Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (81)

Search Parameters:
Keywords = anticandidal activity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1234 KiB  
Article
Exploring the Potential of Plant Cytokinins Against Common Human Pathogens: In Vitro Assessment and In Silico Insights
by Jelena Lazarević, Aleksandar Veselinović, Marija Stojiljković, Miloš Petrović, Pierangela Ciuffreda and Enzo Santaniello
Plants 2025, 14(12), 1749; https://doi.org/10.3390/plants14121749 - 7 Jun 2025
Viewed by 623
Abstract
Cytokinins, plant hormones derived from adenine, are best known for regulating growth and stress responses in plants. Recent findings suggest they may also influence microbial viability, yet their direct antimicrobial potential remains underexplored. This study evaluates the antimicrobial activities of four natural cytokinins [...] Read more.
Cytokinins, plant hormones derived from adenine, are best known for regulating growth and stress responses in plants. Recent findings suggest they may also influence microbial viability, yet their direct antimicrobial potential remains underexplored. This study evaluates the antimicrobial activities of four natural cytokinins (iPA, B, K, and p-T) and their N9-ribosides (iPAR, BR, KR, and p-TR) against selected human pathogens. Using the broth microdilution method, we assessed their effects on Gram-positive and Gram-negative bacteria, as well as fungal strains. While Gram-negative species showed no susceptibility, all tested compounds exhibited bacteriostatic activity against Bacillus subtilis and Enterococcus faecalis. Most notably, kinetin (K) and kinetin riboside (KR) displayed strong antifungal activity against Candida albicans, with MIC values comparable to the reference drug nystatin. Molecular docking studies supported these findings by showing that K and KR form favorable interactions with two validated antifungal targets in Candida albicans: secreted aspartic proteinase 3 (SAP3) and dihydrofolate reductase (DHFR). This is, to our knowledge, the first report linking natural cytokinins to direct antifungal action against C. albicans supported by in silico evidence. These findings highlight the potential of K and KR as promising leads for the development of cytokinin-based antifungal agents. Full article
(This article belongs to the Special Issue Plant-Derived Natural Products: Development and Utilization)
Show Figures

Figure 1

14 pages, 1564 KiB  
Article
Anticandidal Activity of Lipopeptides Containing an LL-37-Derived Peptide Fragment KR12
by Malgorzata Anna Paduszynska, Damian Neubauer, Wojciech Kamysz and Elzbieta Kamysz
Molecules 2025, 30(7), 1598; https://doi.org/10.3390/molecules30071598 - 3 Apr 2025
Viewed by 511
Abstract
Candidiasis belongs to common fungal infections and is usually mild and self-limiting. However, in patients with immunodeficiencies, it can transform into invasive infections with high mortality. Long-term antifungal treatment can lead to the emergence of resistance. The problem is further complicated by the [...] Read more.
Candidiasis belongs to common fungal infections and is usually mild and self-limiting. However, in patients with immunodeficiencies, it can transform into invasive infections with high mortality. Long-term antifungal treatment can lead to the emergence of resistance. The problem is further complicated by the development of fungal biofilm resistant to conventional antimicrobials. Due to a limited choice of available antifungals, the development of novel active agents, such as antimicrobial peptides (AMPs), is highly desirable. Human cathelicidin LL-37 is an intensively studied AMP with a confirmed broad spectrum of antimicrobial activities. Due to the relatively high costs of production, the design of shorter analogs of LL-37 has been recommended. In this study, we synthesized a KR12 amide, KRIVQRIKDFLR-NH2, and its 24 derivatives obtained by substitution with fatty acids. The compounds were tested for their antifungal potential. They exhibited activity against the Candida albicans, C. glabrata, C. tropicalis and C. lipolytica. Five compounds: C10-KR12-NH2, C12-KR12-NH2, C14-KR12-NH2, 2-butyloctanoic acid-KR12-NH2, and 4-phenylbenzoic acid-KR12-NH2 were highly active against planktonic cells. C14-KR12-NH2 demonstrated also activity against C. albicans biofilm cultured on polystyrene for 24, 48 and 72 h. Lipidation has proven to be an effective strategy for improving microbiological activity of the KR12-NH2 peptide. Full article
Show Figures

Figure 1

25 pages, 3843 KiB  
Article
Goat’s Skim Milk Enriched with Agrocybe aegerita (V. Brig.) Vizzini Mushroom Extract: Optimization, Physico-Chemical Characterization, and Evaluation of Techno-Functional, Biological and Antimicrobial Properties
by Danijel D. Milinčić, Ivana Sredović Ignjatović, Dejan Stojković, Jovana Petrović, Aleksandar Ž. Kostić, Jasmina Glamočlija, Ana Doroški Petković, Ana Plećić, Steva Lević, Vladislav Rac, Vladimir B. Pavlović, Slađana P. Stanojević, Viktor A. Nedović and Mirjana B. Pešić
Foods 2025, 14(6), 1056; https://doi.org/10.3390/foods14061056 - 19 Mar 2025
Viewed by 873
Abstract
The aim of this study was to develop a novel functional ingredient—goat’s skim milk enriched with Agrocybe aegerita (V. Brig.) Vizzini mushroom extract (ME/M)—using Central Composite Design (CCD). The optimized ME/M ingredient was evaluated for its physico-chemical, techno-functional, biological, and antimicrobial properties. Physico-chemical [...] Read more.
The aim of this study was to develop a novel functional ingredient—goat’s skim milk enriched with Agrocybe aegerita (V. Brig.) Vizzini mushroom extract (ME/M)—using Central Composite Design (CCD). The optimized ME/M ingredient was evaluated for its physico-chemical, techno-functional, biological, and antimicrobial properties. Physico-chemical properties were analyzed using Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy, Scanning Electron Microscopy (SEM), and Dynamic Light Scattering (DLS). The ingredient exhibited a polymodal particle size distribution and contained glucans, along with a newly formed polypeptide resulting from the selective cleavage of goat milk proteins. A 0.1% ME/M solution demonstrated good emulsifying and foaming properties. Additionally, ME/M showed strong antiproliferative effects on human cancer cell lines, particularly Caco-2 (colorectal) and MCF7 (breast) cancer cells. The ingredient also promoted HaCaT cell growth without cytotoxic effects, suggesting its safety and potential wound-healing properties. Furthermore, the addition of ME/M to HaCaT cells inoculated with Staphylococcus aureus resulted in reduced IL-6 levels compared to the control (without ME/M), indicating a dose-dependent anti-inflammatory effect. The optimized ME/M ingredient also exhibited antibacterial, antifungal, anticandidal, and antibiofilm activity in one-fourth of MIC. These findings suggest that the formulated ME/M ingredient has strong potential for use in the development of functional foods offering both desirable techno-functional properties and bioactive benefits. Full article
(This article belongs to the Special Issue Bioactive Compounds, Antioxidants, and Health Benefits—Volume II)
Show Figures

Figure 1

15 pages, 4054 KiB  
Article
Antibiofilm Activity of Protamine Against the Vaginal Candidiasis Isolates of Candida albicans, Candida tropicalis and Candida krusei
by Sivakumar Jeyarajan, Indira Kandasamy, Raja Veerapandian, Jayasudha Jayachandran, Shona Chandrashekar, Kalimuthusamy Natarajaseenivasan, Prahalathan Chidambaram and Anbarasu Kumarasamy
Appl. Biosci. 2025, 4(1), 5; https://doi.org/10.3390/applbiosci4010005 - 23 Jan 2025
Viewed by 1266
Abstract
Candida species, normally part of the healthy human flora, can cause severe opportunistic infections when their population increases. This risk is even greater in immunocompromised individuals. Women using intrauterine contraceptive devices (IUDs) are at higher risk for IUD-associated vulvovaginal candidiasis (VVC) because the [...] Read more.
Candida species, normally part of the healthy human flora, can cause severe opportunistic infections when their population increases. This risk is even greater in immunocompromised individuals. Women using intrauterine contraceptive devices (IUDs) are at higher risk for IUD-associated vulvovaginal candidiasis (VVC) because the device provides a surface for biofilm formation. This biofilm formation allows the normal flora to become opportunistic pathogens, leading to symptoms of VVC such as hemorrhage, pelvic pain, inflammation, itching and discharge. VVC is often linked to IUD use, requiring the prompt removal of these devices for effective treatment. This study evaluated the activity of the arginine-rich peptide “protamine” against Candida albicans, Candida tropicalis and Candida krusei isolated from IUD users who had signs of VVC. The antimicrobial activity was measured using the agar disk diffusion and microbroth dilution methods to determine the minimum inhibitory concentration (MIC). The MIC values of protamine against C. albicans, C. tropicalis and C. krusei are 32 μg mL−1, 64 μg mL−1 and 256 μg mL−1, respectively. The determined MIC of protamine was used for a biofilm inhibition assay by crystal violet staining. Protamine inhibited the biofilm formation of the VVC isolates, and its mechanisms were studied through scanning electron microscopy (SEM) and a reactive oxygen species (ROS) assay. The disruption of cell membranes and the induction of oxidative stress appear to be key mechanisms underlying its anti-candidal effects. The results from an in vitro assay support the potential use of protamine as an antibiofilm agent to coat IUDs in the future for protective purposes. Full article
Show Figures

Figure 1

17 pages, 7803 KiB  
Article
Effect of Adding Gold Nanoparticles on the Anti-Candidal Activity and Release Profile of Itraconazole from Hydrogels
by Radosław Balwierz, Paweł Biernat, Dawid Bursy, Mariia Shanaida, Katarzyna Kasperkiewicz, Agata Jasińska-Balwierz and Wioletta Ochędzan-Siodłak
Appl. Sci. 2024, 14(23), 11125; https://doi.org/10.3390/app142311125 - 29 Nov 2024
Viewed by 1698
Abstract
Gold nanoparticles have been identified as a promising avenue for the development of drug carriers, particularly in the context of antimicrobial drug delivery, where limited solubility represents a significant challenge. The ability of gold nanoparticles to penetrate biofilms and disrupt fungal cell membranes [...] Read more.
Gold nanoparticles have been identified as a promising avenue for the development of drug carriers, particularly in the context of antimicrobial drug delivery, where limited solubility represents a significant challenge. The ability of gold nanoparticles to penetrate biofilms and disrupt fungal cell membranes makes them an effective tool to support antifungal therapy, especially against resistant strains. Gold nanoparticles also demonstrate synergistic effects with chemotherapeutics and can influence the release profile of the active substances. This study aimed to develop a topical hydrogel drug formulation containing itraconazole (ITZ), with the addition of gold nanoparticles, to enhance its therapeutic properties. Due to ITZ’s poor water solubility, three types of the gold nanoparticles (AuNPs) of different sizes were synthesized and subsequently coated with itraconazole. The resulting formulations were incorporated into carbopol gels and their ability to diffuse through semipermeable membranes was assessed. The findings demonstrated that the combination of gold nanoparticles and itraconazole elevated the diffusion coefficient to twice the level observed in gels without nanoparticles. Furthermore, the combined effect of gold nanoparticles and itraconazole against a reference Candida albicans strain was investigated. The combination of gold nanoparticles and itraconazole demonstrated a growth-inhibitory effect on this strain, indicating that this formulation could potentially be employed in the treatment of fungal infections. The study confirms that hydrogels with itraconazole and gold nanoparticles can be obtained, offering enhanced drug diffusion. Full article
(This article belongs to the Special Issue Nanomaterials in Medical Diagnosis and Therapy)
Show Figures

Figure 1

14 pages, 2523 KiB  
Review
A Comparative Review of Eugenol and Citral Anticandidal Mechanisms: Partners in Crimes Against Fungi
by Zinnat Shahina and Tanya E. S. Dahms
Molecules 2024, 29(23), 5536; https://doi.org/10.3390/molecules29235536 - 23 Nov 2024
Cited by 3 | Viewed by 2499
Abstract
Candida albicans is an emerging multidrug-resistant opportunistic pathogen that causes candidiasis, superficial infections on the mucosa, nails or skin, and life-threatening candidemia in deep tissue when disseminated through the bloodstream. Recently, there has been a sharp rise in resistant strains, posing a considerable [...] Read more.
Candida albicans is an emerging multidrug-resistant opportunistic pathogen that causes candidiasis, superficial infections on the mucosa, nails or skin, and life-threatening candidemia in deep tissue when disseminated through the bloodstream. Recently, there has been a sharp rise in resistant strains, posing a considerable clinical challenge for the treatment of candidiasis. There has been a resurged interest in the pharmacological properties of essential oils and their active components, for example, monoterpenes with alcohol (-OH) and aldehyde (-CHO) groups. Eugenol and citral have shown promising in vitro and in vivo activity against Candida species. Although there is substantial research on the efficacy of these essential oil components against C. albicans, a detailed knowledge of their mycological mechanisms is lacking. To explore the broad-spectrum effects of EOs, it is more meaningful and rational to study the whole essential oil, along with some of its major components. This review provides a comprehensive overview of eugenol and citral anticandidal and antivirulence activity, alone and together, along with the associated mechanisms and limitations of our current knowledge. Full article
(This article belongs to the Special Issue Chemical Composition and Anti-Inflammatory Activity of Essential Oils)
Show Figures

Figure 1

23 pages, 1965 KiB  
Review
Antifungal Plant Defensins as an Alternative Tool to Combat Candidiasis
by Ekaterina I. Finkina, Olga V. Shevchenko, Serafima I. Fateeva, Andrey A. Tagaev and Tatiana V. Ovchinnikova
Plants 2024, 13(11), 1499; https://doi.org/10.3390/plants13111499 - 29 May 2024
Cited by 3 | Viewed by 1995
Abstract
Currently, the spread of fungal infections is becoming an urgent problem. Fungi of the Candida genus are opportunistic microorganisms that cause superficial and life-threatening systemic candidiasis in immunocompromised patients. The list of antifungal drugs for the treatment of candidiasis is very limited, while [...] Read more.
Currently, the spread of fungal infections is becoming an urgent problem. Fungi of the Candida genus are opportunistic microorganisms that cause superficial and life-threatening systemic candidiasis in immunocompromised patients. The list of antifungal drugs for the treatment of candidiasis is very limited, while the prevalence of resistant strains is growing rapidly. Therefore, the search for new antimycotics, including those exhibiting immunomodulatory properties, is of great importance. Plenty of natural compounds with antifungal activities may be extremely useful in solving this problem. This review evaluates the features of natural antimicrobial peptides, namely plant defensins as possible prototypes of new anticandidal agents. Plant defensins are important components of the innate immune system, which provides the first line of defense against pathogens. The introduction presents a brief summary regarding pathogenic Candida species, the pathogenesis of candidiasis, and the mechanisms of antimycotic resistance. Then, the structural features of plant defensins, their anticandidal activities, their mechanisms of action on yeast-like fungi, their ability to prevent adhesion and biofilm formation, and their combined action with conventional antimycotics are described. The possible mechanisms of fungal resistance to plant defensins, their cytotoxic activity, and their effectiveness in in vivo experiments are also discussed. In addition, for the first time for plant defensins, knowledge about their immunomodulatory effects is also presented. Full article
(This article belongs to the Special Issue Chemical Characteristics and Bioactivity of Plant Natural Products)
Show Figures

Figure 1

15 pages, 4248 KiB  
Article
Globospiramine Exhibits Inhibitory and Fungicidal Effects against Candida albicans via Apoptotic Mechanisms
by Joe Anthony H. Manzano, Simone Brogi, Vincenzo Calderone, Allan Patrick G. Macabeo and Nicanor Austriaco
Biomolecules 2024, 14(6), 610; https://doi.org/10.3390/biom14060610 - 22 May 2024
Cited by 1 | Viewed by 2218
Abstract
Candidiasis is considered an emerging public health concern because of the occurrence of drug-resistant Candida strains and the lack of an available structurally diverse antifungal drug armamentarium. The indole alkaloid globospiramine from the anticandidal Philippine medicinal plant Voacanga globosa exhibits a variety of [...] Read more.
Candidiasis is considered an emerging public health concern because of the occurrence of drug-resistant Candida strains and the lack of an available structurally diverse antifungal drug armamentarium. The indole alkaloid globospiramine from the anticandidal Philippine medicinal plant Voacanga globosa exhibits a variety of biological activities; however, its antifungal properties remain to be explored. In this study, we report the in vitro anticandidal activities of globospiramine against two clinically relevant Candida species (C. albicans and C. tropicalis) and the exploration of its possible target proteins using in silico methods. Thus, the colony-forming unit (CFU) viability assay revealed time- and concentration-dependent anticandidal effects of the alkaloid along with a decrease in the number of viable CFUs by almost 50% at 60 min after treatment. The results of the MIC and MFC assays indicated inhibitory and fungicidal effects of globospiramine against C. albicans (MIC = 8 µg/mL; MFC = 8 µg/mL) and potential fungistatic effects against C. tropicalis at lower concentrations (MIC = 4 µg/mL; MFC > 64 µg/mL). The FAM-FLICA poly-caspase assay showed metacaspase activation in C. albicans cells at concentrations of 16 and 8 µg/mL, which agreed well with the MIC and MFC values. Molecular docking and molecular dynamics simulation experiments suggested globospiramine to bind strongly with 1,3-β-glucan synthase and Als3 adhesin—enzymes indirectly involved in apoptosis-driven candidal inhibition. Full article
Show Figures

Figure 1

21 pages, 6094 KiB  
Article
Synergistic Inhibition of Synbiotic Cultures among Lactobacilli and Plant Extracts against Vaginal Discharge Causing Candida albicans
by Siriwoot Sookkhee, Phadungkiat Khamnoi, Thanapat Sastraruji, Sathian Boonkum, Nitwara Wikan and Wutigri Nimlamool
Nutrients 2024, 16(9), 1372; https://doi.org/10.3390/nu16091372 - 30 Apr 2024
Cited by 1 | Viewed by 1894
Abstract
Vulvovaginal candidiasis (VVC) is the most common cause of vaginal discharge among women. The present study aimed to investigate the synergistic anticandidal effect of lactobacillus cultures supplemented with plant extracts. Among 600 isolates of lactic acid bacteria, 41 isolates exhibited inhibitory activity against [...] Read more.
Vulvovaginal candidiasis (VVC) is the most common cause of vaginal discharge among women. The present study aimed to investigate the synergistic anticandidal effect of lactobacillus cultures supplemented with plant extracts. Among 600 isolates of lactic acid bacteria, 41 isolates exhibited inhibitory activity against Candida albicans ATCC10231. Six out of 41 cell-free supernatants demonstrated the most potent antibacterial and anticandidal activities. They also inhibited the clinical isolates of C. albicans, causing VVC and non-C. albicans. The synergistic effect between Lactobacillus crispatus 84/7 and Limosilactobacillus reuteri 89/4 was demonstrated by the lowest fractional inhibitory concentration index (FICI = 0.5). The synbiotic culture of bacterial combination, cultured with Jerusalem artichoke (H. tuberosus) extract, also exhibited the strongest inhibition against the tested C. albicans. Biofilm formation decreased after 12 h of incubation in the selected cell-free supernatants of this synbiotic culture. The anticandidal activity of crude extracts was lost after treatment with proteinase K and trypsin but not with heating conditions, suggesting that it may be a heat-stable substance. In conclusion, the combination of L. crispatus 84/7 and L. reuteri 89/4 with H. tuberosus may be a promising candidate for inhibiting Candida infection and biofilm formation, with the potential use as ingredients in vaginal biotherapeutic products. Full article
(This article belongs to the Special Issue Microbiota and Microecological Health in Humans)
Show Figures

Figure 1

21 pages, 3627 KiB  
Article
Anticandidal Activity of a Siderophore from Marine Endophyte Pseudomonas aeruginosa Mgrv7
by Essam Kotb, Amira H. Al-Abdalall, Ibtisam Ababutain, Nada F. AlAhmady, Sahar Aldossary, Eida Alkhaldi, Azzah I. Alghamdi, Hind A. S. Alzahrani, Mashael A. Almuhawish, Moudhi N. Alshammary and Asmaa A. Ahmed
Antibiotics 2024, 13(4), 347; https://doi.org/10.3390/antibiotics13040347 - 10 Apr 2024
Cited by 2 | Viewed by 2573
Abstract
An endophytic symbiont P. aeruginosa-producing anticandidal siderophore was recovered from mangrove leaves for the first time. Production was optimal in a succinate medium supplemented with 0.4% citric acid and 15 µM iron at pH 7 and 35 °C after 60 h of [...] Read more.
An endophytic symbiont P. aeruginosa-producing anticandidal siderophore was recovered from mangrove leaves for the first time. Production was optimal in a succinate medium supplemented with 0.4% citric acid and 15 µM iron at pH 7 and 35 °C after 60 h of fermentation. UV spectra of the acidic preparation after purification with Amberlite XAD-4 resin gave a peak at 400 nm, while the neutralized form gave a peak at 360 nm. A prominent peak with RP-HPLC was obtained at RT 18.95 min, confirming its homogeneity. It was pH stable at 5.0–9.5 and thermally stable at elevated temperatures, which encourages the possibility of its application in extreme environments. The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) against Candida spp. Were in the range of 128 µg/mL and lower. It enhanced the intracellular iron accumulation with 3.2–4.2-fold (as judged by atomic absorption spectrometry) with a subsequent increase in the intracellular antioxidative enzymes SOD and CAT. Furthermore, the malondialdehyde (MDA) concentration due to cellular lipid peroxidation increased to 3.8-fold and 7.3-fold in C. albicans and C. tropicalis, respectively. The scanning electron microscope (SEM) confirmed cellular damage in the form of roughness, malformation, and production of defensive exopolysaccharides and/or proteins after exposure to siderophore. In conclusion, this anticandidal siderophore may be a promising biocontrol, nonpolluting agent against waterborne pathogens and pathogens of the skin. It indirectly kills Candida spp. by ferroptosis and mediation of hyperaccumulation of iron rather than directly attacking the cell targets, which triggers the activation of antioxidative enzymes. Full article
Show Figures

Figure 1

14 pages, 6014 KiB  
Article
Antibacterial and Anticandidal Activity of the Nanostructural Composite of a Spirothiazolidine-Derivative Assembled on Silver Nanoparticles
by Odeh A. O. Alshammari, Eid. M. S. Azzam, Munirah S. Alhar, Kaseb D. Alanazi, Sara A. A. Aljuhani and Walaa I. Elsofany
Molecules 2024, 29(5), 1139; https://doi.org/10.3390/molecules29051139 - 4 Mar 2024
Cited by 2 | Viewed by 1576
Abstract
Our aims in this work are the preparation of an ionic liquid based on heterocyclic compounds with Ag nanoparticles and the investigation of its application as an antibacterial and anticandidal agent. These goals were achieved through the fabrication of an ionic liquid based [...] Read more.
Our aims in this work are the preparation of an ionic liquid based on heterocyclic compounds with Ag nanoparticles and the investigation of its application as an antibacterial and anticandidal agent. These goals were achieved through the fabrication of an ionic liquid based on Ag nanoparticles with 5-Amino-3-(4-fluorophenyl)-N-hexadecyl-7-(4-methylphenyl)-2-H spiro[cyclohexane1,2’-[1,3]thiazolo [4,5-b]pyridine]-6-carbonitrile (P16). The nanostructure of the prepared ionic liquid was characterized using techniques such as FTIR, 1HNMR, 13CNMR, UV, SEM, and TEM. The biological activity of the prepared compound (P16) and its nanocomposites with Ag nanoparticles was tested using five clinical bacteria (Pseudomonas aeruginosa 249; Escherichia coli 141; Enterobacter cloacae 235; Staphylococcus epidermidis BC 161, and methicillin-resistant S. aureus 217), and three Candida species (Candida utilis ATCC 9255; C. tropicalis ATCC 1362, and C. albicans ATCC 20402). The FTIR, 1HNMR, and 13CNMR results confirmed the chemical structure of the synthesized P16 compound. The nanostructure of the prepared ionic liquid was determined based on data obtained from the UV, SEM, and TEM tests. The antibacterial and anticandidal results showed that the biological activity of the compound (P16) was enhanced after the formation of nanocomposite structures with Ag nanoparticles. Moreover, the biological activity of the compound itself (P16) and that of its nanocomposite structure with Ag nanoparticles was higher than that of ampicillin and amphotericin B, which were used as control drugs in this work. Full article
Show Figures

Figure 1

23 pages, 5475 KiB  
Article
Anti-Staphylococcal, Anti-Candida, and Free-Radical Scavenging Potential of Soil Fungal Metabolites: A Study Supported by Phenolic Characterization and Molecular Docking Analysis
by Amal A. Al Mousa, Mohamed E. Abouelela, Nadaa S. Al Ghamidi, Youssef Abo-Dahab, Hassan Mohamed, Nageh F. Abo-Dahab and Abdallah M. A. Hassane
Curr. Issues Mol. Biol. 2024, 46(1), 221-243; https://doi.org/10.3390/cimb46010016 - 28 Dec 2023
Cited by 8 | Viewed by 2719
Abstract
Staphylococcus and Candida are recognized as causative agents in numerous diseases, and the rise of multidrug-resistant strains emphasizes the need to explore natural sources, such as fungi, for effective antimicrobial agents. This study aims to assess the in vitro anti-staphylococcal and anti-candidal potential [...] Read more.
Staphylococcus and Candida are recognized as causative agents in numerous diseases, and the rise of multidrug-resistant strains emphasizes the need to explore natural sources, such as fungi, for effective antimicrobial agents. This study aims to assess the in vitro anti-staphylococcal and anti-candidal potential of ethyl acetate extracts from various soil-derived fungal isolates. The investigation includes isolating and identifying fungal strains as well as determining their antioxidative activities, characterizing their phenolic substances through HPLC analysis, and conducting in silico molecular docking assessments of the phenolics’ binding affinities to the target proteins, Staphylococcus aureus tyrosyl-tRNA synthetase and Candida albicans secreted aspartic protease 2. Out of nine fungal species tested, two highly potent isolates were identified through ITS ribosomal gene sequencing: Aspergillus terreus AUMC 15447 and A. nidulans AUMC 15444. Results indicated that A. terreus AUMC 15447 and A. nidulans AUMC 15444 extracts effectively inhibited S. aureus (concentration range: 25–0.39 mg/mL), with the A. nidulans AUMC 15444 extract demonstrating significant suppression of Candida spp. (concentration range: 3.125–0.39 mg/mL). The A. terreus AUMC 15447 extract exhibited an IC50 of 0.47 mg/mL toward DPPH radical-scavenging activity. HPLC analysis of the fungal extracts, employing 18 standards, revealed varying degrees of detected phenolics in terms of their presence and quantities. Docking investigations highlighted rutin as a potent inhibitor, showing high affinity (−16.43 kcal/mol and −12.35 kcal/mol) for S. aureus tyrosyl-tRNA synthetase and C. albicans secreted aspartic protease 2, respectively. The findings suggest that fungal metabolites, particularly phenolics, hold significant promise for the development of safe medications to combat pathogenic infections. Full article
(This article belongs to the Section Bioorganic Chemistry and Medicinal Chemistry)
Show Figures

Figure 1

12 pages, 4219 KiB  
Article
Anticandidal Activity of In Situ Methionine γ-Lyase-Based Thiosulfinate Generation System vs. Synthetic Thiosulfinates
by Svetlana Revtovich, Anna Lyfenko, Yaroslav Tkachev, Vitalia Kulikova, Vasiliy Koval, Vladimir Puchkov, Natalya Anufrieva, Pavel Solyev and Elena Morozova
Pharmaceuticals 2023, 16(12), 1695; https://doi.org/10.3390/ph16121695 - 7 Dec 2023
Cited by 5 | Viewed by 1567
Abstract
Candida albicans and non-albicans Candida species are a common cause of human mucosal infections, as well as bloodstream infections and deep mycoses. The emergence of resistance of Candida spp. to antifungal drugs used in practice requires the search for new antimycotics. The present [...] Read more.
Candida albicans and non-albicans Candida species are a common cause of human mucosal infections, as well as bloodstream infections and deep mycoses. The emergence of resistance of Candida spp. to antifungal drugs used in practice requires the search for new antimycotics. The present study unravels the antifungal potential of the synthetic dialk(en)ylthiosulfinates in comparison with an enzymatic in situ methionine γ-lyase-based thiosulfinate generation system (TGS). The kinetics of the TGS reaction, namely, the methionine γ-lyase-catalyzed β-elimination of S-alk(en)yl-L-cysteine sulfoxides, was investigated via 1H NMR spectroscopy for the first time, revealing fast conversion rates and the efficient production of anticandidal dialk(en)ylthiosulfinates. The anticandidal potential of this system vs. synthetic thiosulfinates was investigated through an in vitro assay. TGS proved to be more effective (MIC range 0.36–1.1 μg/mL) than individual substances (MIC range 0.69–3.31 μg/mL). The tested preparations had an additive effect with the commercial antimycotics fluconazole, amphotericin B and 5-flucytosine demonstrating a fractional inhibitory coefficient index in the range of 0.5–2 μg/mL. TGS can be regarded as an attractive candidate for the targeted delivery of antimycotic thiosulfinates and for further implementation onto medically implanted devices. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

25 pages, 1990 KiB  
Review
Anti-Candidal Marine Natural Products: A Review
by Arumugam Ganeshkumar, Juliana Caparroz Gonçale, Rajendran Rajaram and Juliana Campos Junqueira
J. Fungi 2023, 9(8), 800; https://doi.org/10.3390/jof9080800 - 28 Jul 2023
Cited by 9 | Viewed by 3080
Abstract
Candida spp. are common opportunistic microorganisms in the human body and can cause mucosal, cutaneous, and systemic infections, mainly in individuals with weakened immune systems. Candida albicans is the most isolated and pathogenic species; however, multi-drug-resistant yeasts like Candida auris have recently been [...] Read more.
Candida spp. are common opportunistic microorganisms in the human body and can cause mucosal, cutaneous, and systemic infections, mainly in individuals with weakened immune systems. Candida albicans is the most isolated and pathogenic species; however, multi-drug-resistant yeasts like Candida auris have recently been found in many different regions of the world. The increasing development of resistance to common antifungals by Candida species limits the therapeutic options. In light of this, the present review attempts to discuss the significance of marine natural products in controlling the proliferation and metabolism of C. albicans and non-albicans species. Natural compounds produced by sponges, algae, sea cucumber, bacteria, fungi, and other marine organisms have been the subject of numerous studies since the 1980s, with the discovery of several products with different chemical frameworks that can inhibit Candida spp., including antifungal drug-resistant strains. Sponges fall under the topmost category when compared to all other organisms investigated. Terpenoids, sterols, and alkaloids from this group exhibit a wide array of inhibitory activity against different Candida species. Especially, hippolide J, a pair of enantiomeric sesterterpenoids isolated from the marine sponge Hippospongia lachne, exhibited strong activity against Candida albicans, Candida parapsilosis, and Candida glabrata. In addition, a comprehensive analysis was performed to unveil the mechanisms of action and synergistic activity of marine products with conventional antifungals. In general, the results of this review show that the majority of chemicals derived from the marine environment are able to control particular functions of microorganisms belonging to the Candida genus, which can provide insights into designing new anti-candidal therapies. Full article
(This article belongs to the Special Issue New Perspectives for Candidiasis 2.0)
Show Figures

Figure 1

16 pages, 1511 KiB  
Article
Anti-Candida and Anti-Leishmanial Activities of Encapsulated Cinnamomum verum Essential Oil in Chitosan Nanoparticles
by Rym Essid, Ameni Ayed, Kais Djebali, Houda Saad, Mondher Srasra, Yasmine Othmani, Nadia Fares, Selim Jallouli, Islem Abid, Monerah Rashed Alothman, Ferid Limam and Olfa Tabbene
Molecules 2023, 28(15), 5681; https://doi.org/10.3390/molecules28155681 - 27 Jul 2023
Cited by 20 | Viewed by 2741
Abstract
Nanoencapsulation is widely considered as a highly effective strategy to enhance essential oils’ (EO) stability by protecting them from oxidative deterioration and evaporation. The present study aims to optimize and characterize an efficient technique for encapsulating Cinnamomum (C.) verum essential oil into chitosan [...] Read more.
Nanoencapsulation is widely considered as a highly effective strategy to enhance essential oils’ (EO) stability by protecting them from oxidative deterioration and evaporation. The present study aims to optimize and characterize an efficient technique for encapsulating Cinnamomum (C.) verum essential oil into chitosan nanoparticles using response surface methodology (RSM). Moreover, the optimized C. verum EO nanoparticle was investigated for its antibacterial (against Gram-positive and Gram-negative bacteria), antifungal (against Candida albicans), and antiparasitic activity (against Leishmania parasites). Five parameters were investigated using a Plackett–Burman and Box–Behnken statistical design: the chitosan molecular weight, TPP concentration, C. verum EO/chitosan ratio, mixing method, and the duration of the reaction. Encapsulation efficiency and anti-candida activity were considered as responses. The antibacterial, anticandidal, and anti-leishmanial activities were also assessed using a standard micro-broth dilution assay and the cytotoxicity assay was assessed against the macrophage cell line RAW 264.7. The optimized nanoparticles were characterized using Fourier transform infrared spectroscopy, Zeta potential, and scanning electron microscopy. The study results indicated that under optimal conditions, the nanoencapsulation of C. verum EO into chitosan nanoparticles resulted in an encapsulation efficiency of 92.58%, with a regular distribution, a nanoparticle size of 480 ± 14.55 nm, and a favorable Zeta potential of 35.64 ± 1.37 mV. The optimized C. verum EO/chitosan nanoparticles showed strong antifungal activity against C. albicans pathogens (CMI = 125 µg mL−1), notable antibacterial activity against both Gram-positive and Gram-negative bacteria (ranging from 125 to 250 µg mL−1), high leishmanicidal potential against the promastigotes form of L. tropica and L. major (IC50 = 10.47 and 15.09 µg mL−1, respectively), and a four-fold cytotoxicity reduction compared to non-encapsulated essential oil. These results suggest that C. verum EO-loaded chitosan nanoparticles could be a promising delivery system for the treatment of cutaneous Candida albicans infections. Full article
(This article belongs to the Special Issue Development of New Drugs from Bioactive Compounds)
Show Figures

Graphical abstract

Back to TopTop