Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = aquafeed supplementation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 745 KiB  
Article
Optimizing Selenium Polysaccharide Supplementation: Impacts on Growth, Oxidative Stress, and Tissue Selenium in Juvenile Large Yellow Croaker (Larimichthys crocea)
by Jinxing Xiao, Zhoudi Miao, Shiliang Dong, Kaiyang Wang, Fan Zhou and Zilong Li
Animals 2025, 15(15), 2292; https://doi.org/10.3390/ani15152292 - 6 Aug 2025
Abstract
Selenium (Se) is an essential trace element critical for animal growth and immune function. This study investigated the dietary selenium requirement of juvenile large yellow croaker (Larimichthys crocea) through an 8-week feeding trial. Five experimental diets were formulated by supplementing a [...] Read more.
Selenium (Se) is an essential trace element critical for animal growth and immune function. This study investigated the dietary selenium requirement of juvenile large yellow croaker (Larimichthys crocea) through an 8-week feeding trial. Five experimental diets were formulated by supplementing a basal diet with selenium polysaccharides (Se-PS) at 0, 20, 30, 40, and 50 mg/kg, resulting in analyzed Se concentrations of 0.35, 0.54, 0.71, 0.93, and 1.11 mg/kg, respectively. The results demonstrated that growth performance and feed efficiency improved with increasing dietary selenium, peaking at 0.93 mg/kg before declining at higher levels. Antioxidant enzyme activities—superoxide dismutase (SOD) and catalase (CAT)—in serum and liver tissues exhibited a dose-dependent increase, reaching maximal levels at 1.11 mg/kg. Conversely, malondialdehyde (MDA), a marker of oxidative stress, progressively decreased in both serum and liver, attaining its lowest concentration at 1.11 mg/kg, though this did not differ significantly from the 0.93 mg/kg group (p = 0.056). Tissue selenium accumulation was highest at these optimal dietary levels. Based on the growth performance, oxidative stress response, and tissue selenium retention, the recommended dietary selenium requirement for juvenile large yellow croaker is 0.93 mg/kg. These findings highlight the importance of optimal Se supplementation in aquafeeds to enhance growth and physiological health in farmed fish. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

15 pages, 952 KiB  
Article
The Effects of a Functional Palatability Enhancer on the Growth, Immune Response and Intestinal Microbiota of Penaeus vannamei Chronically Exposed to a Suboptimal Temperature (22 °C)
by Flávia Banderó Hoffling, Camilla Souza Miranda, Maria Helena de Araújo Mendes, Julia Heindrickson, Scheila Anelise Pereira, Thiago Raggi, Sofia Morais, Walter Quadros Seiffert, Delano Dias Schleder and Felipe Boéchat Vieira
Appl. Sci. 2025, 15(15), 8132; https://doi.org/10.3390/app15158132 - 22 Jul 2025
Viewed by 262
Abstract
Shrimp farming is practiced worldwide in tropical and subtropical regions, where shrimp often experience suboptimal temperatures during part of the production cycle, resulting in slower growth. A concentrated functional palatability enhancer (FPE) containing a mixture of chemoattractants was tested. A 12-week experiment at [...] Read more.
Shrimp farming is practiced worldwide in tropical and subtropical regions, where shrimp often experience suboptimal temperatures during part of the production cycle, resulting in slower growth. A concentrated functional palatability enhancer (FPE) containing a mixture of chemoattractants was tested. A 12-week experiment at a suboptimal temperature (22 °C) was conducted with Penaeus vannamei (3.25 ± 0.02 g) in a clear water system (400 L with 40 shrimp per tank) with flow-through seawater. A standard diet was supplemented with 0, 1, and 2 g kg−1 of FPE (STD, STD+1, and STD+2) with four replicates for each one. The inclusion of 1 g kg−1 of FPE (STD+1) significantly increased the average final weight by 11.24% and weekly weight gain by 14,00% when compared to STD. The highest tested dose (2 g kg−1) did not result in further improvement in growth performance compared to the control. In addition, the total hemocyte count (THC) remained at an optimal level for the species in the STD+1 treatment under suboptimal temperature conditions compared to the other treatments. We also observed a decrease in Vibrio spp. bacterial counts in STD+1 compared to STD+2. Therefore, the lowest tested dose was shown to positively influence the rearing of P. vannamei at suboptimal temperatures. Full article
(This article belongs to the Special Issue Advances in Aquatic Animal Nutrition and Aquaculture)
Show Figures

Figure 1

24 pages, 1937 KiB  
Article
Asparagopsis taxiformis Feed Supplementation as a Tool to Improve the Resilience of Farmed Diplodus sargus to Marine Heatwave Events—A Metabolomics Approach
by Marta Dias, Isa Marmelo, Carla António, Ana M. Rodrigues, António Marques, Mário S. Diniz and Ana Luísa Maulvault
Fishes 2025, 10(7), 350; https://doi.org/10.3390/fishes10070350 - 15 Jul 2025
Viewed by 430
Abstract
The need to maximize aquaculture production while addressing environmental and food security challenges posed by climate change has driven research towards the development of functional aquafeeds that enhance performance and immunity in farmed species. However, exposure to dietary and environmental stressors affects marine [...] Read more.
The need to maximize aquaculture production while addressing environmental and food security challenges posed by climate change has driven research towards the development of functional aquafeeds that enhance performance and immunity in farmed species. However, exposure to dietary and environmental stressors affects marine organisms, altering key metabolic pathways best understood through high-throughput “omics” tools. This study assessed the effects of Asparagopsis taxiformis supplementation on central metabolic pathways by analyzing changes in primary metabolite levels in the liver of farmed Diplodus sargus under optimal and suboptimal temperature conditions. Results showed that seaweed supplementation had a beneficial effect on the fish’s primary metabolome; however, inclusion levels and rearing conditions played a crucial role in determining outcomes. While 1.5% supplementation maintained a balanced primary metabolome under optimal temperature conditions, 3.0% supplementation most effectively mitigated the adverse effects of acute thermal stress during a marine heatwave. These findings highlight the nutritive and functional potential of A. taxiformis supplementation in aquafeeds for marine omnivorous fish species and emphasize the importance of evaluating functional aquafeeds under suboptimal rearing conditions. Overall, our results demonstrate the value of metabolomics in elucidating the molecular basis underlying biological pathways in farmed marine fish and optimizing production through climate-smart dietary strategies. Full article
(This article belongs to the Special Issue Advances in Aquaculture Feed Additives)
Show Figures

Graphical abstract

20 pages, 2418 KiB  
Article
Dietary Administration of Postbiotics from Vibrio proteolyticus DCF12.2 Enhanced Intestinal Integrity, Microbiota, and Immune Response in Juvenile Gilthead Seabream (Sparus aurata)
by Olivia Pérez-Gómez, Sonia Rohra-Benítez, Marta Domínguez-Maqueda, Isabel M. Cerezo, Alba Galafat, Eduardo Martínez-Manzanares, Juan Miguel Mancera, Francisco Javier Alarcón-López, Jorge García-Márquez, Miguel Ángel Moriñigo and Salvador Arijo
Animals 2025, 15(13), 1982; https://doi.org/10.3390/ani15131982 - 5 Jul 2025
Viewed by 375
Abstract
The use of postbiotics for dietary fortification in aquaculture is gaining increasing attention due to their potential immunomodulatory and gut health benefits. In this study, we evaluated the effects of postbiotics derived from Vibrio proteolyticus DCF12.2 on intestinal histology, microbiota composition, and the [...] Read more.
The use of postbiotics for dietary fortification in aquaculture is gaining increasing attention due to their potential immunomodulatory and gut health benefits. In this study, we evaluated the effects of postbiotics derived from Vibrio proteolyticus DCF12.2 on intestinal histology, microbiota composition, and the expression of genes related to epithelial integrity and inflammation in juvenile gilthead seabream (Sparus aurata). Fish were fed either a control (CRTL) diet or the postbiotic-supplemented diet (VP) for 62 days. At the end of the feeding trial, a lipopolysaccharide (LPS) challenge was conducted to evaluate the immune response in fish. Histological analysis revealed a healthy mucosa in both groups, though fish fed the VP diet reduced fold height and mucosal layer thickness, alongside a significant increase in goblet cells. Microbiota profiling indicated higher alpha diversity and significant shifts in community composition in the VP group, including enrichment of potentially beneficial genera (Pseudomonas, Sphingomonas) and depletion of opportunistic taxa (Enterococcus, Stenotrophomonas). After the feeding trial, fish fed the VP diet exhibited downregulation of pro-inflammatory markers (tnfα, cox2). Following LPS challenge, cdh1—a key epithelial adhesion protein required for maintaining intestinal barrier integrity—expression was upregulated significantly in the VP group, suggesting enhanced epithelial resilience. These findings demonstrate that dietary fortification with V. proteolyticus-derived postbiotics supports mucosal health as well as modulates the intestinal microbiota and immune responses in gilthead seabream juveniles, offering a promising strategy for functional aquafeed development in sustainable aquaculture. Full article
(This article belongs to the Special Issue Novel Feeds Affect Fish Growth Performance and Immunity)
Show Figures

Figure 1

23 pages, 1824 KiB  
Article
Improving Farmed Juvenile Gilthead Seabream (Sparus aurata) Stress Response to Marine Heatwaves and Vibriosis Through Seaweed-Based Dietary Modulation
by Alícia Pereira, Isa Marmelo, Tomás Chainho, Daniel Bolotas, Marta Dias, Rui Cereja, Marisa Barata, Pedro Pousão-Ferreira, Elsa F. Vieira, Cristina Delerue-Matos, Mário S. Diniz, António Marques and Ana Luísa Maulvault
Animals 2025, 15(13), 1970; https://doi.org/10.3390/ani15131970 - 4 Jul 2025
Viewed by 390
Abstract
Marine heatwaves (MHWs) are an emerging challenge for aquaculture, increasing the frequency and severity of disease outbreaks in farmed fish, weakening immunocompetence and compromising overall health and survival. As climate change stressors intensify, there is an urgent need for cost-effective and environmentally friendly [...] Read more.
Marine heatwaves (MHWs) are an emerging challenge for aquaculture, increasing the frequency and severity of disease outbreaks in farmed fish, weakening immunocompetence and compromising overall health and survival. As climate change stressors intensify, there is an urgent need for cost-effective and environmentally friendly strategies to enhance fish resilience. This study investigated the efficacy of Laminaria digitata, a brown macroalga, included in aquafeeds as powder (0.3% and 1.5%) or extract (0.3%) in improving the stress response of juvenile gilthead seabream (Sparus aurata) co-exposed to Vibrio harveyi infection during a category III MHW event. Under control conditions, L. digitata supplementation maintained or improved fish growth performance and overall well-being. After MHW exposure, the 1.5% powdered and 0.3% extract diets were more effective in mitigating thermal stress, reducing liver oxidative stress and lowering plasma cortisol levels. In infected fish, these diets improved resistance to V. harveyi, with reduced cortisol and alanine aminotransferase concentrations indicating hepatoprotective properties, and lower lipid peroxidation and decreased antioxidant enzyme activities reflecting an amplified capacity to counteract oxidative stress induced by inflammation. Overall, L. digitata is a promising aquafeed supplement, with the 1.5% powdered form offering a cost-effective alternative to the extract without compromising efficacy. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

30 pages, 6809 KiB  
Article
Laminaria digitata Supplementation as a Climate-Smart Strategy to Counteract the Interactive Effects of Marine Heatwaves and Disease Outbreaks in Farmed Gilthead Seabream (Sparus aurata)
by Isa Marmelo, Tomás Chainho, Daniel Bolotas, Alícia Pereira, Busenur Özkan, Cátia Marques, Iris A. L. Silva, Florbela Soares, Pedro Pousão-Ferreira, Elsa F. Vieira, Cristina Delerue-Matos, Zélia Silva, Paula A. Videira, Tiago Repolho, Mário Sousa Diniz, António Marques and Ana Luísa Maulvault
Environments 2025, 12(7), 226; https://doi.org/10.3390/environments12070226 - 30 Jun 2025
Viewed by 720
Abstract
Extreme weather events, such as marine heatwaves (MHWs), pose serious threats to the aquaculture sector, facilitating the occurrence of disease outbreaks and compromising farmed animals’ welfare and survival. Hence, finding eco-innovative strategies to improve animal immunocompetence is essential to assure aquaculture’s sustainability and [...] Read more.
Extreme weather events, such as marine heatwaves (MHWs), pose serious threats to the aquaculture sector, facilitating the occurrence of disease outbreaks and compromising farmed animals’ welfare and survival. Hence, finding eco-innovative strategies to improve animal immunocompetence is essential to assure aquaculture’s sustainability and resilience in a rapidly changing ocean. This study evaluated the immunostimulatory potential of Laminaria digitata powder (0.3% and 1.5%) and extract (0.3%) in juvenile gilthead seabream (Sparus aurata) exposed to a Vibrio harveyi outbreak during a Category III MHW event (T = 25.7 °C). Overall, L. digitata supplementation did not significantly affect fish immunocompetence under optimal rearing conditions (T = 21.4 °C; no infection), nor did it induce any adverse effects. However, both the powder (1.5%) and extract (0.3%) forms of L. digitata supplementation effectively mitigated the negative impacts prompted by the MHW and Vibrio harveyi infection—evidenced by improvements in fish health indicators, hematological parameters, leukocyte viability, granulocyte proportions, and reductions in peroxidase activity and immunoglobulin M levels. From an economic standpoint, supplementation with 1.5% L. digitata powder emerged as the most promising strategy, offering a practical balance between effectiveness and affordability for large-scale applications. These findings highlight the potential of L. digitata as an immunostimulatory aquafeed supplement, with promising benefits for fish health and resilience under adverse rearing conditions. Full article
Show Figures

Graphical abstract

24 pages, 1814 KiB  
Article
Functional Feed for Tilapia: Exploring the Benefits of Aspalathus linearis Tea Extract
by Grace Okuthe, Bongile Bhomela and Noluyolo Vundisa
Biology 2025, 14(7), 778; https://doi.org/10.3390/biology14070778 - 27 Jun 2025
Viewed by 522
Abstract
To address the growing global demand for aquatic protein and the need for sustainable aquaculture, this study explored Aspalathus linearis tea extract as a novel feed additive for Oreochromis mossambicus larvae. Over an eight-week feeding trial, the efficacy of diets supplemented with 30% [...] Read more.
To address the growing global demand for aquatic protein and the need for sustainable aquaculture, this study explored Aspalathus linearis tea extract as a novel feed additive for Oreochromis mossambicus larvae. Over an eight-week feeding trial, the efficacy of diets supplemented with 30% fermented or green rooibos extract was assessed against a control. Both fermented and green rooibos treatments significantly (p < 0.05) enhanced larval growth, evidenced by improved weight gain and feed conversion ratios (fermented: 1.50 ± 0.25; green: 1.41 ± 0.07). Notably, A. linearis extracts also demonstrated genoprotective potential, as indicated by a marked reduction in micronucleus frequency, most likely attributed to their abundant phenolic compounds. These findings demonstrate that rooibos extract, especially the green variety, can improve growth performance and feed utilization, and also provide genoprotective benefits. The superior outcomes in growth and feed conversion are likely due to the bioactive phenolic compounds, which may enhance palatability, gut health, and nutrient absorption, rather than macronutrient content. This positions rooibos extract as a promising natural functional additive for aquafeed, offering a sustainable strategy to enhance tilapia farming productivity and resource utilization. However, further research is necessary to uncover specific molecular mechanisms, conduct in-depth analyses of gut health and immune responses, and evaluate effects on product quality to facilitate its sustainable and effective integration into aquaculture practices, thereby contributing to both fish health and food security. Full article
Show Figures

Figure 1

15 pages, 1016 KiB  
Article
Physiological and Immunomodulatory Effects of Purslane Extract in Cirrhinus mrigala Juveniles: Implications for Sustainable Production
by Muhammad Faisal, Syed Makhdoom Hussain, Shafaqat Ali, Dariusz Kucharczyk and Khalid A. Al-Ghanim
Animals 2025, 15(9), 1334; https://doi.org/10.3390/ani15091334 - 6 May 2025
Viewed by 564
Abstract
Medicinal plants are rich in nutrients and bioactive compounds, making them potentially suitable for use as chemotherapeutic agents and as additives in aquafeed. Our research evaluated the effects of purslane (Portulaca oleracea) extract supplemented in sunflower-based diets on the growth, carcass [...] Read more.
Medicinal plants are rich in nutrients and bioactive compounds, making them potentially suitable for use as chemotherapeutic agents and as additives in aquafeed. Our research evaluated the effects of purslane (Portulaca oleracea) extract supplemented in sunflower-based diets on the growth, carcass composition, blood indices, mineral content, liver antioxidant enzyme profile, and immune response in Cirrhinus mrigala (8.26 ± 0.07 g/fish). The juveniles were fed one of seven different diets—T0 (no extract), T1 (0.5%), T2 (1%), T3 (1.5%), T4 (2%), T5 (2.5%), and T6 (3%)—twice daily, at a feeding rate of 5% of their live body weight. They were stocked in V-shaped steel tanks for 90 days, with 15 juveniles per tank and three replicates per dietary treatment. The results of this research revealed that 1–2% purslane extract substantially enhanced growth indices in fish (p < 0.05). Furthermore, the supplementation of 1–2% dietary purslane extract in the diet significantly lowered fat content and improved protein content (p < 0.05) compared to the diets with 0% and 3% purslane extract inclusion. The outcomes also indicated that the hematology and mineral content in the bodies of juveniles were significantly improved (p < 0.05) at all levels of purslane supplementation, relative to the control groups with 0% and 3% inclusion levels. Moreover, the administration of purslane extract markedly increased the liver antioxidant profile, including glutathione peroxidase, superoxide dismutase, and catalase. Additionally, there was a notable reduction in malondialdehyde levels when fish were fed diets having 1% and 1.5% extract. The findings of this study also revealed improvements in immunological markers, characterized by increased lysozyme activity and elevated total globulin levels. The current research suggests that supplementing C. mrigala diets with 1% purslane extract optimally enhances growth and immunity. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

12 pages, 249 KiB  
Article
Black Soldier Fly Larvae Meal as a Sustainable Alternative to Fishmeal in Juvenile Swamp Eel Diets: Effects on Growth and Meat Quality
by Nhien Thi Nguyen and Nam Hoang Tran
Aquac. J. 2025, 5(1), 7; https://doi.org/10.3390/aquacj5010007 - 19 Mar 2025
Viewed by 1507
Abstract
The rising scarcity and cost of fishmeal due to overfishing and environmental challenges demand alternatives. Black soldier fly (Hermetia illucens) larvae (BSFL) meal, with its nutritional value, shows promise as a sustainable supplement for aquaculture species. This study evaluated the effects [...] Read more.
The rising scarcity and cost of fishmeal due to overfishing and environmental challenges demand alternatives. Black soldier fly (Hermetia illucens) larvae (BSFL) meal, with its nutritional value, shows promise as a sustainable supplement for aquaculture species. This study evaluated the effects of BSFL meal supplementation on growth performance, survival, feed conversion efficiency, and meat quality in juvenile swamp eels (Monopterus albus) initially weighing 4.0 ± 0.5 g. The eels were fed diets with 0% (control), 10%, 30%, and 50% BSFL meal for three months. Growth performance was assessed using the absolute growth rate (AGR) and the specific growth rate (SGR). Feed conversion ratios (FCRs), survival rates, and meat quality metrics, including fillet percentage, crude protein, and moisture content, were analyzed. Statistical differences among groups were evaluated using one-way ANOVA followed by Tukey’s post hoc test for pairwise comparisons. The 30% BSFL group exhibited superior performance, achieving the highest AGR and SGR (p < 0.05) and the lowest FCR (2.33 ± 0.03). Fillet percentage was highest in this group (27.3% ± 0.7%), with no significant differences in crude protein or moisture content. Survival rates were consistent across treatments (75.2–76.0%, p > 0.05). These results confirm that 30% BSFL supplementation optimally enhances productivity and meat quality in swamp eels, highlighting BSFL meal’s potential as a sustainable aquafeed alternative. Full article
21 pages, 789 KiB  
Review
Pivotal Roles of Fish Nutrition and Feeding: Recent Advances and Future Outlook for Brazilian Fish Farming
by Aline Brum, Caio Magnotti, Mônica Yumi Tsuzuki, Elen Monique de Oliveira Sousa, José Luiz Pedreira Mouriño, Maurício Laterça Martins, Rafael Garcia Lopes, Roberto Bianchini Derner and Marco Shizuo Owatari
Fishes 2025, 10(2), 47; https://doi.org/10.3390/fishes10020047 - 27 Jan 2025
Cited by 4 | Viewed by 3289
Abstract
The aquafeed industry evolved alongside fish farming, utilizing scientific and technological advancements to incorporate a variety of feed additives, supplements, and alternative ingredients in the nutrition and feeding of fish in aquaculture. These advances played a significant role in improving the production, health, [...] Read more.
The aquafeed industry evolved alongside fish farming, utilizing scientific and technological advancements to incorporate a variety of feed additives, supplements, and alternative ingredients in the nutrition and feeding of fish in aquaculture. These advances played a significant role in improving the production, health, and welfare of farmed fish. Recent research in Brazil highlighted the importance of using fish feed additives, such as vitamins, minerals, and amino acids, to ensure that farmed fish receive all the necessary nutrients for growth and health. Functional additives can enhance the immune system, boosting disease resistance and promoting the overall health of fish. Antimicrobial and antiparasitic additives help prevent and treat infections and infestations, reducing the occurrence of disease outbreaks. Additionally, some additives improve feed digestibility, leading to better nutrient absorption and reduced feed requirements. Overall, nutritional strategies are essential for optimizing fish farming practices in Brazil and globally, promoting fish health and sustainability in the industry. This review emphasizes the significance of certain additives, supplements, and ingredients strategically incorporated into experimental feeds for research in Brazilian fish farming. It also underscores the necessity for ongoing research. There is a noticeable trend towards developing more sustainable and efficient feeds, which is essential for the future of sustainable aquaculture. The goal is to minimize environmental impacts while maintaining economic viability in aquaculture operations. Full article
(This article belongs to the Special Issue Pivotal Roles of Feed Additives for Fish)
Show Figures

Figure 1

17 pages, 2273 KiB  
Article
Supplementation of Enzymatic Hydrolysate in Low-Fishmeal and Low-Crop Diet Improves Growth, Antioxidant Capacity, and Immunity of Juvenile Sea Cucumber Apostichopus japonicus (Selenka)
by Qingfei Li, Zhengyong Liu, Gang Yang, Danyang Zhang, Huimin Qin, Bin Xia, Shilin Liu and Jinghua Chen
Fishes 2025, 10(2), 42; https://doi.org/10.3390/fishes10020042 - 24 Jan 2025
Viewed by 1095
Abstract
As the global demand for aquafeed ingredients continues to rise, sourcing sustainable alternatives is crucial for aquaculture industries. This study aimed to explore the potential of enzymatic hydrolysate as a substitute for traditional fishmeal and soybean meal in diets for juvenile sea cucumbers [...] Read more.
As the global demand for aquafeed ingredients continues to rise, sourcing sustainable alternatives is crucial for aquaculture industries. This study aimed to explore the potential of enzymatic hydrolysate as a substitute for traditional fishmeal and soybean meal in diets for juvenile sea cucumbers (Apostichopus japonicus). Three isonitrogenous (15% crude protein) and isolipidic (2.4% crude lipid) diets were formulated: a control diet containing 10% fishmeal and 5% soybean meal and two experimental low-fishmeal (8%) and low-soybean meal (0%) diets, supplemented with either 8% enzymatically hydrolyzed fish stickwater (EFS) or 8% enzymatically hydrolyzed chicken pulp (ECP), designated as Control, EFS, and ECP, respectively. Juvenile sea cucumbers (initial body weight, 0.25 ± 0.01 g) were fed these diets for 84 days to evaluate the effects of ECP and EFS on their growth performance, antioxidant capacity, and inflammatory responses. The results revealed significantly higher final weights and specific growth rates in both experimental groups than the control (p < 0.05). The proximate chemical compositions of sea cucumber were less affected by the diets (p > 0.05). Compared with the control group, significantly elevated levels of digestive enzymes, antioxidants, and lysozyme, together with lower malondialdehyde levels, were recorded in the experimental groups (p < 0.05). ECP appeared to exhibit greater potency than EFS in enhancing growth performance and antioxidant capacity. Similar trends were observed in the mRNA expression of SOD, CAT, and inflammation-related genes across the groups. In a nutshell, both ECP and EFS supplemented in a low-fishmeal and low-soybean meal diet could effectively promote the growth and health of A. japonicus, with ECP showing a superior effect over EFS. These findings suggest that enzymatic hydrolysate demonstrates potential as a viable alternative to traditional fishmeal and soybean meal in diets for sustainable sea cucumber aquaculture. Further investigations are warranted to reveal its underlying mechanism. Full article
Show Figures

Figure 1

20 pages, 897 KiB  
Review
Factors Affecting Yeast Digestibility and Immunostimulation in Aquatic Animals
by Sadia Sultana, Janka Biró, Balázs Kucska and Csaba Hancz
Animals 2024, 14(19), 2851; https://doi.org/10.3390/ani14192851 - 3 Oct 2024
Cited by 4 | Viewed by 2367
Abstract
The aquafeed industry increasingly relies on using sustainable and appropriate protein sources to ensure the long-term sustainability and financial viability of intensive aquaculture. Yeast has emerged as a viable substitute protein source in the aquaculture sector due to its potential as a nutritional [...] Read more.
The aquafeed industry increasingly relies on using sustainable and appropriate protein sources to ensure the long-term sustainability and financial viability of intensive aquaculture. Yeast has emerged as a viable substitute protein source in the aquaculture sector due to its potential as a nutritional supplement. A substantial body of evidence exists to suggest that yeast has the potential to act as an effective immune-stimulating agent for a range of aquaculture fish species. Furthermore, the incorporation of yeast supplements and feed additives has the potential to bolster disease prevention, development, and production within the aquaculture sector. Except for methionine, lysine, arginine, and phenylalanine, which are typically the limiting essential amino acids in various fish species, the various yeast species exhibit amino acid profiles that are advantageous when compared to fishmeal. The present review considers the potential nutritional suitability of several yeast species for fish, with particular attention to the various applications of yeast in aquaculture nutrition. The findings of this study indicate that the inclusion of yeast in the diet resulted in the most favorable outcomes, with improvements observed in the overall health, growth performance, and nutritional condition of the fish. Digestibility, a key factor in sustainable feed development, is discussed in special detail. Additionally, this review addresses the utilization of yeast as an immunostimulating agent for fish and its digestion in fish. Furthermore, the research emphasizes the necessity of large-scale production of yeast as a substitute for fishmeal in aquaculture. Full article
(This article belongs to the Special Issue Sustainable Feed Ingredients in Freshwater Aquaculture)
Show Figures

Figure 1

24 pages, 8303 KiB  
Article
Asparagopsis taxiformis as a Novel Antioxidant Ingredient for Climate-Smart Aquaculture: Antioxidant, Metabolic and Digestive Modulation in Juvenile White Seabream (Diplodus sargus) Exposed to a Marine Heatwave
by Alícia Pereira, Isa Marmelo, Marta Dias, Ana Catarina Silva, Ana Catarina Grade, Marisa Barata, Pedro Pousão-Ferreira, Jorge Dias, Patrícia Anacleto, António Marques, Mário S. Diniz and Ana Luísa Maulvault
Antioxidants 2024, 13(8), 949; https://doi.org/10.3390/antiox13080949 - 5 Aug 2024
Cited by 4 | Viewed by 2269
Abstract
The increasing frequency and duration of marine heatwaves (MHWs) due to climate change pose severe threats to aquaculture, causing drastic physiological and growth impairments in farmed fish, undermining their resilience against additional environmental pressures. To ensure sustainable production that meets the global seafood [...] Read more.
The increasing frequency and duration of marine heatwaves (MHWs) due to climate change pose severe threats to aquaculture, causing drastic physiological and growth impairments in farmed fish, undermining their resilience against additional environmental pressures. To ensure sustainable production that meets the global seafood demand and animal welfare standards, cost-effective and eco-friendly strategies are urgently needed. This study explored the efficacy of the red macroalga Asparagopsis taxiformis on juvenile white seabream Diplodus sargus reared under optimal conditions and upon exposure to a MHW. Fish were fed with four experimental diets (0%, 1.5%, 3% or 6% of dried powdered A. taxiformis) for a prophylactic period of 30 days (T30) and subsequently exposed to a Mediterranean category II MHW for 15 days (T53). Biometric data and samples were collected at T30, T53 and T61 (8 days post-MHW recovery), to assess performance indicators, biomarker responses and histopathological alterations. Results showed that A. taxiformis supplementation improved catalase and glutathione S-transferase activities and reduced lipid peroxidation promoted by the MHW, particularly in fish biofortified with 1.5% inclusion level. No histopathological alterations were observed after 30 days. Additionally, fish biofortified with 1.5% A. taxiformis exhibited increased citrate synthase activity and fish supplemented with 1.5% and 3% showed improved digestive enzyme activities (e.g., pepsin and trypsin activities). Overall, the present findings pointed to 1.5% inclusion as the optimal dosage for aquafeeds biofortification with A. taxiformis, and confirmed that this seaweed species is a promising cost-effective ingredient with functional properties and great potential for usage in a climate-smart context. Full article
Show Figures

Graphical abstract

20 pages, 2138 KiB  
Article
Feed Additives Based on N. gaditana and A. platensis Blend Improve Quality Parameters of Aquacultured Gilthead Seabream (Sparus aurata) Fresh Fillets
by María Isabel Sáez, Alba Galafat, Silvana Teresa Tapia Paniagua, Juan Antonio Martos-Sitcha, Francisco Javier Alarcón-López and Tomás Francisco Martínez Moya
Fishes 2024, 9(6), 205; https://doi.org/10.3390/fishes9060205 - 31 May 2024
Cited by 3 | Viewed by 1592
Abstract
The aim of this research is to explore the potential effects of two microalgae-based additives included in finishing feeds on the quality and shelf-life of seabream fillets. In a 41-day feeding trial, seabream specimens were fed with experimental aquafeeds containing 10% of the [...] Read more.
The aim of this research is to explore the potential effects of two microalgae-based additives included in finishing feeds on the quality and shelf-life of seabream fillets. In a 41-day feeding trial, seabream specimens were fed with experimental aquafeeds containing 10% of the bioactive supplements. These additives consisted of a blend of Nannochloropsis gaditana and Arthrospira platensis biomass, which was utilized as either raw (LB-CB) or enzymatically hydrolyzed (LB-CBplus). A control group received a microalgae-free diet. The results showed that the functional aquafeeds improved the nutritional profile of seabream fillets, increasing protein and PUFA-n3 contents while reducing the atherogenic index, especially for the LB-CBplus treatment. LB-CBplus also enhanced the texture parameters (hardness and chewiness) of fillets during the initial 5 days under cold storage. Regarding skin pigmentation, fillets showed increased greenish and yellowish coloration compared to control fish, mostly attributed to the inclusion of crude algal biomass (LB-CB). Moreover, diets enriched with microalgae additives effectively delayed muscle lipid oxidation processes under refrigeration for up to 12 days, with LB-CBplus exhibiting higher antioxidant effects. These findings highlight the potential of microalgae-based additives to enhance both the nutritional and organoleptic quality of seabream fillets. Full article
(This article belongs to the Special Issue Effects of Feed Additives on Fish Health and Fillet Quality)
Show Figures

Graphical abstract

14 pages, 1228 KiB  
Article
Dietary Fishmeal Replacement by Methanol-Extracted Cottonseed Meal with Amino Acid Supplementation for Juvenile Cobia Rachycentron canadum
by Jun Wang, Guangde Wu, Delbert M. Gatlin, Kunpeng Lan, Yun Wang, Chuanpeng Zhou and Zhenhua Ma
J. Mar. Sci. Eng. 2024, 12(2), 235; https://doi.org/10.3390/jmse12020235 - 29 Jan 2024
Cited by 2 | Viewed by 1521
Abstract
The present study aims to evaluate methanol-extracted cottonseed meal (CSM) as a potential replacement for fishmeal (FM) in aquafeeds for juvenile cobia Rachycentron canadum. Five isonitrogenous (41% crude protein) and isolipidic (11% crude lipid) diets were formulated with 0 (i.e., the full fishmeal [...] Read more.
The present study aims to evaluate methanol-extracted cottonseed meal (CSM) as a potential replacement for fishmeal (FM) in aquafeeds for juvenile cobia Rachycentron canadum. Five isonitrogenous (41% crude protein) and isolipidic (11% crude lipid) diets were formulated with 0 (i.e., the full fishmeal diet, as Control), 25%, 50%, 75% and 100% of the dietary protein from FM replaced by methanol-extracted CSM with L-lysine (L-Lys) and DL-methionine (DL-Met) and supplemented to the established requirement levels for cobia. Diets were fed to triplicate groups of juvenile fish with an average initial weight (±SEM) of 11.35 ± 0.23 g/fish for 9 weeks. Percent weight gain (WG), feed efficiency (FE) and protein efficiency ratio (PER) of fish fed diets with 25% and 50% of FM protein replaced by methanol-extracted CSM were higher or comparable to those of fish fed the Control diet. Those responses were gradually reduced with increasing levels of CSM substitution, resulting in significant (p < 0.05) negative linear trends. Condition factor (CF) and hepatosomatic index (HSI) values significantly decreased with increasing dietary CSM inclusion, as did whole-body protein and lipid composition. Activities of superoxide dismutase (SOD) of fish fed CSM diets were not significantly different compared to that of fish fed the Control diet. The glutathione peroxidase (GSH-Px) and malonaldehyde (MDA) levels, as well as serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities from fish fed diets with 50% or greater of CSM were lower than those of fish fed the Control and CSM25 diets. These results indicated that the inclusion of CSM did not induce any apparent stress on juvenile cobia. Additionally, methanol-extracted CSM with Lys and Met supplementation was able to replace up to 20~30% of crude protein provided by FM in the diet of cobia without drastically affecting the growth performance or body composition. Full article
(This article belongs to the Special Issue Marine Fish Physiology and Molecular Nutrition)
Show Figures

Figure 1

Back to TopTop