Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = apple leaf diseases and insect pests

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 10290 KiB  
Article
Smartphone-Based Citizen Science Tool for Plant Disease and Insect Pest Detection Using Artificial Intelligence
by Panagiotis Christakakis, Garyfallia Papadopoulou, Georgios Mikos, Nikolaos Kalogiannidis, Dimosthenis Ioannidis, Dimitrios Tzovaras and Eleftheria Maria Pechlivani
Technologies 2024, 12(7), 101; https://doi.org/10.3390/technologies12070101 - 3 Jul 2024
Cited by 14 | Viewed by 7886
Abstract
In recent years, the integration of smartphone technology with novel sensing technologies, Artificial Intelligence (AI), and Deep Learning (DL) algorithms has revolutionized crop pest and disease surveillance. Efficient and accurate diagnosis is crucial to mitigate substantial economic losses in agriculture caused by diseases [...] Read more.
In recent years, the integration of smartphone technology with novel sensing technologies, Artificial Intelligence (AI), and Deep Learning (DL) algorithms has revolutionized crop pest and disease surveillance. Efficient and accurate diagnosis is crucial to mitigate substantial economic losses in agriculture caused by diseases and pests. An innovative Apple® and Android™ mobile application for citizen science has been developed, to enable real-time detection and identification of plant leaf diseases and pests, minimizing their impact on horticulture, viticulture, and olive cultivation. Leveraging DL algorithms, this application facilitates efficient data collection on crop pests and diseases, supporting crop yield protection and cost reduction in alignment with the Green Deal goal for 2030 by reducing pesticide use. The proposed citizen science tool involves all Farm to Fork stakeholders and farm citizens in minimizing damage to plant health by insect and fungal diseases. It utilizes comprehensive datasets, including images of various diseases and insects, within a robust Decision Support System (DSS) where DL models operate. The DSS connects directly with users, allowing them to upload crop pest data via the mobile application, providing data-driven support and information. The application stands out for its scalability and interoperability, enabling the continuous integration of new data to enhance its capabilities. It supports AI-based imaging analysis of quarantine pests, invasive alien species, and emerging and native pests, thereby aiding post-border surveillance programs. The mobile application, developed using a Python-based REST API, PostgreSQL, and Keycloak, has been field-tested, demonstrating its effectiveness in real-world agriculture scenarios, such as detecting Tuta absoluta (Meyrick) infestation in tomato cultivations. The outcomes of this study in T. absoluta detection serve as a showcase scenario for the proposed citizen science tool’s applicability and usability, demonstrating a 70.2% accuracy (mAP50) utilizing advanced DL models. Notably, during field testing, the model achieved detection confidence levels of up to 87%, enhancing pest management practices. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

15 pages, 3485 KiB  
Article
Classification and Identification of Apple Leaf Diseases and Insect Pests Based on Improved ResNet-50 Model
by Xiaohua Zhang, Haolin Li, Sihai Sun, Wenfeng Zhang, Fuxi Shi, Ruihua Zhang and Qin Liu
Horticulturae 2023, 9(9), 1046; https://doi.org/10.3390/horticulturae9091046 - 16 Sep 2023
Cited by 19 | Viewed by 3922
Abstract
Automaticidentification and prevention of leaf diseases and insect pests on fruit crops represent a key trend in the development of smart agriculture. In order to address the limitations of existing models with low identification rates of apple leaf diseases and insect pests, a [...] Read more.
Automaticidentification and prevention of leaf diseases and insect pests on fruit crops represent a key trend in the development of smart agriculture. In order to address the limitations of existing models with low identification rates of apple leaf diseases and insect pests, a novel identification model based on an improved ResNet-50 architecture was proposed, which incorporated the coordinate attention (CA) module and weight-adaptive multi-scale feature fusion (WAMFF) to enhance the ResNet-50’s image feature extraction capabilities. Transfer learning and online data enhancement are employed to boost the model’s generalization ability. The proposed model achieved a top-1 accuracy rate of 98.32% on the basis of AppleLeaf9 datasets, which is 4.58% higher than the value from the original model, and the improved model can effectively improve the localization of lesion features. Furthermore, compared with mainstream deep networks, such as AlexNet, VGG16, DenseNet, MNASNet, and GoogLeNet on the same dataset, the top-1 accuracy rate increased by 7.3%, 3.19%, 4.98%, 6.04% and 3.87%, respectively. The experimental results demonstrate that the improved model is effective in improving the identification accuracy of apple leaf diseases and insect pests and enhancing the model’s effective feature extraction capabilities. Full article
(This article belongs to the Special Issue Advances in Intelligent Orchard)
Show Figures

Figure 1

Back to TopTop