Smartphone-Based Citizen Science Tool for Plant Disease and Insect Pest Detection Using Artificial Intelligence
Abstract
:1. Introduction
- Development of an innovative Apple® and Android™ mobile application for citizen science, enabling real-time detection and identification of plant leaf diseases and pests.
- Leveraging DL algorithms for efficient and accurate data collection on crop pests and diseases, supporting crop yield protection and cost reduction while aligning with the Green Deal goal for 2030.
- Utilization of a robust data repository in DSS, enabling citizens to upload crop pest data via the AI-based mobile app and receive data-driven support and information.
2. Materials and Methods
2.1. Design and Flow of the Mobile Application
2.2. Development of the Mobile Application
2.2.1. Front-End
2.2.2. Back-End—Decision Support System for Early Warning and Rapid Response
2.3. Deep Learning Integration
2.3.1. Dataset
2.3.2. Deep Learning Models and Training
2.3.3. Evaluation Metrics
3. Results and Discussion
3.1. Field Testing of the Mobile Application
3.2. Deep Learning Model Performance Evaluation
3.3. Comparative Analysis with Similar Applications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Q1. How would you rate your overall experience using the app? | ||||||
1 | 2 | 3 | 4 | 5 | ||
Negative | Positive | |||||
Q2. How would you rate the design of the app in terms of visualization? | ||||||
1 | 2 | 3 | 4 | 5 | ||
Negative | Positive | |||||
Q3. How would you rate the app in terms of ease of use? | ||||||
1 | 2 | 3 | 4 | 5 | ||
Negative | Positive | |||||
Q4. How difficult or easy was it to navigate through the app? | ||||||
1 | 2 | 3 | 4 | 5 | ||
Very Difficult | Very Easy | |||||
Q5. Was it easy to choose a location using the map? | ||||||
No | Yes | |||||
Q6. How satisfied are you with the speed of displaying the detection result? | ||||||
1 | 2 | 3 | 4 | 5 | ||
Not at all | Very Much | |||||
Q7. How satisfied are you with the accuracy of the results? | ||||||
1 | 2 | 3 | 4 | 5 | ||
Not at all | Very Much | |||||
Q8. How useful did you find the information about the plants-insects-pathogens contained in the catalog of the application? | ||||||
1 | 2 | 3 | 4 | 5 | ||
Not at all | Very Much | |||||
Q9. Did you make use of the history of past diagnoses provided by the app? | ||||||
No | Yes | |||||
Q10. Did you encounter any difficulties or problems when using the application? If so, what were they? | ||||||
No | Yes | |||||
Q11. Is there any feature that you think is missing from the application? If so, which one? | ||||||
No | Yes | |||||
Q12. How many times did you use the application during the testing period? | ||||||
Very Few (<5) | Few (<10) | Several (>10) | Many (>20) | |||
Q13. Would you recommend the app to a friend or colleague? | ||||||
1 | 2 | 3 | 4 | 5 | ||
Very Difficult | Very Easy | |||||
Q14. Is there anything else you would like to share with us about the app? |
References
- FAO. News Article: New Standards to Curb the Global Spread of Plant Pests and Diseases. 2018. Available online: https://www.fao.org/news/story/en/item/1187738/icode/ (accessed on 13 December 2023).
- Carvajal-Yepes, M.; Cardwell, K.; Nelson, A.; Garrett, K.A.; Giovani, B.; Saunders, D.G.O.; Kamoun, S.; Legg, J.P.; Verdier, V.; Lessel, J.; et al. A global surveillance system for crop diseases. Science 2019, 364, 1237–1239. [Google Scholar] [CrossRef] [PubMed]
- Boedeker, W.; Watts, M.; Clausing, P.; Marquez, E. The global distribution of acute unintentional pesticide poisoning: Estimations based on a systematic review. BMC Public Health 2020, 20, 1875. [Google Scholar] [CrossRef] [PubMed]
- Al-Hiary, H.; Bani-Ahmad, S.; Reyalat, M.; Braik, M.; Alrahamneh, Z. Fast and accurate detection and classification of plant diseases. Int. J. Comput. Appl. 2011, 17, 31–38. [Google Scholar] [CrossRef]
- Islam, M.; Dinh, A.; Wahid, K.; Bhowmik, P. Detection of potato diseases using image segmentation and multiclass support vector machine. In Proceedings of the 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE), Windsor, ON, Canada, 30 April–3 May 2017; pp. 1–4. [Google Scholar]
- Khirade, S.D.; Patil, A. Plant disease detection using image processing. In Proceedings of the 2015 International Conference on Computing Communication Control and Automation, Pune, India, 26–27 February 2015; pp. 768–771. [Google Scholar]
- Butterfield, J.; Bingham, S.; Savory, A. Keeping Management Proactive. In Holistic Management Handbook; Island Press/Center for Resource Economics: Washington, DC, USA, 2019; pp. 129–175. ISBN 978-1-64283-064-4. [Google Scholar]
- Ramcharan, A.; McCloskey, P.; Baranowski, K.; Mbilinyi, N.; Mrisho, L.; Ndalahwa, M.; Legg, J.; Hughes, D.P. A mobile-based deep learning model for cassava disease diagnosis. Front. Plant Sci. 2019, 10, 425916. [Google Scholar] [CrossRef] [PubMed]
- Dutot, M.; Nelson, L.; Tyson, R. Predicting the spread of postharvest disease in stored fruit, with application to apples. Postharvest Biol. Technol. 2013, 85, 45–56. [Google Scholar] [CrossRef]
- Li, W.; Zheng, T.; Yang, Z.; Li, M.; Sun, C.; Yang, X. Classification and detection of insects from field images using deep learning for smart pest management: A systematic review. Ecol. Inform. 2021, 66, 101460. [Google Scholar] [CrossRef]
- Petrellis, N. Mobile application for plant disease classification based on symptom signatures. In Proceedings of the 21st Pan-Hellenic Conference on Informatics, Larissa, Greece, 28–30 September 2017; pp. 1–6. [Google Scholar]
- Aletdinova, A. Popular Mobile Applications for Crop Production. IOP Conf. Ser. Earth Environ. Sci. 2021, 666, 032036. [Google Scholar] [CrossRef]
- Clement, J. Number of Apps in Leading App Stores. Available online: https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/ (accessed on 13 December 2023).
- Singh, A.K.; Ganapathysubramanian, B.; Sarkar, S.; Singh, A. Deep learning for plant stress phenotyping: Trends and future perspectives. Trends Plant Sci. 2018, 23, 883–898. [Google Scholar] [CrossRef]
- Li, L.; Zhang, S.; Wang, B. Plant disease detection and classification by deep learning—A review. IEEE Access 2021, 9, 56683–56698. [Google Scholar] [CrossRef]
- Petrellis, N. Plant disease diagnosis for smart phone applications with extensible set of diseases. Appl. Sci. 2019, 9, 1952. [Google Scholar] [CrossRef]
- Ashok, S.; Kishore, G.; Rajesh, V.; Suchitra, S.; Sophia, S.G.; Pavithra, B. Tomato leaf disease detection using deep learning techniques. In Proceedings of the 2020 5th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 10–12 June 2020; pp. 979–983. [Google Scholar]
- Al Bashish, D.; Braik, M.; Bani-Ahmad, S. A framework for detection and classification of plant leaf and stem diseases. In Proceedings of the 2010 International Conference on Signal and Image Processing, Chennai, India, 15–17 December 2010; pp. 113–118. [Google Scholar]
- Arsenovic, M.; Karanovic, M.; Sladojevic, S.; Anderla, A.; Stefanovic, D. Solving current limitations of deep learning based approaches for plant disease detection. Symmetry 2019, 11, 939. [Google Scholar] [CrossRef]
- Orchi, H.; Sadik, M.; Khaldoun, M. On using artificial intelligence and the internet of things for crop disease detection: A contemporary survey. Agriculture 2021, 12, 9. [Google Scholar] [CrossRef]
- Picon, A.; Alvarez-Gila, A.; Seitz, M.; Ortiz-Barredo, A.; Echazarra, J.; Johannes, A. Deep convolutional neural networks for mobile capture device-based crop disease classification in the wild. Comput. Electron. Agric. 2019, 161, 280–290. [Google Scholar] [CrossRef]
- Yuan, Y.; Chen, L.; Wu, H.; Li, L. Advanced agricultural disease image recognition technologies: A review. Inf. Process. Agric. 2022, 9, 48–59. [Google Scholar] [CrossRef]
- Ahmad, I.; Yang, Y.; Yue, Y.; Ye, C.; Hassan, M.; Cheng, X.; Wu, Y.; Zhang, Y. Deep Learning Based Detector YOLOv5 for Identifying Insect Pests. Appl. Sci. 2022, 12, 10167. [Google Scholar] [CrossRef]
- Li, W.; Zhu, T.; Li, X.; Dong, J.; Liu, J. Recommending Advanced Deep Learning Models for Efficient Insect Pest Detection. Agriculture 2022, 12, 1065. [Google Scholar] [CrossRef]
- Xia, D.; Chen, P.; Wang, B.; Zhang, J.; Xie, C. Insect Detection and Classification Based on an Improved Convolutional Neural Network. Sensors 2018, 18, 4169. [Google Scholar] [CrossRef]
- Giakoumoglou, N.; Pechlivani, E.M.; Tzovaras, D. Generate-Paste-Blend-Detect: Synthetic dataset for object detection in the agriculture domain. Smart Agric. Technol. 2023, 5, 100258. [Google Scholar] [CrossRef]
- Ryan, S.; Adamson, N.; Aktipis, A.; Andersen, L.; Austin, R.; Barnes, L.; Beasley, M.; Bedell, K.; Briggs, S.; Chapman, B. The role of citizen science in addressing grand challenges in food and agriculture research. Proc. R. Soc. B 2018, 285, 20181977. [Google Scholar] [CrossRef]
- Ebitu, L.; Avery, H.; Mourad, K.A.; Enyetu, J. Citizen science for sustainable agriculture–A systematic literature review. Land Use Policy 2021, 103, 105326. [Google Scholar] [CrossRef]
- Jafar, A.; Bibi, N.; Naqvi, R.A.; Sadeghi-Niaraki, A.; Jeong, D. Revolutionizing agriculture with artificial intelligence: Plant disease detection methods, applications, and their limitations. Front. Plant Sci. 2024, 15, 1356260. [Google Scholar] [CrossRef] [PubMed]
- Toscano-Miranda, R.; Toro, M.; Aguilar, J.; Caro, M.; Marulanda, A.; Trebilcok, A. Artificial-intelligence and sensing techniques for the management of insect pests and diseases in cotton: A systematic literature review. J. Agric. Sci. 2022, 160, 16–31. [Google Scholar] [CrossRef]
- Sibanda, B.K.; Iyawa, G.E.; Gamundani, A.M. Systematic Review of Plant Pest and Disease Identification Strategies and Techniques in Mobile Apps. In Trends and Applications in Information Systems and Technologies; Rocha, Á., Adeli, H., Dzemyda, G., Moreira, F., Ramalho Correia, A.M., Eds.; Advances in Intelligent Systems and Computing; Springer International Publishing: Cham, Switzerland, 2021; Volume 1366, pp. 491–502. ISBN 978-3-030-72650-8. [Google Scholar]
- Schmidt, R.; Casario, B.; Zipse, P.; Grabosky, J. An Analysis of the Accuracy of Photo-Based Plant Identification Applications on Fifty-Five Tree Species. AUF 2022, 48, 27–43. [Google Scholar] [CrossRef]
- Siddiqua, A.; Kabir, M.A.; Ferdous, T.; Ali, I.B.; Weston, L.A. Evaluating Plant Disease Detection Mobile Applications: Quality and Limitations. Agronomy 2022, 12, 1869. [Google Scholar] [CrossRef]
- Next Vision Limited. Picture Insect: Bug Identifier. 2019. Available online: https://play.google.com/store/apps/details?id=com.glority.pictureinsect&hl=en (accessed on 6 December 2023).
- Glority Global Group Ltd. PictureThis—Plant Identifier. 2017. Available online: https://play.google.com/store/apps/details?id=cn.danatech.xingseus&hl=en (accessed on 6 December 2023).
- Mobile Heroes. Blossom—Plant Identifier. 2021. Available online: https://play.google.com/store/apps/details?id=com.conceptivapps.blossom&hl=en (accessed on 6 December 2023).
- Next Vision Limited. Picture Mushroom—Mushroom ID. 2019. Available online: https://play.google.com/store/apps/details?id=com.glority.picturemushroom&hl=el (accessed on 6 December 2023).
- Movement Ecology Lab. Mosquito Alert. 2014. Available online: https://play.google.com/store/apps/details?id=ceab.movelab.tigatrapp&hl=en (accessed on 6 December 2023).
- Chen, C.-J.; Huang, Y.-Y.; Li, Y.-S.; Chen, Y.-C.; Chang, C.-Y.; Huang, Y.-M. Identification of Fruit Tree Pests with Deep Learning on Embedded Drone to Achieve Accurate Pesticide Spraying. IEEE Access 2021, 9, 21986–21997. [Google Scholar] [CrossRef]
- Giakoumoglou, N.; Pechlivani, E.M.; Katsoulas, N.; Tzovaras, D. White Flies and Black Aphids Detection in Field Vegetable Crops using Deep Learning. In Proceedings of the 2022 IEEE 5th International Conference on Image Processing Applications and Systems (IPAS), Genova, Italy, 5–7 December 2022; pp. 1–6. [Google Scholar]
- Giakoumoglou, N.; Pechlivani, E.M.; Sakelliou, A.; Klaridopoulos, C.; Frangakis, N.; Tzovaras, D. Deep learning-based multi-spectral identification of grey mould. Smart Agric. Technol. 2023, 4, 100174. [Google Scholar] [CrossRef]
- Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef]
- Singh, A.; Ganapathysubramanian, B.; Singh, A.K.; Sarkar, S. Machine Learning for High-Throughput Stress Phenotyping in Plants. Trends Plant Sci. 2016, 21, 110–124. [Google Scholar] [CrossRef] [PubMed]
- Mdhaffar, A.; Zalila, B.; Moalla, R.; Kharrat, A.; Rebai, O.; Hsairi, M.M.; Sallemi, A.; Kobbi, H.; Kolsi, A.; Chatti, D.; et al. A Smart Trap for Counting Olive Moths Based on the Internet of Things and Deep Learning. In Proceedings of the 2022 IEEE/ACS 19th International Conference on Computer Systems and Applications (AICCSA), Abu Dhabi, United Arab Emirates, 5–8 December 2022; pp. 1–8. [Google Scholar]
- Fuentes, A.; Yoon, S.; Kim, S.C.; Park, D.S. A Robust Deep-Learning-Based Detector for Real-Time Tomato Plant Diseases and Pests Recognition. Sensors 2017, 17, 2022. [Google Scholar] [CrossRef]
- Liu, L.; Wang, R.; Xie, C.; Yang, P.; Wang, F.; Sudirman, S.; Liu, W. PestNet: An End-to-End Deep Learning Approach for Large-Scale Multi-Class Pest Detection and Classification. IEEE Access 2019, 7, 45301–45312. [Google Scholar] [CrossRef]
- Giakoumoglou, N.; Pechlivani, E.-M.; Frangakis, N.; Tzovaras, D. Enhancing Tuta absoluta Detection on Tomato Plants: Ensemble Techniques and Deep Learning. AI 2023, 4, 996–1009. [Google Scholar] [CrossRef]
- Wang, R.; Liu, L.; Xie, C.; Yang, P.; Li, R.; Zhou, M. AgriPest: A Large-Scale Domain-Specific Benchmark Dataset for Practical Agricultural Pest Detection in the Wild. Sensors 2021, 21, 1601. [Google Scholar] [CrossRef] [PubMed]
- Giakoumoglou, N.; Kalogeropoulou, E.; Klaridopoulos, C.; Pechlivani, E.M.; Christakakis, P.; Markellou, E.; Frangakis, N.; Tzovaras, D. Early detection of Botrytis cinerea symptoms using deep learning multi-spectral image segmentation. Smart Agric. Technol. 2024, 8, 100481. [Google Scholar] [CrossRef]
- Ilyas, T.; Khan, A.; Umraiz, M.; Jeong, Y.; Kim, H. Multi-Scale Context Aggregation for Strawberry Fruit Recognition and Disease Phenotyping. IEEE Access 2021, 9, 124491–124504. [Google Scholar] [CrossRef]
- Qasrawi, R.; Amro, M.; Zaghal, R.; Sawafteh, M.; Polo, S.V. Machine Learning Techniques for Tomato Plant Diseases Clustering, Prediction and Classification. In Proceedings of the 2021 International Conference on Promising Electronic Technologies (ICPET), Deir El-Balah, Palestine, 17–18 November 2021; pp. 40–45. [Google Scholar]
- Rezaei, M.; Diepeveen, D.; Laga, H.; Jones, M.G.K.; Sohel, F. Plant disease recognition in a low data scenario using few-shot learning. Comput. Electron. Agric. 2024, 219, 108812. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, X.; Zhou, L.; Xie, X.; Zhao, W.; Liang, Z.; Zhuang, P. Dual-branch collaborative learning network for crop disease identification. Front. Plant Sci. 2023, 14, 1117478. [Google Scholar] [CrossRef] [PubMed]
- European Environment Agency. Towards an Early Warning and Information System for Invasive Alien Species (IAS) Threatening Biodiversity in Europe; Publications Office: Luxembourg, 2010; Available online: https://data.europa.eu/doi/10.2800/4167 (accessed on 10 June 2024).
- Biodiversity Strategy for 2030—European Commission. Available online: https://environment.ec.europa.eu/strategy/biodiversity-strategy-2030_en (accessed on 10 June 2024).
- Pechlivani, E.M.; Gkogkos, G.; Giakoumoglou, N.; Hadjigeorgiou, I.; Tzovaras, D. Towards Sustainable Farming: A Robust Decision Support System’s Architecture for Agriculture 4.0. In Proceedings of the 2023 24th International Conference on Digital Signal Processing (DSP), Rhodes (Rodos), Greece, 11–13 June 2023; pp. 1–5. [Google Scholar]
- Fielding, R.T. Architectural Styles and the Design of Network-Based Software Architectures. Ph.D. Thesis, University of California, Irvine, CA, USA, 2000. [Google Scholar]
- Fielding, R.; Nottingham, M.; Reschke, J. RFC 9110: HTTP Semantics; RFC Editor: Marina del Rey, CA, USA, 2022. [Google Scholar]
- Fette, I.; Melnikov, A. RFC 6455: The WebSocket Protocol; RFC Editor: Marina del Rey, CA, USA, 2011. [Google Scholar]
- O’Hara, J. Toward a Commodity Enterprise Middleware: Can AMQP enable a new era in messaging middleware? A look inside standards-based messaging with AMQP. Queue 2007, 5, 48–55. [Google Scholar] [CrossRef]
- Jocher, G.; Chaurasia, A.; Stoken, A.; Borovec, J.; NanoCode012; Kwon, Y.; Michael, K.; Xie, T.; Fang, J.; Imyhxy; et al. ultralytics/yolov5: v7.0—YOLOv5 SOTA Realtime Instance Segmentation. Zenodo 2022. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. arXiv 2016. [Google Scholar] [CrossRef]
- Jocher, G.; Chaurasia, A.; Qiu, J. Ultralytics YOLO. 2023. Available online: https://github.com/ultralytics/ultralytics (accessed on 10 March 2024).
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv 2019. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Maire, M.; Belongie, S.; Bourdev, L.; Girshick, R.; Hays, J.; Perona, P.; Ramanan, D.; Zitnick, C.L.; Dollár, P. Microsoft COCO: Common Objects in Context. arXiv 2015. [Google Scholar] [CrossRef]
Model | Precision | Recall | mAP50 |
---|---|---|---|
YOLOv8n | 0.688 | 0.629 | 0.656 |
YOLOv8s | 0.702 | 0.658 | 0.681 |
YOLOv8m | 0.715 | 0.653 | 0.678 |
YOLOv8l 1 | 0.691 | 0.694 | 0.702 |
YOLOv8x | 0.703 | 0.682 | 0.696 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christakakis, P.; Papadopoulou, G.; Mikos, G.; Kalogiannidis, N.; Ioannidis, D.; Tzovaras, D.; Pechlivani, E.M. Smartphone-Based Citizen Science Tool for Plant Disease and Insect Pest Detection Using Artificial Intelligence. Technologies 2024, 12, 101. https://doi.org/10.3390/technologies12070101
Christakakis P, Papadopoulou G, Mikos G, Kalogiannidis N, Ioannidis D, Tzovaras D, Pechlivani EM. Smartphone-Based Citizen Science Tool for Plant Disease and Insect Pest Detection Using Artificial Intelligence. Technologies. 2024; 12(7):101. https://doi.org/10.3390/technologies12070101
Chicago/Turabian StyleChristakakis, Panagiotis, Garyfallia Papadopoulou, Georgios Mikos, Nikolaos Kalogiannidis, Dimosthenis Ioannidis, Dimitrios Tzovaras, and Eleftheria Maria Pechlivani. 2024. "Smartphone-Based Citizen Science Tool for Plant Disease and Insect Pest Detection Using Artificial Intelligence" Technologies 12, no. 7: 101. https://doi.org/10.3390/technologies12070101
APA StyleChristakakis, P., Papadopoulou, G., Mikos, G., Kalogiannidis, N., Ioannidis, D., Tzovaras, D., & Pechlivani, E. M. (2024). Smartphone-Based Citizen Science Tool for Plant Disease and Insect Pest Detection Using Artificial Intelligence. Technologies, 12(7), 101. https://doi.org/10.3390/technologies12070101