Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = aquatic animal pathogen evolution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 5302 KiB  
Review
Biosecurity and Vaccines for Emerging Aquatic Animal RNA Viruses
by Sohrab Ahmadivand, Ayanna Carla N. Phillips Savage and Dušan Palic
Viruses 2025, 17(6), 768; https://doi.org/10.3390/v17060768 - 28 May 2025
Viewed by 872
Abstract
Emerging RNA viruses pose a critical threat to aquatic animals, leading to significant ecological and economic consequences. Their high mutation rates and genetic adaptability drive rapid evolution, cross-species transmission, and expanding host ranges, complicating disease management. In aquaculture, RNA viruses are responsible for [...] Read more.
Emerging RNA viruses pose a critical threat to aquatic animals, leading to significant ecological and economic consequences. Their high mutation rates and genetic adaptability drive rapid evolution, cross-species transmission, and expanding host ranges, complicating disease management. In aquaculture, RNA viruses are responsible for major outbreaks in fish, while DNA viruses predominate in crustaceans. Marine mammals are increasingly affected by morbilliviruses and highly pathogenic avian influenza (HPAI) H5N1, which has caused widespread mortality events in pinniped and cetacean populations, raising concerns about zoonotic spillover. The absence of effective antiviral treatments and the complexity of vaccine development highlight the urgent need for enhanced biosecurity measures. Furthermore, novel vaccine approaches, such as self-assembling protein nanocage platforms, offer promising solutions for RNA virus mitigation. This review provides a comprehensive analysis of the emergence and significance of RNA viruses in aquatic animals over the last two decades, with a particular focus on biosecurity and vaccine development. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

18 pages, 1822 KiB  
Article
Aeromonas caviae subsp. aquatica subsp. nov., a New Multidrug-Resistant Subspecies Isolated from a Drinking Water Storage Tank
by Victor Hugo Moreira, Lidiane Coelho Berbert, Ayodele Timilehin Adesoji, Kayo Bianco, Janaina Japiassu Vasconcelos Cavalcante, Flávia Lúcia Piffano Costa Pellegrino, Rodolpho Mattos Albano, Maysa Mandetta Clementino and Alexander Machado Cardoso
Microorganisms 2025, 13(4), 897; https://doi.org/10.3390/microorganisms13040897 - 13 Apr 2025
Viewed by 1139
Abstract
The increasing prevalence and dissemination of multidrug-resistant bacteria represent a serious concern for public health. Aeromonas caviae is a pathogenic microorganism that causes a wide spectrum of diseases in fish and humans and is often associated with aquatic environments and isolated from foods [...] Read more.
The increasing prevalence and dissemination of multidrug-resistant bacteria represent a serious concern for public health. Aeromonas caviae is a pathogenic microorganism that causes a wide spectrum of diseases in fish and humans and is often associated with aquatic environments and isolated from foods and animals. Here, we present the isolation and characterization of the V15T strain isolated from a drinking water storage tank in Rio de Janeiro, Brazil. The V15T strain has a genome length of 4,443,347 bp with an average G + C content of 61.78% and a total of 4028 open reading frames. Its genome harbors eight types of antibiotic resistance genes (ARGs) involving resistance to beta-lactamases, macrolides, and quinolones. The presence of blaMOX-6, blaOXA-427/blaOXA-504, and mutations in parC were detected. In addition, other ARGs (macA, macB, opmH, and qnrA) and multidrug efflux pumps (such as MdtL), along with several resistance determinants and 106 genes encoding virulence factors, including adherence (polar and lateral flagella), secretion (T2SS, T6SS), toxin (hlyA), and stress adaptation (katG) systems, were observed. The genome sequence reported here provides insights into antibiotic resistance, biofilm formation, evolution, and virulence in Aeromonas strains, highlighting the need for more public health attention and the further monitoring of drinking water systems. Also, the results of physiological and phylogenetic data, average nucleotide identity (ANI) calculation, and digital DNA–DNA hybridization (dDDH) analysis support the inclusion of the strain V15T in the genus Aeromonas as a new subspecies with the proposed name Aeromonas caviae subsp. aquatica subsp. nov. (V15T = P53320T). This study highlights the genomic plasticity and pathogenic potential of Aeromonas within household drinking water systems, calling for the revision of water treatment protocols to address biofilm-mediated resistance and the implementation of routine genomic surveillance to mitigate public health risks. Full article
Show Figures

Figure 1

11 pages, 2263 KiB  
Article
Analysis of Halophilic Phenotypic Variation and Cytotoxicity of Vibrio parahaemolyticus from Different Sources
by Jingyue Gu, Xin Dong, Yunqian Zhou, Ying Zhao, Qiang Du, Jia Chen, Xujian Mao, Fengming Wang and Bowen Tu
Pathogens 2025, 14(2), 182; https://doi.org/10.3390/pathogens14020182 - 12 Feb 2025
Viewed by 946
Abstract
Vibrio parahaemolyticus is an aquatic animal pathogen. Recently, the detection rate of V. parahaemolyticus in freshwater products has exceeded that in seafood products, and the strains isolated from freshwater products exhibit better growth conditions in low-salinity environments. This study is based on a [...] Read more.
Vibrio parahaemolyticus is an aquatic animal pathogen. Recently, the detection rate of V. parahaemolyticus in freshwater products has exceeded that in seafood products, and the strains isolated from freshwater products exhibit better growth conditions in low-salinity environments. This study is based on a food risk detection activity in Changzhou, Jiangsu Province, China, investigating the variation of halophilism and the virulence of two groups of strains under different salt concentrations. Under 0%, 0.5%, and 1% salt, the strains from the freshwater showed faster growth than those from the seawater. In comparison, the strains from the seawater group under 2% and 3% salt grew faster than the growing status under the foregoing low-salt concentration environment. The cytotoxicity produced by the two strains was approximately 1.4 times higher in the 0.5% and 1% salt concentration groups compared to the 3% corresponding experimental group. Under the 0%, 0.5%, and 1% salt, the cytotoxicity of strains in the freshwater group increased by nearly 20% compared to that in the seawater groups. The freshwater strains showed altered halophilism and adapted to the low-salt environment. This research will be helpful in establishing a local and global control strategy against the diseases resulting from V. parahaemolyticus. Full article
Show Figures

Figure 1

13 pages, 3113 KiB  
Article
Emergence and Comparative Genome Analysis of Salmonella Ohio Strains from Brown Rats, Poultry, and Swine in Hungary
by Ama Szmolka, Zsuzsanna Sréterné Lancz, Fanni Rapcsák and László Egyed
Int. J. Mol. Sci. 2024, 25(16), 8820; https://doi.org/10.3390/ijms25168820 - 13 Aug 2024
Cited by 1 | Viewed by 1335
Abstract
Rats are particularly important from an epidemiological point of view, because they are regarded as reservoirs for diverse zoonotic pathogens including enteric bacteria. This study is the first to report the emergence of Salmonella serovar Ohio in brown rats (Rattus norvegicus) [...] Read more.
Rats are particularly important from an epidemiological point of view, because they are regarded as reservoirs for diverse zoonotic pathogens including enteric bacteria. This study is the first to report the emergence of Salmonella serovar Ohio in brown rats (Rattus norvegicus) and food-producing animals in Hungary. We first reveal the genomic diversity of the strains and their phylogenomic relationships in the context of the international collection of S. Ohio genomes. This pathogen was detected in 4.3% (4/92) of rats, captured from multiple sites in Hungary. A whole-genome-based genotype comparison of S. Ohio, Infantis, Enteritidis, and Typhimurium strains showed that 76.4% (117/153) of the virulence and antimicrobial resistance genes were conserved among these serovars, and none of the genes were specific to S. Ohio. All S. Ohio strains lacked virulence and resistance plasmids. The cgMLST phylogenomic comparison highlighted a close genetic relationship between rat and poultry strains of S. Ohio from Hungary. These strains clustered together with the international S. Ohio genomes from aquatic environments. Overall, this study contributes to our understanding of the epidemiology of Salmonella spp. in brown rats and highlights the importance of monitoring to minimize the public health risk of rodent populations. However, further research is needed to understand the route of infection and evolution of this serovar. Full article
Show Figures

Figure 1

25 pages, 5045 KiB  
Article
Genomic and Transcriptomic Analyses Reveal Multiple Strategies for Vibrio parahaemolyticus to Tolerate Sub-Lethal Concentrations of Three Antibiotics
by Lianzhi Yang, Pan Yu, Juanjuan Wang, Taixia Zhao, Yong Zhao, Yingjie Pan and Lanming Chen
Foods 2024, 13(11), 1674; https://doi.org/10.3390/foods13111674 - 27 May 2024
Cited by 2 | Viewed by 2024
Abstract
Vibrio parahaemolyticus can cause acute gastroenteritis, wound infections, and septicemia in humans. The overuse of antibiotics in aquaculture may lead to a high incidence of the multidrug-resistant (MDR) pathogen. Nevertheless, the genome evolution of V. parahaemolyticus in aquatic animals and the mechanism of [...] Read more.
Vibrio parahaemolyticus can cause acute gastroenteritis, wound infections, and septicemia in humans. The overuse of antibiotics in aquaculture may lead to a high incidence of the multidrug-resistant (MDR) pathogen. Nevertheless, the genome evolution of V. parahaemolyticus in aquatic animals and the mechanism of its antibiotic tolerance remain to be further deciphered. Here, we investigated the molecular basis of the antibiotic tolerance of V. parahaemolyticus isolates (n = 3) originated from shellfish and crustaceans using comparative genomic and transcriptomic analyses. The genome sequences of the V. parahaemolyticus isolates were determined (5.0–5.3 Mb), and they contained 4709–5610 predicted protein-encoding genes, of which 823–1099 genes were of unknown functions. Comparative genomic analyses revealed a number of mobile genetic elements (MGEs, n = 69), antibiotic resistance-related genes (n = 7–9), and heavy metal tolerance-related genes (n = 2–4). The V. parahaemolyticus isolates were resistant to sub-lethal concentrations (sub-LCs) of ampicillin (AMP, 512 μg/mL), kanamycin (KAN, 64 μg/mL), and streptomycin (STR, 16 μg/mL) (p < 0.05). Comparative transcriptomic analyses revealed that there were significantly altered metabolic pathways elicited by the sub-LCs of the antibiotics (p < 0.05), suggesting the existence of multiple strategies for antibiotic tolerance in V. parahaemolyticus. The results of this study enriched the V. parahaemolyticus genome database and should be useful for controlling the MDR pathogen worldwide. Full article
(This article belongs to the Special Issue Molecular Epidemiology of Foodborne Pathogenic Bacteria)
Show Figures

Figure 1

17 pages, 2473 KiB  
Article
Environmental Compatibility and Genome Flexibility of Klebsiella oxytoca Isolated from Eight Species of Aquatic Animals
by Shuo Sun, Tingting Gu, Yafei Ou, Yongjie Wang, Lu Xie and Lanming Chen
Diversity 2024, 16(1), 30; https://doi.org/10.3390/d16010030 - 2 Jan 2024
Cited by 4 | Viewed by 2926
Abstract
Klebsiella oxytoca is an emerging pathogen that can cause life-threatening infectious diseases in humans. Recently, we firstly reported for the first time the presence of K. oxytoca in edible aquatic animals. In this study, we further investigated its bacterial environmental fitness and genome [...] Read more.
Klebsiella oxytoca is an emerging pathogen that can cause life-threatening infectious diseases in humans. Recently, we firstly reported for the first time the presence of K. oxytoca in edible aquatic animals. In this study, we further investigated its bacterial environmental fitness and genome evolution signatures. The results revealed that K. oxytoca isolates (n = 8), originating from eight species of aquatic animals, were capable of growing under a broad spectrum of environmental conditions (pH 4.5–8.5, 0.5–6.5% NaCl), with different biofilm formation and swimming mobility profiles. The genome sequences of the K. oxytoca isolates were determined (5.84–6.02 Mb, 55.07–56.06% GC content). Strikingly, numerous putative mobile genetic elements (MGEs), particularly genomic islands (GIs, n = 105) and prophages (n = 24), were found in the K. oxytoca genomes, which provided the bacterium with specific adaptation traits, such as resistance, virulence, and material metabolism. Interestingly, the identified prophage-related clusters were derived from Burkholderia spp., Enterobacter spp., Klebsiella spp., Pseudomonas spp., and Haemophilus spp., suggesting phage transmission across Klebsiella and the other four genera. Many strain-specific (n = 10–447) genes were present in the K. oxytoca genomes, whereas the CRISPR-Cas protein-encoding gene was absent, indicating likely active horizontal gene transfer (HGT) and considerable genome variation in K. oxytoca evolution. Overall, the results of this study are the first to demonstrate the environmental compatibility and genome flexibility of K. oxytoca of aquatic animal origins. Full article
(This article belongs to the Special Issue Occurrence and Molecular Biology of Water Bacteria and Protozoa)
Show Figures

Figure 1

30 pages, 1871 KiB  
Review
Evolution and Emergence of Antibiotic Resistance in Given Ecosystems: Possible Strategies for Addressing the Challenge of Antibiotic Resistance
by Ramganesh Selvarajan, Chinedu Obize, Timothy Sibanda, Akebe Luther King Abia and Haijun Long
Antibiotics 2023, 12(1), 28; https://doi.org/10.3390/antibiotics12010028 - 24 Dec 2022
Cited by 35 | Viewed by 11478
Abstract
Antibiotics were once considered the magic bullet for all human infections. However, their success was short-lived, and today, microorganisms have become resistant to almost all known antimicrobials. The most recent decade of the 20th and the beginning of the 21st century have witnessed [...] Read more.
Antibiotics were once considered the magic bullet for all human infections. However, their success was short-lived, and today, microorganisms have become resistant to almost all known antimicrobials. The most recent decade of the 20th and the beginning of the 21st century have witnessed the emergence and spread of antibiotic resistance (ABR) in different pathogenic microorganisms worldwide. Therefore, this narrative review examined the history of antibiotics and the ecological roles of antibiotics, and their resistance. The evolution of bacterial antibiotic resistance in different environments, including aquatic and terrestrial ecosystems, and modern tools used for the identification were addressed. Finally, the review addressed the ecotoxicological impact of antibiotic-resistant bacteria and public health concerns and concluded with possible strategies for addressing the ABR challenge. The information provided in this review will enhance our understanding of ABR and its implications for human, animal, and environmental health. Understanding the environmental dimension will also strengthen the need to prevent pollution as the factors influencing ABR in this setting are more than just antibiotics but involve others like heavy metals and biocides, usually not considered when studying ABR. Full article
(This article belongs to the Special Issue Antimicrobial Resistance and Environmental Health)
Show Figures

Figure 1

22 pages, 2788 KiB  
Article
Genomic and Transcriptomic Analysis Reveal Multiple Strategies for the Cadmium Tolerance in Vibrio parahaemolyticus N10-18 Isolated from Aquatic Animal Ostrea gigas Thunberg
by Pan Yu, Lianzhi Yang, Juanjuan Wang, Chenli Su, Si Qin, Chaoxi Zeng and Lanming Chen
Foods 2022, 11(23), 3777; https://doi.org/10.3390/foods11233777 - 23 Nov 2022
Cited by 6 | Viewed by 2879
Abstract
The waterborne Vibrio parahaemolyticus can cause acute gastroenteritis, wound infection, and septicemia in humans. Pollution of heavy metals in aquatic environments is proposed to link high incidence of the multidrug-resistant (MDR) pathogen. Nevertheless, the genome evolution and heavy metal tolerance mechanism of V. [...] Read more.
The waterborne Vibrio parahaemolyticus can cause acute gastroenteritis, wound infection, and septicemia in humans. Pollution of heavy metals in aquatic environments is proposed to link high incidence of the multidrug-resistant (MDR) pathogen. Nevertheless, the genome evolution and heavy metal tolerance mechanism of V. parahaemolyticus in aquatic animals remain to be largely unveiled. Here, we overcome the limitation by characterizing an MDR V. parahaemolyticus N10-18 isolate with high cadmium (Cd) tolerance using genomic and transcriptomic techniques. The draft genome sequence (4,910,080 bp) of V. parahaemolyticus N10-18 recovered from Ostrea gigas Thunberg was determined, and 722 of 4653 predicted genes had unknown function. Comparative genomic analysis revealed mobile genetic elements (n = 11) and heavy metal and antibiotic-resistance genes (n = 38 and 7). The bacterium significantly changed cell membrane structure to resist the Cd2+ (50 μg/mL) stress (p < 0.05). Comparative transcriptomic analysis revealed seven significantly altered metabolic pathways elicited by the stress. The zinc/Cd/mercury/lead transportation and efflux and the zinc ATP-binding cassette (ABC) transportation were greatly enhanced; metal and iron ABC transportation and thiamine metabolism were also up-regulated; conversely, propanoate metabolism and ribose and maltose ABC transportation were inhibited (p < 0.05). The results of this study demonstrate multiple strategies for the Cd tolerance in V. parahaemolyticus. Full article
(This article belongs to the Special Issue Contaminants in Seafood: Prevention, Control, and Detection)
Show Figures

Figure 1

Back to TopTop