Synergistic Photoinactivation Utilizing Curcumin and Lauric Arginate Ethyl Ester against Escherichia coli and Listeria innocua
by Victor Ryu, Joseph Uknalis, Maria G. Corradini, Piyanan Chuesiang, Lynne McLandsborough, Helen Ngo, Tony Jin and Xuetong Fan
Foods 2023, 12(23), 4195; https://doi.org/10.3390/foods12234195 - 21 Nov 2023
Cited by 7 | Viewed by 1569
Abstract
This study investigated the mechanism of how lauric arginate ethyl ester (LAE) improves the photoinactivation of bacteria by curcumin after diluting the 100 µmol/L stock curcumin-LAE micelle solution to the concentration used during the treatment based on the curcumin concentration. The photoinactivation of [...] Read more.
This study investigated the mechanism of how lauric arginate ethyl ester (LAE) improves the photoinactivation of bacteria by curcumin after diluting the 100 µmol/L stock curcumin-LAE micelle solution to the concentration used during the treatment based on the curcumin concentration. The photoinactivation of bacteria was conducted by irradiating the 1 µmol/L curcumin-LAE solution containing cocktails of Escherichia coli and Listeria innocua strains (7 log CFU/mL) for 5 min with UV-A light (λ = 365 nm). The changes in solution turbidity, curcumin stability, and bacterial morphology, viability, and recovery were observed using SEM, TEM, and live/dead cell assays. The study found that LAE enhances the photoinactivation of bacteria by increasing the permeability of cell membranes which could promote the interaction of reactive oxygen species produced by photosensitized curcumin with the cell components. The combination of curcumin and LAE was demonstrated to be more effective in inhibiting bacterial recovery at pH 3.5 for E. coli, while LAE alone was more effective at pH 7.0 for L. innocua. Full article
Show Figures

Graphical abstract

17 pages, 2251 KiB  
Article
Investigation of the Suitability of a Combination of Ethyl-Να-dodecanyl-L-arginat_HCl (LAE) and Starter Culture Bacteria for the Reduction of Bacteria from Fresh Meat of Different Animal Species
by Maike Drevin, Madeleine Plötz and Carsten Krischek
Foods 2023, 12(22), 4138; https://doi.org/10.3390/foods12224138 - 15 Nov 2023
Viewed by 1286
Abstract
Meat can be contaminated with (pathogenic) microorganisms during slaughter, dissection and packaging. Therefore, preservation technologies are frequently used to reduce the risk of (fatal) human infections due to the consumption of meat. In this study, we first investigated, if the application of ethyl-Nα-dodecanyl-L-arginate [...] Read more.
Meat can be contaminated with (pathogenic) microorganisms during slaughter, dissection and packaging. Therefore, preservation technologies are frequently used to reduce the risk of (fatal) human infections due to the consumption of meat. In this study, we first investigated, if the application of ethyl-Nα-dodecanyl-L-arginate hydrochloride (LAE) and the starter culture bacteria Staphylococcus carnosus and Lactobacillus sakei, either single or in combination, influences the bacteria number on pork, chicken meat and beef, inoculated with Brochothrix (Br.) thermosphacta (all meat species) or Salmonella (S.) Typhimurium (pork), Campylobacter (C.) jejuni (chicken) and Listeria (L.) monocytogenes (beef), before packaging under modified atmosphere and on days 7 and 14 of storage. To evaluate effects of the treatment on the appearance during storage, additionally, the physicochemical parameters color and myoglobin redox form percentages were analyzed. LAE regularly resulted in a significant reduction of the number of all bacteria species on day 1 of storage, whereas up to day 14 of storage, the preservation effect did not persist in nearly all samples, except in the beef with Br. thermosphacta. However, with the starter culture bacteria on day 1, only L. monocytogenes on beef was significantly reduced. Interestingly, on day 7 of storage, this reducing effect was also found with S. Typhimurium on pork. Br. thermosphacta, which was principally not influenced by the starter culture bacteria. The combinatory treatment mainly resulted in no additional effects, except for the S. Typhimurium and Br. thermosphacta results on pork on day 7 and the Br. thermosphacta results on beef on day 14. The physicochemical parameters were not influenced by the single and combinatory treatment. The results indicate that LAE was mainly responsible for the antimicrobial effects and that a combination with starter culture bacteria should be individually evaluated for the meat species. Full article
Show Figures

Figure 1

16 pages, 1168 KiB  
Article
Untargeted Analysis of Serum Metabolomes in Dogs with Exocrine Pancreatic Insufficiency
by Patrick C. Barko, Stanley I. Rubin, Kelly S. Swanson, Maureen A. McMichael, Marcella D. Ridgway and David A. Williams
Animals 2023, 13(14), 2313; https://doi.org/10.3390/ani13142313 - 14 Jul 2023
Cited by 3 | Viewed by 3163
Abstract
Exocrine pancreatic insufficiency (EPI) is a malabsorptive syndrome resulting from insufficient secretion of pancreatic digestive enzymes. EPI is treated with pancreatic enzyme replacement therapy (PERT), but the persistence of clinical signs, especially diarrhea, is common after treatment. We used untargeted metabolomics of serum [...] Read more.
Exocrine pancreatic insufficiency (EPI) is a malabsorptive syndrome resulting from insufficient secretion of pancreatic digestive enzymes. EPI is treated with pancreatic enzyme replacement therapy (PERT), but the persistence of clinical signs, especially diarrhea, is common after treatment. We used untargeted metabolomics of serum to identify metabolic disturbances associated with EPI and generate novel hypotheses related to its pathophysiology. Fasted serum samples were collected from dogs with EPI (n = 20) and healthy controls (n = 10), all receiving PERT. Serum metabolomes were generated using UPLC-MS/MS, and differences in relative metabolite abundances were compared between the groups. Of the 759 serum metabolites detected, 114 varied significantly (p < 0.05, q < 0.2) between dogs with EPI and healthy controls. Differences in amino acids (arginate, homoarginine, 2-oxoarginine, N-acetyl-cadaverine, and α-ketoglutaramate) and lipids (free fatty acids and docosahexaenoylcarnitine) were consistent with increased proteolysis and lipolysis, indicating a persistent catabolic state in dogs with EPI. Relative abundances of gut microbial metabolites (phenyllactate, 4-hydroxyphenylacetate, phenylacetyl-amino acids, catechol sulfates, and o-cresol-sulfate) were altered in dogs with EPI, consistent with disruptions in gut microbial communities. Increased kynurenine is consistent with the presence of intestinal inflammation in dogs with EPI. Whether these metabolic disturbances participate in the pathophysiology of EPI or contribute to the persistence of clinical signs after treatment is unknown, but they are targets for future investigations. Full article
(This article belongs to the Special Issue Frontiers in Canine and Feline Gastrointestinal Disease)
Show Figures

Figure 1

21 pages, 12585 KiB  
Article
Waste Orange Peels as a Source of Cellulose Nanocrystals and Their Use for the Development of Nanocomposite Films
by Francesco Bigi, Enrico Maurizzi, Hossein Haghighi, Heinz Wilhelm Siesler, Fabio Licciardello and Andrea Pulvirenti
Foods 2023, 12(5), 960; https://doi.org/10.3390/foods12050960 - 24 Feb 2023
Cited by 27 | Viewed by 9746 | Correction
Abstract
To date, approximately 30–50% of food is wasted from post-harvesting to consumer usage. Typical examples of food by-products are fruit peels and pomace, seeds, and others. A large part of these matrices is still discarded in landfills, while a small portion is valorized [...] Read more.
To date, approximately 30–50% of food is wasted from post-harvesting to consumer usage. Typical examples of food by-products are fruit peels and pomace, seeds, and others. A large part of these matrices is still discarded in landfills, while a small portion is valorized for bioprocessing. In this context, a feasible strategy to valorize food by-products consists of their use for the production of bioactive compounds and nanofillers, which can be further used to functionalize biobased packaging materials. The focus of this research was to create an efficient methodology for the extraction of cellulose from leftover orange peel after juice processing and for its conversion into cellulose nanocrystals (CNCs) for use in bionanocomposite films for packaging materials. Orange CNCs were characterized by TEM and XRD analyses and added as reinforcing agents into chitosan/hydroxypropyl methylcellulose (CS/HPMC) films enriched with lauroyl arginate ethyl (LAE®). It was evaluated how CNCs and LAE® affected the technical and functional characteristics of CS/HPMC films. CNCs revealed needle-like shapes with an aspect ratio of 12.5, and average length and width of 500 nm and 40 nm, respectively. Scanning electron microscopy and infrared spectroscopy confirmed the high compatibility of the CS/HPMC blend with CNCs and LAE®. The inclusion of CNCs increased the films’ tensile strength, light barrier, and water vapor barrier properties while reducing their water solubility. The addition of LAE® improved the films’ flexibility and gave them biocidal efficacy against the main bacterial pathogens that cause foodborne illness, such as Escherichia coli, Pseudomonas fluorescens, Listeria monocytogenes, and Salmonella enterica. Full article
Show Figures

Graphical abstract

20 pages, 112873 KiB  
Article
Hydrographic Drone Non-Invasive Underwater Investigations: New Archaeological Discoveries in Valle Fossa di Porto (Comacchio—FE, Italy)
by Giovanna Bucci
Heritage 2023, 6(2), 1804-1823; https://doi.org/10.3390/heritage6020096 - 7 Feb 2023
Viewed by 2052
Abstract
During forensic archaeological research conducted in 2021 in the Comacchio Lagoon (FE), we detected new data concerning the ancient local hydrography to the west of Argine Agosta, an ancient bank, in Valle Fossa di Porto. A systematic campaign of geophysical surveys for heritage [...] Read more.
During forensic archaeological research conducted in 2021 in the Comacchio Lagoon (FE), we detected new data concerning the ancient local hydrography to the west of Argine Agosta, an ancient bank, in Valle Fossa di Porto. A systematic campaign of geophysical surveys for heritage and archaeology was conducted with a hydrographic drone equipped with a single-beam bathymetric sensor echo sounder, sub-bottom profiler, and side-scan sonar. In combination with the indirect non-invasive investigations, systematic surveys of the walkable areas were also completed. These remote-sensing studies have relocated the River Vatrenus palaeo-watercourse, while visual census have brought to light a system of wooden palisades with floors made of wood associated with some scattered finds belonging to the material culture dating back to the Mediaeval and Renaissance periods. A preview of the results of this case study is presented here, contributing to the reconstruction of the ancient landscape and waterscape area of the Valle Fossa di Porto. Full article
(This article belongs to the Special Issue Geophysical Surveys for Heritage and Archaeology)
Show Figures

Figure 1

16 pages, 2288 KiB  
Article
Arginine-Coated Nanoglobules for the Nasal Delivery of Insulin
by Atanu Das, Richa Vartak, Md Asrarul Islam, Sunil Kumar, Jun Shao and Ketan Patel
Pharmaceutics 2023, 15(2), 353; https://doi.org/10.3390/pharmaceutics15020353 - 20 Jan 2023
Cited by 5 | Viewed by 2570
Abstract
Multiple daily injections via subcutaneous route are the primary modes of insulin delivery for patients with Diabetes Mellitus. While this process is invasive, painful and may cause patients to develop lipohypertrophy at injection site, the perception of fear surrounding this process causes patients [...] Read more.
Multiple daily injections via subcutaneous route are the primary modes of insulin delivery for patients with Diabetes Mellitus. While this process is invasive, painful and may cause patients to develop lipohypertrophy at injection site, the perception of fear surrounding this process causes patients to delay in initiation and remain persistent with insulin therapy over time. Moreover, poor glycemic control may often lead to acute complications, such as severe hypoglycemia and nocturnal hypoglycemia, especially in older patients with diabetes. To address the imperative need for a patient-convenient non-invasive insulin therapy, an insulin-loaded arginine-coated self-emulsifying nanoglobule system (INS-LANano) was developed for nasal delivery of insulin with a biodegradable cationic surfactant—Lauroyl Ethyl Arginate (LAE). Incorporation of LAE resulted in formation of positively charged nanoglobules with L-arginine oriented on the surface. LANano enabled binding of insulin molecules on the surface of nanoglobules via an electrostatic interaction between negatively charged α-helix and LAE molecules at physiological pH. INS-LANano showed a hydrodynamic diameter of 23.38 nm with a surface charge of +0.118 mV. The binding efficiency of insulin on LANano globules was confirmed by zeta potential, circular dichroism (CD) spectroscopy and centrifugal ultrafiltration studies. The attachment of insulin with permeation-enhancing nanoglobules demonstrated significantly higher in vitro permeability of insulin of 15.2% compared to insulin solution across human airway epithelial cell (Calu-3) monolayer. Upon intranasal administration of INS-LANano to diabetic rats at 2 IU/kg insulin dose, a rapid absorption of insulin with significantly higher Cmax of 14.3 mU/L and relative bioavailability (BA) of 23.3% was observed. Therefore, the INS-LANano formulation significant translational potential for intranasal delivery of insulin Full article
(This article belongs to the Collection Feature Papers in Nanomedicine and Nanotechnology)
Show Figures

Figure 1

14 pages, 4371 KiB  
Article
The Influence of the Surface Chemistry of Cellulose Nanocrystals on Ethyl Lauroyl Arginate Foam Stability
by Agnieszka Czakaj, Emmanouil Chatzigiannakis, Jan Vermant, Marcel Krzan and Piotr Warszyński
Polymers 2022, 14(24), 5402; https://doi.org/10.3390/polym14245402 - 9 Dec 2022
Cited by 5 | Viewed by 2401
Abstract
Guanidine-based surfactant ethyl lauroyl arginate (LAE) and cellulose nanocrystals (CNCs) form complexes of enhanced surface activity when compared to pure surfactants. The LAE-CNC mixtures show enhanced foaming properties. The dynamic thin-film balance technique (DTFB) was used to study the morphology, drainage and rupture [...] Read more.
Guanidine-based surfactant ethyl lauroyl arginate (LAE) and cellulose nanocrystals (CNCs) form complexes of enhanced surface activity when compared to pure surfactants. The LAE-CNC mixtures show enhanced foaming properties. The dynamic thin-film balance technique (DTFB) was used to study the morphology, drainage and rupture of LAE-CNC thin liquid films under constant driving pressure. A total of three concentrations of surfactant and the corresponding mixtures of LAE with sulfated (sCNC) and carboxylated (cCNC) cellulose nanocrystals were studied. The sCNC and cCNC suspension with LAE formed thin films, with stability increasing with surfactant concentration and with complex rheological properties. In the presence of LAE, the aggregation of CNC was observed. While the sCNC aggregates were preferentially present in the film volume with a small fraction at the surface, the cCNC aggregates, due to their higher hydrophobicity, were preferentially located at film interfaces, forming compact layers. The presence of both types of aggregates decreased the stability of the thin liquid film compared to the one for the LAE solution with the same concentration. The addition of CNC to LAE was critical for foam formation, and foam stability was in qualitative agreement with the thin films’ lifetimes. The foam volume increased with the LAE concentration. However, there was an optimum surfactant concentration to achieve stable foam. In particular, the very resistant foam was obtained with cCNC suspensions that formed the interfaces with a complex structure and rheology. On the other hand, at high LAE concentrations, the aggregates of CNC may exhibit antifoaming properties Full article
(This article belongs to the Special Issue Biodegradable and Natural Polymers)
Show Figures

Figure 1

16 pages, 1536 KiB  
Article
A Type I and a Type II Metacaspase Are Differentially Regulated during Corolla Development and in Response to Abiotic and Biotic Stresses in Petunia × hybrida
by Laura J. Chapin and Michelle L. Jones
Horticulturae 2022, 8(12), 1151; https://doi.org/10.3390/horticulturae8121151 - 6 Dec 2022
Cited by 1 | Viewed by 1980
Abstract
Metacaspases are structural homologs of the metazoan caspases that are found in plants, fungi, and protozoans. They are cysteine proteases that function during programmed cell death, stress, and cell proliferation. A putative metacaspase designated PhMC2 was cloned from Petunia × hybrida, and [...] Read more.
Metacaspases are structural homologs of the metazoan caspases that are found in plants, fungi, and protozoans. They are cysteine proteases that function during programmed cell death, stress, and cell proliferation. A putative metacaspase designated PhMC2 was cloned from Petunia × hybrida, and sequence alignment and phylogenetic analysis revealed that it encodes a type II metacaspase. PhMC2 cleaved protease substrates with an arginine residue at the P1 site and cysteine (iodoacetamide) and arginal (leupeptin) protease inhibitors nearly abolished this activity. The activity of PhMC2 was highest at pH 8, and the putative catalytic site cysteine residue was required for optimal activity. Quantitative PCR showed that PhMC2 transcripts were detectable in petunia corollas, styles, and ovaries. Expression patterns were not upregulated during petal senescence but were higher at the middle stages of development when flower corollas were fully open but not yet starting to wilt. PhMC1, a type I metacaspase previously identified in petunia, and PhMC2 were differentially regulated in vegetative tissues in response to biotic and abiotic stresses. PhMC2 expression was upregulated to a greater extent than PhMC1 following Botrytis cinerea infection, while PhMC1 was upregulated more by drought, salinity, and low nutrient stress. These results suggest that petunia metacaspases are involved in flower development, senescence, and stress responses. Full article
(This article belongs to the Section Floriculture, Nursery and Landscape, and Turf)
Show Figures

Figure 1

19 pages, 2799 KiB  
Article
Hydrophobisation of Silica Nanoparticles Using Lauroyl Ethyl Arginate and Chitosan Mixtures to Induce the Foaming Process
by Marcel Krzan, Ewelina Jarek, Hristina Petkova, Eva Santini, Lilianna Szyk-Warszynska, Francesca Ravera, Libero Liggieri, Elena Mileva and Piotr Warszynski
Polymers 2022, 14(19), 4076; https://doi.org/10.3390/polym14194076 - 28 Sep 2022
Cited by 4 | Viewed by 2573
Abstract
We studied silica suspensions with chitosan and biodegradable synthetic surfactant lauroyl ethyl arginate (LAE). Hydrophilic and negatively charged silica nanoparticles were neutralised due to the coating with chitosan. That presence of LAE led to the partial hydrophobisation of their surface, which favoured their [...] Read more.
We studied silica suspensions with chitosan and biodegradable synthetic surfactant lauroyl ethyl arginate (LAE). Hydrophilic and negatively charged silica nanoparticles were neutralised due to the coating with chitosan. That presence of LAE led to the partial hydrophobisation of their surface, which favoured their attachment to the surface of a thin foam film. It was found that the presence of small and medium-sized (6–9 nm) hydrophobic particles in the interfacial layer of lamella foam film inhibited the coalescence and coarsening processes, which prolonged the life of the foam. Furthermore, hydrophobising of 30 nm particles allowed the formation of large aggregates precipitating from the mixture under steady-state conditions. These aggregates, however, under the conditions of the dynamic froth flotation process in the foam column, were floated into the foam layer. As a result, they were trapped in the foam film and Plateau borders, effectively preventing liquid leakage out of the foam. These results demonstrate the efficiency of using chitosan-LAE mixtures to remove silica nanoparticles from aqueous phase by foaming and flotation. Full article
(This article belongs to the Special Issue Biodegradable and Natural Polymers)
Show Figures

Figure 1

17 pages, 3422 KiB  
Article
Development of pH-Indicative and Antimicrobial Films Based on Polyvinyl Alcohol/Starch Incorporated with Ethyl Lauroyl Arginate and Mulberry Anthocyanin for Active Packaging
by Nannan Li, Zeguang Zhou, Fuqi Wu, Yanyue Lu, Dongyang Jiang, Lei Zhong and Fengwei Xie
Coatings 2022, 12(10), 1392; https://doi.org/10.3390/coatings12101392 - 23 Sep 2022
Cited by 25 | Viewed by 3561
Abstract
Antibacterial and pH-responsive composite films for active food packaging were fabricated based on polyvinyl alcohol (PVA), cassava starch, ethyl lauroyl arginate (LAE), and mulberry anthocyanin. With the incorporation of LAE and mulberry anthocyanin, the PVA/starch blend films exhibited a less compact and more [...] Read more.
Antibacterial and pH-responsive composite films for active food packaging were fabricated based on polyvinyl alcohol (PVA), cassava starch, ethyl lauroyl arginate (LAE), and mulberry anthocyanin. With the incorporation of LAE and mulberry anthocyanin, the PVA/starch blend films exhibited a less compact and more heterogeneous surface structure. The tensile strength and elongation at break of the active films were not significantly affected when the mulberry anthocyanin content was less than 20%. Moreover, the incorporation of mulberry anthocyanin effectively improved the UV barrier property of the blend films. Notably, while mulberry anthocyanin showed obvious color changes in buffer solutions with different pH values, the changes were indistinguishable for the PVA/starch/mulberry anthocyanin films. By contrast, the color changes of the PVA/starch/LAE/mulberry anthocyanin films were more noticeable, indicating the addition of LAE increased the pH sensitivity of the blend films. Furthermore, the PVA/starch/LAE/mulberry anthocyanin films efficiently inhibited the growth of both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) due to the strong antibacterial activity of LAE. According to the spoilage test, the active films containing 5% mulberry anthocyanin and 5% LAE effectively indicated and slowed down the spoilage process of dairy milk. Our results demonstrate that PVA/starch/LAE/mulberry anthocyanin films have high potential as bioactive packaging materials applied in the food industry. Full article
Show Figures

Figure 1

13 pages, 3252 KiB  
Article
Effects of Ethyl Lauroyl Arginate (LAE) on Biofilm Detachment: Shear Rate, Concentration, and Dosing Time
by Peng-Fei Sun, Taek-Seung Kim, So-Young Ham, Yong-Sun Jang and Hee-Deung Park
Water 2022, 14(14), 2158; https://doi.org/10.3390/w14142158 - 7 Jul 2022
Cited by 2 | Viewed by 3587
Abstract
Biofilm formation is one of the main obstacles in membrane treatment. The non-oxidizing biocide ethyl lauroyl arginate (LAE) is promising for mitigating biofilm development on membrane surfaces. However, the operating conditions of LAE and their impact on biofilm detachment are not comprehensively understood. [...] Read more.
Biofilm formation is one of the main obstacles in membrane treatment. The non-oxidizing biocide ethyl lauroyl arginate (LAE) is promising for mitigating biofilm development on membrane surfaces. However, the operating conditions of LAE and their impact on biofilm detachment are not comprehensively understood. In this study, a real-time in vitro flow cell system was utilized to observe biofilm dispersal caused by the shear rate, concentration, and treatment time of LAE. This confirmed that the biofilm was significantly reduced to 68.2% at a shear rate of 3.42 s−1 due to the increased physical lifting force. LAE exhibited two different mechanisms for bacterial inactivation and biofilm dispersal. Biofilms treated with LAE at sub-growth inhibitory concentrations for a longer time could effectively detach the biofilm formed on the surface of the glass slides, which can be attributed to the increased motility of microorganisms. However, a high concentration (i.e., bactericidal concentration) of LAE should be seriously considered because of the inactivated sessile bacteria and their residual debris remaining on the surface. This study sheds light on the effect of LAE on biofilm detachment and provides insights into biofouling mitigation during the membrane process. Full article
(This article belongs to the Special Issue Membrane Technology for Water Treatment and Desalination)
Show Figures

Figure 1

20 pages, 1823 KiB  
Review
Therapy Follows Diagnosis: Old and New Approaches for the Treatment of Acute Porphyrias, What We Know and What We Should Know
by Petro E. Petrides
Diagnostics 2022, 12(7), 1618; https://doi.org/10.3390/diagnostics12071618 - 3 Jul 2022
Cited by 9 | Viewed by 3566
Abstract
Heme, iron protoporphyrin IX, is one of life’s most central molecules. Hence, availability of the enzymatic machinery necessary for its synthesis is crucial for every cell. Consequently, inborn errors of porphyrin metabolism that compromise normal synthesis, namely the family of porphyrias, undermine normal [...] Read more.
Heme, iron protoporphyrin IX, is one of life’s most central molecules. Hence, availability of the enzymatic machinery necessary for its synthesis is crucial for every cell. Consequently, inborn errors of porphyrin metabolism that compromise normal synthesis, namely the family of porphyrias, undermine normal cellular metabolism given that heme has functions in catalytic centers, signal transduction and functional regulation and its synthesis is fully integrated into the center of intermediary metabolism. Very often, diagnosis of porphyrias is difficult and therefore delayed. Therapy can be as complicated. Over the last 50 years, several strategies have been developed: because of its integration with other parts of intermediary metabolism, the infusion of glucose (glucose effect) was one of the first attempts to counterbalance the dysregulation of porphyrin synthesis in porphyrias. Since heme synthesis is impaired, infusional replacement of heme was the next important therapeutic step. Recently, siRNA technology has been introduced in order to downregulate 5-ALA-synthase 1, which contributes to the patho-physiology of these diseases. Moreover, other novel therapies using enzyme protein replacement, mRNA techniques or proteostasis regulators are being developed. Full article
(This article belongs to the Special Issue Advances in Diagnosis and Treatment of Porphyrias)
Show Figures

Figure 1

Back to TopTop