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Abstract: Automaticidentification and prevention of leaf diseases and insect pests on fruit crops
represent a key trend in the development of smart agriculture. In order to address the limitations
of existing models with low identification rates of apple leaf diseases and insect pests, a novel
identification model based on an improved ResNet-50 architecture was proposed, which incorporated
the coordinate attention (CA) module and weight-adaptive multi-scale feature fusion (WAMFF) to
enhance the ResNet-50’s image feature extraction capabilities. Transfer learning and online data
enhancement are employed to boost the model’s generalization ability. The proposed model achieved
a top-1 accuracy rate of 98.32% on the basis of AppleLeaf9 datasets, which is 4.58% higher than the
value from the original model, and the improved model can effectively improve the localization of
lesion features. Furthermore, compared with mainstream deep networks, such as AlexNet, VGG16,
DenseNet, MNASNet, and GoogLeNet on the same dataset, the top-1 accuracy rate increased by
7.3%, 3.19%, 4.98%, 6.04% and 3.87%, respectively. The experimental results demonstrate that the
improved model is effective in improving the identification accuracy of apple leaf diseases and insect
pests and enhancing the model’s effective feature extraction capabilities.

Keywords: apple leaf diseases and insect pests; ResNet-50 model; coordinated attention block;
weight-adaptive multi-scale feature fusion; deep learning

1. Introduction

China has become the world’s largest producer and consumer of apples, with an
apple planting area that exceeds 50% of the world’s total planting area. In 2019/2020,
apple production in China reached 33 million tons, and the national apple planting area
accounted for 54.07% of the world’s total [1,2]. However, apple leaf diseases and insect
pests seriously affect apple production and quality [3]. Common apple leaf diseases and
insect pests include mosaic disease, rust fruit disease, rot disease, defoliation disease, and
anthrax [4]. Currently, the identification of apple leaf diseases and insect pests mainly relies
on the experience of planters and online expert diagnosis. Traditional manual methods are
inefficient, waste manpower and material resources, and cannot meet the needs of modern
agricultural production. Therefore, it is necessary to study intelligent apple leaf disease
and insect pest image recognition methods that are more accurate and cost-effective to cope
with pest identification in large-scale, modern apple plantations.

As one of the fruit crops, the image recognition algorithm for crop diseases and insect
pests is mainly divided into machine learning methods and deep learning methods, and
some research has been conducted in different directions. Yang et al. [5] developed a
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K-means clustering segmentation technology and support vector machine (SVM) classi-
fier to identify the leaf disease of Ophiopogon japonicus. Prajapati [6] compared three
different segmentation techniques to show that the K-means clustering method of hue,
saturation, and value (HSV) color space had the highest accuracy rate for rice disease
and pest segmentation, reaching 96.71%. Wen et al. [7] used SVM and a regional growth
algorithm to integrate it into the identification of four types of vegetable diseases and insect
pests, and its identification accuracy reached 93%. Zhang et al. [8] combined the super
pixel segmentation, EM algorithm (expectation maximization), and pyramid histogram
of oriented gradient (PHOG) features to classify and identify cucumber diseases and in-
sect pests, and the average recognition rate reached 91.48%. Lu et al. [9] used the Harr
feature extraction algorithm and cascade AdaBoost classifier to identify large borer pests,
and the recognition rate reached 95.71% in simple background and 86.67% in complex
background. Khan et al. [10] designed an insect pest sorting system for cucumber leaf and
used M-SVM to identify five kinds of cucumber leaf insect pests and diseases, with an
accuracy rate of 98.08%. The above machine learning-based pest identification method
requires manual feature extraction, with cumbersome steps, poor robustness, and cannot
achieve end-to-end learning.

In recent years, deep learning methods have developed rapidly in the field of image
processing and are involved in classification recognition, image segmentation, and object
detection [11–13]. By using CNN (convolutional neural networks) to extract features from
images in an end-to-end manner, deep learning has strong representation capabilities and
has made breakthroughs in the field of plant characterization, such as plant type param-
eter acquisition, plant identification, plant pest detection, and yield estimation [14–18].
Therefore, deep learning has become the mainstream research direction for crop pest iden-
tification at this stage. Peng et al. [19] proposed an identification model for the pests of
lightweight crops using an improved ShuffleNet V2 CNN with a higher accuracy and
detection speed. In this study, the lightweight multi-scale feature fusion (LMFF) module
was designed to strength the feature extraction ability for pests at different scales. The
adaptive and efficient channel attention (AECA) attention mechanism was then obtained to
introduce into ShuffleNet V2 CNN to improve the cross channel interaction ability; Wang
et al. [20] proposed an improved coordination attention EfficientNet (CA-ENet) network to
identify different apple diseases with an accuracy of 98.92%. Di et al. [21] applied the tiny-
YOLO network and optimized the network structure based on the structure of Darenet-19
to identify apple leaf disease with a faster identification speed and higher accuracy of leaf
disease. Zhu et al. [22] proposed a novel real-time model LAD-Net (lightweight model
using asymmetric and dilated) to achieve real-time diagnosis on early apple leaf pets
and diseases, and the recognition rate could reach 98.58% on mobile devices. Nagaraju
et al. [23] applied transfer learning and improved the VGG16 network structure for leaf
disease identification by reducing the amount of computation, and the recognition accuracy
reached 97.87% compared with original VGG16 model.

Although the image recognition method of pests and diseases based on CNN has made
great progress in recent years, there are still the following problems: (1) In the complex
environment of orchards, when the surrounding environment of fruit trees changes, the
existing deep CNN models have insufficient ability to generalize apple tree diseases and
pests; (2) some types of fruit tree diseases and pests have similar characteristics on the
surface, but the feature differences are small, and the general network has insufficient
feature extraction ability. To solve the above problems, ResNet-50 is taken as the feature
extraction backbone network, and coordinate attention (CA) and weight-adaptive multi-
scale feature fusion (WAMFF) are added to the ResNet-50 model to strengthen the image
feature extraction and suppress invalid background information in our work, improving
the accuracy rate and generalization ability of the backbone feature extraction network.

The remainder of the paper is organized as follows. Section 2 gives the datasets for
apple tree leaf diseases and insect pets, as well as the improved ResNet-50 network model
training. Section 3 describes the model test and the obtained results. Section 4 presents a
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comparison and discussion with the result in different methods. Finally, Section 5 concludes
the paper and suggests some future works.

2. Materials and Methods
2.1. Experimental Materials for Apple Tree Leaf Diseases and Insect Pests

To validate the effectiveness of the algorithm proposed in this study for identifying
diseases and insect pests on apple tree leaves, the publicly available datasets ATLDSD
(Apple Tree Leaf Disease Segmentation datasets) [24] was used from the Science Data
Bank. This datasets, collected by Northwest Agriculture and Forestry University, comprises
images of common apple leaf diseases and pests. In addition, we combined them with
the AppleLeaf9 datasets, which was fused with the PVD, PPCD2020, and PPCD2021
datasets, to increase the amount of data and the categories. The total includes Alternaria
spot, brown spot, frog eye spot, grey spot, mosaic, powdery mildew, rust, and scab, as
depicted in Figure 1. The datasets were captured under various weather and lighting
conditions, capturing diverse temporal and spatial characteristics that align with the
complex environmental factors of orchards. Notably, the characteristics of leaf spot and
brown spot were similar, and they shared similar surface features. Consequently, utilizing
thesedatasets enabled us to evaluate the performance of the proposed algorithm.
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Figure 1. Schematic diagram of the types of pests and diseases in the AppleLeaf9 datasets.

Our experimental materials utilize 14,582 images from the datasets. These images
were divided into training, validation, and test sets in a ratio of 6:2:2, with 8745, 2916, and
2921 images, respectively. The distribution of images among the sets for various diseases is
shown in Table 1.
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Table 1. Classification of apple tree leaf disease species in the AppleLeaf9datasets.

Types of Pests and Diseases Number of Images
Dataset Partitioning

Number of Training
Sets

Number of Validation
Sets Number of Test Sets

Alternaria leaf spot 417 250 83 84
Brown spot 411 246 82 83
Frogeye leaf 3181 1908 636 637

Grey spot 339 1376 172 172
Health 516 309 103 104
Mosaic 371 222 74 75

Powdery mildew 1184 710 237 237
Rust 2753 1651 551 551
Scab 5410 3246 1082 1082

2.2. CA–ResNet-50–WAMSFF Network Model

Due to the uneven distribution and differing sizes of disease spots on apple leaves
caused by pests and diseases, some diseases and pest types share surface characteristics
that are also similar to those of healthy leaves. This similarity makes it challenging to
effectively distinguish between various diseases and pests, which is not ideal for training
the network model to identify different categories of apple tree leaf pests and diseases.
To accurately identify various types of apple leaf disease spots, we used the ResNet-50
model as the backbone feature extraction network, and after comparative experiments with
VGG16, DenseNet, and AlexNet, we found that the ResNet-50 model demonstrated better
classification performance on the datasets. To further improve the model’s accuracy, the
CA module and weight-adaptive multi-scale feature fusion (WAMSFF) were introduced
to create the CA–ResNet-50–WAMSFF network. The experiments showed that this model
significantly improved the recognition rate of various apple leaf disease spots.

2.2.1. Model Network Analysis

The ResNet-50 basic network is comprised of four layers, each with a varying number
of bottlenecks [25]. The first layer contains three bottlenecks, the second layer contains four
bottlenecks, the third layer contains six bottlenecks, and the fourth layer contains three
bottlenecks, as shown in Figure 2. A bottleneck is constructed by a basic residual module
that includes a 3-point convolution and a 3 × 3 convolution kernel. Once an image is input,
it undergoes a 7 × 7 convolution followed by max pooling before being fed into the four
layers. The final output size is 2048 num_classes (data category) of weight information,
which is obtained through average pooling and fully connected layers.

Since some characteristics (color, texture, shape) of individual types of apple leaf
diseases and pests are similar, and the general network is challenging to recognize, the
CA attention mechanism module [26] was introduced. The CA attention module is a
lightweight attention module, as shown in Figure 3, which can be easily and flexibly
embedded in the classical classification network, thereby improving the feature expression
ability of the backbone feature extraction network. The CA module decomposes the two-
dimensional global pooled feature codes of the early squeeze and excitation (SE) module
into two parallel one-dimensional codes, perceiving and mapping feature information at
both horizontal and vertical scales, which will more effectively obtain channel and spatial
information and improve image feature extraction capabilities.
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Figure 3. CA attention module structure. Note: Nonlinear activation means nonlinear activation
function; BN means batch normalization; Concat means concatenation; X/Y AvgPool means average
pooling in the X/Y direction; Conv2D means convolution kernel.

If the input image tensor is X = {x1, x2, x3, x4, x5 . . . xc}, X ∈ RC×H×W , where R repre-
sents the set of real numbers, C represents the channel, H represents the image height, and
W represents the image width. The CA attention module decomposes the two-dimensional
global pooling operation, and converts it into two one-dimensional global pooling feature
codes, and then stitches spatial dimension information in two different directions to obtain
X′ ∈ R(C/r)×1×(W+H), in which spatial positions are encoded in the horizontal and vertical
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directions, r represents the scaling factor, which is used for the scaling of channels, and X′

is decomposed into two separate feature maps along two different channels and through
two point convolution transformation functions. Then, the final feature maps F′ and F′′ are
obtained by nonlinear activation function, the input image X is multiplied by the elements
with the feature maps F′ and F′′ in both directions of the position information, and the Y
feature map output by the CA module is obtained, as shown in the following Equation (1):

Y = X · F′ · F′′ (1)

The main objective of multi-scale feature fusion is to manipulate low-level features
obtained during the “coding” phase to achieve feature fusion at different scales. This
enables the “coding” stage to obtain features with varying receptive field sizes. There are
two primary methods for multi-scale feature fusion, including image pyramid and feature
pyramid. In this paper, the study focused on the disease and insect pest characteristics of
apple tree leaves. The differences between various disease spots are too small to distinguish.
Furthermore, disease spots represent a small portion of the overall area and vary in size.
As a result, different receptive field sizes are necessary to extract characteristic information
from the disease spots. To address this issue, the researchers applied multi-scale feature
fusion to various layers of the ResNet-50 model simultaneously. They also added an
attention mechanism and introduced weight-adaptive multi-scale feature fusion, which
allowed the model to determine the appropriate layer weight for feature fusion based on
the data feature distribution [27]. Consequently, the original backbone network can more
effectively extract disease spot feature information of varying scales. Equations (2) and (3)
for feature fusion are as follows:

Ff = α1·Flayer1 + α2·Flayer2 + α3·Flayer3 + α4·Flayer4 (2)

ai =
ewi

∑ j·ewj
(i = 1, 2, 3, 4; j = 1, 2, 3, 4) (3)

where Ff is the network output after multi-scale feature fusion, ai is the normalized weight,
wi is the initial weight, wj is the feature weight, and layeri(i = 1, 2, 3, 4) are the four layers
of ResNet-50 model. After adding weight-adaptive multi-scale feature fusion, the feature
signal also changes with the adaptive weight; in this case, the feature transformation layer
for the fixed parameter can only single transform for different feature distributions, which
may lead to different strength of feature extraction signals. Two parameters are introduced
to make the feature transformation layer adapt to different situations, thereby improving
the robustness of the model, and finally mark the adaptive feature transformation after
adding the parameters as Fc as in the following Equations (4) and (5):

FM =
x f − xn∥∥∥x f

∥∥∥
2

(4)

Fc = β·FM + σ·Ff + ε (5)

where FM is the feature after L2 normalization, x f is the extracted feature,
∥∥∥x f

∥∥∥
2

is L2
normalization, xn is the nth dimension of the feature, and β, σ, and ε are the weight
parameters of the linear transformation. The Fc replaces the original Ff as the output after
feature fusion.

2.2.2. CA–ResNet-50–WAMSFF Model Improvement Analysis

The improvement method utilized the ResNet-50 model as the backbone extraction
model. The overall structure of the model is shown in Figure 4. The CA attention mecha-
nism module is embedded into the bottleneck of the ResNet-50 model. The CA module



Horticulturae 2023, 9, 1046 7 of 15

is behind the residual module and does not decrease the feature extraction ability of the
original residual module. The CA module can capture the long-term feature information
dependence between network channels, while retaining accurate location information. This
step enables the network to capture areas related to apple leaf disease spots without losing
precise location information.
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After each layer was connected by the CA module, the weight parameters were
adjusted by combining the characteristics of the convolution layer. The CA module applied
greater weight to the important feature channels and smaller weights to other unimportant
channels. This enhanced the global attention of the convolutional neural network, ensuring
that the network did not lose the key information of disease spots due to the convolution
operation of the previous residual network. This step improved the model’s ability to
distinguish different disease spots.

The four layers of ResNet-50 are subjected to multi-scale feature fusion. The input
image size is 224 × 224 × 3, with 3 channels. The number of channels in the input image
is transformed from 64 to 256 by the first layer, 256 to 512 by the second layer, 512 to
1024 by the third layer, and finally to 2048 by the fourth layer. The channel number in the
latter layer is kept as the same as the previous layer after up-sampling and the channel
number in each layer is multiplied by the corresponding layer adaptive weight. After
feature fusion, the channel size of the feature map changed to 3072. The size of the feature
map remains unchanged, but the dimensions of the channels are reduced from 3072 to
2048 after dimension reduction by point convolution. The max pooling layer and average
pooling layer are then used to reduce the size of the feature map to the size of 7 × 7 ×
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2048. The channels number is output by the fully connected layer as the number of data
categories, and the results of apple leaf pest identifications are obtained.

2.3. Model Network Training Design
2.3.1. Training Method

Transfer learning was employed in this experiment because images from different
datasets often share common underlying features, which makes transfer learning a stable
approach for model training. The CA–ResNet-50–WAMSFF network was proposed for
transfer learning training. The specific method was as follows. Firstly, the ResNet-50
network model was used to train the initial weights on the large-scale public datasets from
ImageNet. Next, the trained weights were transferred to the CA–ResNet-50–WAMSFF
network for parameter initialization, and the network model parameters were adjusted for
the datasets to enhance the learning performance of the network model, further improving
the model’s generalization ability. The stochastic gradient descent (SGD) optimizer was
utilized, with an initial learning rate of 0.001. The learning rate was decayed using the
cosine descent method, and the model was trained for 100 epochs, with a batch size of 16.
The loss function used in the experiment was cross entropy.

2.3.2. Data Augmentation

Given that the datasets were sourced from publicly available data on the Internet, they
suffers from an uneven distribution of various types of apple leaf diseases and pests, and the
datasets are relatively limited in terms of the number of samples. To enhance the diversity
of the datasets and improve the generalization ability of the deep learning network, online
data augmentation techniques were applied to the input batch of images at each network
layer. This process modified the original input images, effectively increasing the complexity
and diversity of the training data without expanding the size of the datasets, which enabled
the images to be fed into the network during training, with each iteration further enhancing
the input images to improve the generalization ability and robustness of the model. In light
of the unique characteristics of apple leaf disease and pest images, the offline enhancement
methods include rotation, random color perturbation, and Gaussian blur, as depicted in
Figure 5. These data augmentation techniques do not alter the image content, but instead
modify the image geometry and color contrast to enhance their complexity and diversity.

Horticulturae 2023, 9, 1046  8  of  15 
 

 

transformed from 64 to 256 by the first layer, 256 to 512 by the second layer, 512 to 1024 by 

the third layer, and finally to 2048 by the fourth layer. The channel number  in the  latter 

layer is kept as the same as the previous layer after up‐sampling and the channel number 

in each layer is multiplied by the corresponding  layer adaptive weight. After feature fu‐

sion,  the channel size of  the  feature map changed  to 3072. The size of  the  feature map 

remains  unchanged,  but  the  dimensions  of  the  channels  are  reduced  from  3072  to 

2048after dimension reduction by point convolution. The max pooling layer and average 

pooling layer are then used to reduce the size of the feature map  to  the  size of 7 × 7 × 

2048. The channels number is output by the fully connected layer as the number of data 

categories, and the results of apple leaf pest identifications are obtained. 

2.3. Model Network Training Design 

2.3.1. Training Method 

Transfer  learning was employed  in  this experiment because  images  from different 

datasets often share common underlying features, which makes transfer learning a stable 

approach  for model  training. The CA–ResNet‐50–WAMSFF network was proposed  for 

transfer  learning  training.  The  specific method was  as  follows.  Firstly,  the ResNet‐50 

network model was used  to  train  the  initial weights on  the  large‐scale public datasets 

from  ImageNet.  Next,  the  trained  weights  were  transferred  to  the 

CA–ResNet‐50–WAMSFF network  for parameter  initialization, and  the network model 

parameters were adjusted  for  the datasets  to enhance  the  learning performance of  the 

network model, further improving the model’s generalization ability. The stochastic gra‐

dient descent  (SGD) optimizer was utilized, with an  initial  learning  rate of 0.001. The 

learning rate was decayed using the cosine descent method, and the model was trained 

for 100 epochs, with a batch size of 16. The loss function used in the experiment was cross 

entropy. 

2.3.2. Data Augmentation 

Given that  the datasets were sourced from publicly available data on the Internet, 

they suffers from an uneven distribution of various types of apple leaf diseases and pests, 

and the datasets are relatively limited in terms of the number of samples. To enhance the 

diversity  of  the  datasets  and  improve  the  generalization  ability  of  the  deep  learning 

network, online data augmentation techniques were applied to the input batch of images 

at  each network  layer. This process modified  the original  input  images,  effectively  in‐

creasing the complexity and diversity of the training data without expanding the size of 

the datasets, which enabled the images to be fed into the network during training, with 

each  iteration further enhancing the  input  images to  improve the generalization ability 

and robustness of the model. In light of the unique characteristics of apple  leaf disease 

and pest  images, the offline enhancement methods include rotation, random color per‐

turbation,  and Gaussian blur,  as depicted  in Figure  5. These data  augmentation  tech‐

niques do not alter the image content, but instead modify the image geometry and color 

contrast to enhance their complexity and diversity. 

 

Figure 5. Data augmentation. Figure 5. Data augmentation.

2.3.3. Experimental Environment

The software environment employed PyTorch 1.8.1 with CUDA and cuDNN as the
deep learning framework, using Python 3.8 as the programming language and Ubuntu
20.04LTS as the operating system. The hardware was equipped with an Intel Xeon Silver
CPU, 64 GB of memory, and a GeForce GTX 1070 graphics card with 8GB of video memory.

2.3.4. Experimental Setting

For this experiment, the ResNet-50 network were utilized as the backbone feature
extraction network and augmented with the CA attention module and WAMSFF. To demon-
strate the effectiveness of our proposed method on the ATLDSD datasets, the model was
compared with external baseline models, including VGG16 [28], AlexNet [29], MNAS-
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Net [30], DenseNet [31], and GoogLeNet [32]. Furthermore, an internal comparison were
conducted among ResNet-50+CA, ResNet-50+WAMSFF, and the standard ResNet-50 under
the same testing environment. The experimental design was illustrated in Figure 6.

Horticulturae 2023, 9, 1046  9  of  15 
 

 

2.3.3. Experimental Environment 

The software environment employed PyTorch 1.8.1 with CUDA and cuDNN as the 

deep learning framework, using Python 3.8 as the programming language and Ubuntu 

20.04LTS as the operating system. The hardware was equipped with an Intel Xeon Silver 

CPU,  64GB  of memory,  and  a  GeForce  GTX  1070  graphics  card with  8GB  of  video 

memory. 

2.3.4. Experimental Setting 

For  this experiment,  the ResNet‐50 network were utilized as  the backbone  feature 

extraction  network  and  augmented with  the CA  attention module  and WAMSFF.  To 

demonstrate  the  effectiveness  of  our  proposed method  on  the ATLDSD  datasets,  the 

model was compared with external baseline models, including VGG16 [28], AlexNet [29], 

MNASNet [30], DenseNet [31], and GoogLeNet [32]. Furthermore, an internal compari‐

son  were  conducted  among  ResNet‐50+CA,  ResNet‐50+WAMSFF,  and  the  standard 

ResNet‐50 under the same testing environment. The experimental design was illustrated 

in Figure 6. 

 

Figure 6. Experiment design flow. 

The evaluation metrics include top‐1 accuracy, average recall, and average precision, 

as in the following Equation (6): 

Top‐1 100%  (6)

where  𝑛𝑢𝑚 represents  the  correct  prediction  number  of  samples  for  apple  pests  and 

diseases and  𝑛𝑢𝑚   represents the total number of samples tested for apple pests and 

diseases. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛   represents  the  accuracy  rate  for  each  category  on  the  datasets,  and 
𝑅𝑒𝑐𝑎𝑙𝑙   represents the recall rate for each category in the datasets, and these are capcu‐
alted with the following Equation (7): 

Figure 6. Experiment design flow.

The evaluation metrics include top-1 accuracy, average recall, and average precision,
as in the following Equation (6):

Top-1 =
numc

numall
× 100% (6)

where numc represents the correct prediction number of samples for apple pests and dis-
eases and numall represents the total number of samples tested for apple pests and diseases.

Precisioni represents the accuracy rate for each category on the datasets, and Recalli
represents the recall rate for each category in the datasets, and these are capcualted with
the following Equation (7): {

Precisioni =
TP

TP+FP
Recalli =

TP
TP+FN

(7)

where TP, FP, TN, and FN indicate true positive, false positive, true negative, and false
negative, respectively.

Average recall represents the sum of the recalls for each class divided by the total
number of classes, and the average precision represents the sum accuracy rates for each
category divided by the total categories number, as in the following Equation (8):Average Precision = ∑i=nums

i=0 Precisioni
nums

Average Recall = ∑i=nums
i=0 Recalli

nums

(8)

where i represents the dataset type, and nums represents the number of overall dataset
categories.
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3. Experimental Results
3.1. CA–ResNet-50–WAMSFF Model Loss Function Analysis

The model was trained using the training method described in Section 2.3.1. The
training and validation loss curves were presented in Figure 7. As seen in Figure 7, the
training and validation loss decreased rapidly before the 5th epoch, after which the loss
values tended to converge at the 20th epoch. The classification precision rate also tended
to stabilize, while the verification loss basically converged after the 40th epoch. This
indicated that the model reached a saturation state, which demonstrated its effectiveness
and rationality.
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3.2. CA–ResNet-50–WAMSFF Model Ablation Test

Ablation tests are essential for deep learning research, as they allow the analysis
of network modules that have a significant impact on model performance. The control
variable method was used to remove parts of the model network modules. Four ablation
protocols were employed as follows: (1) Only using the ResNet-50 model; (2) only adding
the CA attention mechanism module to the bottleneck of the ResNet-50 model; (3) only
adding the weight-adaptive multi-scale feature fusion (WAMSFF) module to the ResNet-50
model; (4) fusing method 2 and method 3 to create the CA–ResNet-50–WAMSFF model
presented in this paper.

The results of the four ablation tests were shown in Table 2. Under the same ATLDSD
datasets and training environment, the ResNet-50+CA model showed 3.44% higher accu-
racy, 3.03% higher average recall, and 3.18% higher average precision than the ResNet-50
top-1. The ResNet-50+WAMSFF model showed a 2.66% higher top-1 accuracy, 2.35% higher
average recall, and 2.47% higher average precision than ResNet-50. Both the CA module
and WAMSFF module improved the model performance, with the CA module showing a
slightly higher value-added effect than the WAMSFF module. These results indicate that
the CA attention mechanism and WAMSFF module enhanced the effective extraction of
input image features and improved the accuracy prediction rate of the model. Moreover,
adding both the CA module and WAMSFF module significantly improved the evaluation
index of the original model, with a 4.58% higher accuracy rate for top-1, 3.99% higher
average recall rate, and 4.54% higher average precision rate. These results confirmed the
feasibility and effectiveness of the proposed model.
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Table 2. CA–ResNet-50–WAMSFF model ablation test results.

Model No. Model Top-1 Accuracy Average Recall Average Precision

1 ResNet-50 95.31% 95.62% 95.31%
2 ResNet-50+CA 97.89% 97.68% 97.21%
3 ResNet-50+WAMSFF 97.77% 97.97% 97.78%
4 ResNet-50+CA+WAMSFF 98.32% 98.41% 98.23%

Note: CA represents CA attention mechanism module; WAMSFF represents weight-adaptive multi-scale fea-
ture fusion.

3.3. Categorical Heat Maps Analysis

To visually demonstrate the effectiveness of the proposed CA-ResNet-50–WAMSFF
model, the XGrad-CAM [33] technology was applied to visualize the classification heatmaps
after model improvement. Eight representative types of pests and diseases were selected as
the characteristics of other diseases and pests. The results are shown in Figure 8.

As can be seen from the figure, for the same pictures of diseases and pests, the image
feature information obtained by the original ResNet-50 network is relatively scattered and
unable to accurately locate the disease spot. Furthermore, the network only focused on
a partial area of the image and was vulnerable to background interference. On the other
hand, the improved CA–ResNet-50–WAMSFF model can effectively locate the general
position of the disease spots in the image, and the interference from the background area
was significantly reduced, which indicated that the CA module and the WAMSFF module
can effectively extract the key area information of fine features and are not affected by
the background’s non-related feature areas. These results demonstrate that the proposed
method has a stronger model characterization ability and can effectively improve the
accuracy of apple leaf disease and pest identification.
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4. Comparison and Discussion
4.1. Comparison and Discussion in Deep Neural Networks

Ablation testing was used to determine the impact of internal modules on the per-
formance of a model network, in order to better reflect the performance superiority of
an improved network. Mainstream deep neural networks, including AlexNet, VGG16,
DenseNet, MNASNet, and GoogLeNet, were selected as comparison networks. To ensure
fairness of comparison, the same dataset ATLDSD was used. The PyTorch open-source
deep learning framework was employed, along with the training method described in
Section 2.3.1. The basic architecture of the aforementioned deep learning models was kept
unchanged, and the output number of the fully connected layer was modified to 4 to adapt
to the 4 categories of diseases and pests in the ATLDSD datasets. All networks employed
transfer learning with the same data augmentation methodology.

Table 3 presents the recognition accuracy data of all comparative model networks in
the datasets. As seen in Table 3, DenseNet achieves better classification performance than
the other networks and is close to that of ResNet-50. VGG16, MNASNet, and GoogLeNet
have similar classification performances and belong to deep networks. Since the datasetsare
small and the data types are limited, the classification network obtained good classifica-
tion results.

Table 3. Performance of different network models on the ATLDSD datasets.

No. Model Type Top-1 Accuracy Average Recall Average Precision

1 AlexNet 91.02% 91.23% 91.06%
2 DenseNet 95.01% 95.34% 95.21%
3 VGG16 93.34% 93.56% 93.81%
4 MNASNet 92.28% 92.13% 92.45%
5 GoogLeNet 94.45% 94.67% 94.71%

4.2. Comparison and Discussion with Related Work in the AppleLeaf9 Datasets

To evaluate the performance of the proposed the CA–ResNet-50–WAMSFF model,
we made a comparison with the work in the paper [34] using the EfficientNet-MG model
in the same AppleLeaf9 datasets. The highest accuracy with EfficientNet-MG model is
99.11%. We validated that the best accuracy with our method was 99.66%, higher than the
highest accuracy of 99.11% in the paper [34]. The accuracy usually was 97.06–99.69%, and
fluctuated between 1–3%. Given this, we did not take the highest accuracy obtained from
training as the final value, but instead took a relatively average value of 98.32%.

The accuracy difference is caused by two factors. Firstly, some images were labeled
incorrectly in the datasets, and some images were not clearly characterized as being caused
by pests or diseases and cannot be distinguished and labeled correctly. This led to significant
randomness in the results. Actually, we found that, in the process of dataset partitioning, if
these images are divided into validation or testing sets, it will result in a significant decrease
in accuracy; however, if these images are assigned to the training set, the accuracy will
improve. Secondly, we considered the issue of overfitting in small datasets. Many pest and
disease images are determined coincidentally due to the influence of other noise. In view of
this issue, we used the GradCAM method to judge the output of each layer in the network.

Although the previous research on apple leaf disease classification and identification
has made some progress, there are still some shortcomings. It is difficult to classify and
detect the early apple leaf diseases and insect pests, and there are too few parameters.

5. Conclusions and Future Work

In conclusion, the proposed algorithm using the CA–ResNet-50–WAMSFF model
demonstrates excellent performance in the classification and identification of leaf pests
of apple disease. By introducing a CA attention mechanism and weight-adaptive multi-
scale feature fusion, the proposed algorithm overcomes the limitations of the traditional
ResNet-50 model in terms of feature extraction and identification information loss. The
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top-1 accuracy rate of 98.32% on the AppleLeaf9 datasets, which is 4.58% higher than the
value from the original model, shows that the improved model can effectively improve the
localization of lesion features. Furthermore, compared with mainstream deep networks,
such as AlexNet, VGG16, DenseNet, MNASNet and GoogLeNet on the same datasets, the
top-1 accuracy rate increased by 7.3%, 3.19%, 4.98%, 6.04% and 3.87%, respectively. This
exceeds the performance of similar mainstream deep network models, demonstrating the
potential of the proposed algorithm as a visual recognition scheme for smart agriculture.

However, further improvements are necessary to apply the algorithm to practical
scenarios. Firstly, reducing the number of model parameters and optimizing the model
further is necessary to deploy the model on mobile devices. Future research will focus
on solving these challenges to enable the proposed algorithm to be used in practical
applications with large-scale datasets, without sacrificing accuracy.
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