Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = anti-pigmentary effect

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 916 KB  
Review
Biological Roles of Melanin and Natural Product-Derived Approaches for Its Modulation
by Sunghyun Hong, Hanbin Lim and Do-Hee Kim
Int. J. Mol. Sci. 2026, 27(2), 653; https://doi.org/10.3390/ijms27020653 - 8 Jan 2026
Viewed by 270
Abstract
Melanin produced in melanocytes contributes to photoprotection, oxidative stress reduction, immune regulation, and epidermal homeostasis, while its dysregulation underlies diverse pigmentary disorders. Natural products modulate melanogenesis by regulating tyrosinase activity, intracellular signaling pathways such as extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) and cyclicAMP/protein [...] Read more.
Melanin produced in melanocytes contributes to photoprotection, oxidative stress reduction, immune regulation, and epidermal homeostasis, while its dysregulation underlies diverse pigmentary disorders. Natural products modulate melanogenesis by regulating tyrosinase activity, intracellular signaling pathways such as extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) and cyclicAMP/protein kinase A/cAMP response element-binding protein (cAMP/PKA/CREB), and cellular redox balance. Anti-melanogenic effects have been reported for various fruit-derived phytochemicals, ginseng-based metabolites, and plant polyphenols, which act through direct enzymatic inhibition, suppression of melanoenic signaling, modulation of melanosome dynamics, and antioxidant or anti-inflammatory activities. Advances in delivery systems, including nano- and microencapsulation platforms, further enhance the stability and topical bioavailability of these compounds. In contrast, certain methoxylated flavonoids and phenolic constituents can stimulate pigmentation by sustaining melanogenic signaling and promoting microphthalmia-associated transcription factor (MITF)-driven transcription, emphasizing the context-dependent and bidirectional influence of natural substances on pigmentation outcomes. Collectively, these findings highlight the therapeutic potential of natural product-based modulators of melanogenesis while underscoring the need for mechanistic clarification, safety evaluation, and translational studies to ensure effective and controlled pigmentation management. This review summarizes the biological functions of melanin and examines natural strategies for regulating pigmentation. Full article
(This article belongs to the Special Issue Molecular Mechanisms for Skin Protection and Aging)
Show Figures

Figure 1

37 pages, 5930 KB  
Article
The Effectiveness of a Topical Rosehip Oil Treatment on Facial Skin Characteristics: A Pilot Study on Wrinkles, UV Spots Reduction, Erythema Mitigation, and Age-Related Signs
by Diana Patricia Oargă (Porumb), Mihaiela Cornea-Cipcigan, Silvia Amalia Nemeș and Mirela Irina Cordea
Cosmetics 2025, 12(3), 125; https://doi.org/10.3390/cosmetics12030125 - 16 Jun 2025
Cited by 2 | Viewed by 20925
Abstract
Skin aging is a complex process influenced by several factors, including UV exposure, environmental stressors, and lifestyle choices. The demand for effective, natural skincare products has driven research into plant-based oils rich in bioactive compounds. Rosehip oil has garnered attention for its high [...] Read more.
Skin aging is a complex process influenced by several factors, including UV exposure, environmental stressors, and lifestyle choices. The demand for effective, natural skincare products has driven research into plant-based oils rich in bioactive compounds. Rosehip oil has garnered attention for its high content of carotenoids, phenolics, and antioxidants, which are known for their anti-aging, photoprotective, and skin-rejuvenating properties. Despite the growing interest in rosehip oil, limited studies have investigated its efficacy on human skin using advanced imaging technologies. This study aims to fill this gap by evaluating the efficacy of cold-pressed Rosa canina seed oil on facial skin characteristics, specifically wrinkles, ultraviolet (UV) spot reduction, and erythema mitigation, using imaging technologies (the VISIA analysis system). Seed oil pressed from R. canina collected from the Băișoara area of Cluj County has been selected for this study due to its high carotenoid, phenolic, and antioxidant contents. The oil has also been analyzed for the content of individual carotenoids (i.e., lutein, lycopene, β Carotene, and zeaxanthin) using HPLC-DAD (High-Performance Liquid Chromatography—Diode Array Detector), along with lutein and zeaxanthin esters and diesters. After the preliminary screening of multiple Rosa species for carotenoid, phenolic, and antioxidant contents, the R. canina sample with the highest therapeutic potential was selected. A cohort of 27 volunteers (aged 30–65) underwent a five-week treatment protocol, wherein three drops of the selected rosehip oil were topically applied to the face daily. The VISIA imaging was conducted before and after the treatment to evaluate changes in skin parameters, including the wrinkle depth, UV-induced spots, porphyrins, and texture. Regarding the bioactivities, rosehip oil showed a significant total carotenoids content (28.398 μg/mL), with the highest levels in the case of the β-carotene (4.49 μg/mL), lutein (4.33 μg/mL), and zexanthin (10.88 μg/mL) contents. Results indicated a significant reduction in mean wrinkle scores across several age groups, with notable improvements in individuals with deeper baseline wrinkles. UV spots also showed visible declines, suggesting ideal photoprotective and anti-pigmentary effects attributable to the oil’s high vitamin A and carotenoid content. Porphyrin levels, often correlated with bacterial activity, decreased in most subjects, hinting at an additional antimicrobial or microbiome-modulatory property. However, skin responses varied, possibly due to individual differences in skin sensitivity, environmental factors, or compliance with sun protection. Overall, the topical application of R. canina oil appeared to improve the facial skin quality, reduce the appearance of age-related markers, and support skin health. These findings reinforce the potential use of rosehip oil in anti-aging skincare formulations. Further long-term, large-scale studies are warranted to refine dosing regimens, investigate mechanisms of action, and explore synergistic effects with other bioactive compounds. Full article
(This article belongs to the Special Issue Skin Anti-Aging Strategies)
Show Figures

Figure 1

17 pages, 2142 KB  
Review
Exploring Anti-Aging Effects of Topical Treatments for Actinic Keratosis
by Federica Li Pomi, Andrea d’Aloja, Dario Valguarnera, Mario Vaccaro and Francesco Borgia
Medicina 2025, 61(2), 207; https://doi.org/10.3390/medicina61020207 - 24 Jan 2025
Cited by 2 | Viewed by 5503
Abstract
Background and Objectives: Actinic keratosis (AK) is a precancerous cutaneous lesion driven by chronic ultraviolet (UV) exposure, often coexisting with features of photoaging, such as wrinkles and pigmentary irregularities. Recent evidence suggests that treatments for AK may also counteract photoaging through shared [...] Read more.
Background and Objectives: Actinic keratosis (AK) is a precancerous cutaneous lesion driven by chronic ultraviolet (UV) exposure, often coexisting with features of photoaging, such as wrinkles and pigmentary irregularities. Recent evidence suggests that treatments for AK may also counteract photoaging through shared molecular pathways, including oxidative stress and inflammation. This narrative review explores the dual benefits of AK therapies, highlighting their potential anti-aging and skin-lightening effects, and implications for improving skin appearance alongside lesion clearance. Materials and Methods: The literature was analyzed to assess the efficacy, mechanisms, and cosmetic outcomes of commonly used AK treatments, including topical agents (5-fluorouracil (5-FU), imiquimod, diclofenac, and tirbanibulin), and photodynamic therapy (PDT). Studies highlighting their effects on photoaged skin, collagen remodeling, pigmentation, and patient satisfaction were reviewed. Results: PDT emerged as the most validated treatment, demonstrating improved collagen synthesis, skin texture, and pigmentation. 5-FU showed remodeling of the dermal matrix and increased procollagen levels, but local skin reactions represent a major limitation. Imiquimod enhanced dermal fibroplasia and reduced solar elastosis, while diclofenac provided mild photodamage improvements with minimal adverse effects. Tirbanibulin showed promising aesthetic outcomes, including skin lightening and a reduction in mottled pigmentation, with favorable tolerability. Conclusions: AK therapies offer a dual-purpose strategy, addressing both precancerous lesions and cosmetic concerns associated with photoaging. While PDT remains the gold standard, emerging agents like tirbanibulin ointment exhibit substantial potential. Future research should focus on optimizing treatment protocols and evaluating long-term cosmetic outcomes to enhance patient satisfaction and compliance. Full article
(This article belongs to the Section Dermatology)
Show Figures

Figure 1

19 pages, 4054 KB  
Article
Salt Stress Enhanced Bioactivity of Quinoa Leaf Extracts: An In Vitro and In Silico Study of Acetylcholinesterase and Tyrosinase Inhibition for Sustainable Drug Development
by Narmine Slimani, Soumaya Arraouadi, Hafedh Hajlaoui, Antonio Cid-Samamed, Mohamed Ali Borgi and Mejdi Snoussi
Pharmaceuticals 2025, 18(1), 77; https://doi.org/10.3390/ph18010077 - 10 Jan 2025
Cited by 1 | Viewed by 1748
Abstract
Background: Quinoa is recognized for its nutritional and pharmacological properties. This study aims to investigate the impact of salt stress induced by varying concentrations of sodium chloride (NaCl) on the production of phenolic compounds and their biological activities in different quinoa accessions. Method: [...] Read more.
Background: Quinoa is recognized for its nutritional and pharmacological properties. This study aims to investigate the impact of salt stress induced by varying concentrations of sodium chloride (NaCl) on the production of phenolic compounds and their biological activities in different quinoa accessions. Method: Leaves from three quinoa accessions (Q4, Q24, and Q45) cultivated under increasing NaCl treatments were subjected to chemical analysis using ethanol and water extract. The concentrations of various phenolic compounds, including polyphenols, tannins, anthocyanins, and flavonoids, were quantified. HPLC-DAD-ESI-MS/MS was employed to identify the major compounds in the water extract. Additionally, antioxidants (ABTS and FRAP), anti-tyrosinase, and anti-acetylcholinesterase effects were assessed using in vitro and in silico approaches. Results: NaCl treatment significantly increased the levels of phenolic compounds across all quinoa accessions. The Q45 accession exhibited the highest accumulation of these compounds, particularly in the aqueous extracts at the 200 mM NaCl concentration. Increases were observed in flavonoids (144%), anthocyanins (125%), tannins (89%), and total polyphenols (65%) relative to controls. HPLC-DAD-ESI-MS/MS analysis corroborated these findings, showing that the main compounds also increased with higher NaCl concentrations. Furthermore, the biological efficacy tests revealed that the IC50 values for both tyrosinase and acetylcholinesterase activities decreased with greater salt stress, indicating enhanced enzyme inhibition. The antioxidant activity of these extracts also showed a significant increase as the salt stress levels rose. Conclusions: Salt stress not only promotes the production of bioactive phenolic compounds in quinoa leaves but also enhances their inhibitory effects on key enzymes associated with neurodegenerative and pigmentary disorders. These findings suggest that quinoa may serve as a valuable resource for therapeutic applications, particularly under increased salinity conditions. Full article
Show Figures

Figure 1

19 pages, 3637 KB  
Article
Valorization of Hom Thong Banana Peel (Musa sp., AAA Group) as an Anti-Melanogenic Agent Through Inhibition of Pigmentary Genes and Molecular Docking Study
by Pichchapa Linsaenkart, Wipawadee Yooin, Supat Jiranusornkul, Korawan Sringarm, Chaiwat Arjin, Pornchai Rachtanapun, Kittisak Jantanasakulwong, Juan M. Castagnini and Warintorn Ruksiriwanich
Int. J. Mol. Sci. 2024, 25(23), 13202; https://doi.org/10.3390/ijms252313202 - 8 Dec 2024
Cited by 3 | Viewed by 2420
Abstract
Prolonged and unprotected exposure to the environment explicitly influences the development of hyperpigmented lesions. The enzyme tyrosinase (TYR) is a key target for regulating melanin synthesis. Several bioactive compounds derived from plant extracts have been found to possess potent anti-melanogenesis properties against TYR. [...] Read more.
Prolonged and unprotected exposure to the environment explicitly influences the development of hyperpigmented lesions. The enzyme tyrosinase (TYR) is a key target for regulating melanin synthesis. Several bioactive compounds derived from plant extracts have been found to possess potent anti-melanogenesis properties against TYR. In particular, the potential of banana peels from various varieties has garnered interest due to their application in skin hyperpigmentation treatment. A molecular docking study demonstrated interactions between rosmarinic acid, which is predominantly found in all Hom Thong peel extracts, and the active site of TYR (PDB ID: 2Y9X) at residues HIS263, VAL283, SER282, and MET280, with the lowest binding energy of −5.05 kcal/mol, showing the strongest interaction. Additionally, Hom Thong banana peels are rich in phenolic compounds that could inhibit melanin content and tyrosinase activity in both human and mouse melanoma cells. These effects may be attributed to the suppression of gene expression related to melanogenesis, including the regulator gene MITF and pigmentary genes TYR, TRP-1, and DCT, indicating effects comparable to those of the standard treatment groups with arbutin and kojic acid. Our findings indicated the potential of Hom Thong peel extracts as anti-melanogenic agents. Full article
Show Figures

Figure 1

15 pages, 3522 KB  
Article
Syringaresinol Attenuates α-Melanocyte-Stimulating Hormone-Induced Reactive Oxygen Species Generation and Melanogenesis
by Kyuri Kim, Jihyun Yoon and Kyung-Min Lim
Antioxidants 2024, 13(7), 876; https://doi.org/10.3390/antiox13070876 - 21 Jul 2024
Cited by 5 | Viewed by 3112
Abstract
Ginseng has been utilized for centuries in both the medicinal and cosmetic realms. Recent studies have actively investigated the biological activity of ginseng berry and its constituents. (+)-Syringaresinol [(+)-SYR], an active component of ginseng berry, has been demonstrated to have beneficial effects on [...] Read more.
Ginseng has been utilized for centuries in both the medicinal and cosmetic realms. Recent studies have actively investigated the biological activity of ginseng berry and its constituents. (+)-Syringaresinol [(+)-SYR], an active component of ginseng berry, has been demonstrated to have beneficial effects on the skin, but its potential impact on skin pigmentation has not been fully explored. Here, the antioxidant and anti-pigmentary activity of (+)-SYR were evaluated in B16F10 murine melanoma cells and in an artificial human pigmented skin model, Melanoderm™. A real-time PCR, Western blotting, immunofluorescence staining, and histochemistry staining were conducted to confirm the effects of (+)-SYR on pigmentation. (+)-SYR reduced melanogenesis and dendrite elongation in α-melanocyte-stimulating hormone (α-MSH)-primed B16F10 cells with low cytotoxicity. (+)-SYR suppressed the expression of melanogenic genes, namely tyrosinase (TYR), tyrosinase-related protein 1 (TRP-1), and tyrosinase-related protein 2 (TRP-2). Notably, (+)-SYR attenuated α-MSH-induced cytosolic and mitochondrial reactive oxygen species (ROS) generation, which was attributable at least in part to the suppression of NADPH oxidase-4 (NOX 4) expression. Finally, the brightening activities of (+)-SYR were verified using Melanoderm™, underscoring the potential of ginseng berry and (+)-SYR as functional ingredients in skin-brightening cosmetics. Full article
(This article belongs to the Special Issue Antioxidants for Skin Health)
Show Figures

Figure 1

20 pages, 3200 KB  
Article
Antioxidant, Anti-Inflammation, and Melanogenesis Inhibition of Sang 5 CMU Rice (Oryza sativa) Byproduct for Cosmetic Applications
by Pichchapa Linsaenkart, Warintorn Ruksiriwanich, Anurak Muangsanguan, Sarana Rose Sommano, Korawan Sringarm, Chaiwat Arjin, Pornchai Rachtanapun, Kittisak Jantanasakulwong, Juan M. Castagnini, Romchat Chutoprapat and Korawinwich Boonpisuttinant
Plants 2024, 13(13), 1795; https://doi.org/10.3390/plants13131795 - 28 Jun 2024
Cited by 6 | Viewed by 3756
Abstract
Prolonged exposure to environmental oxidative stress can result in visible signs of skin aging such as wrinkles, hyperpigmentation, and thinning of the skin. Oryza sativa variety Sang 5 CMU, an inbred rice cultivar from northern Thailand, contains phenolic and flavonoid compounds in its [...] Read more.
Prolonged exposure to environmental oxidative stress can result in visible signs of skin aging such as wrinkles, hyperpigmentation, and thinning of the skin. Oryza sativa variety Sang 5 CMU, an inbred rice cultivar from northern Thailand, contains phenolic and flavonoid compounds in its bran and husk portions that are known for their natural antioxidant properties. In this study, we evaluated the cosmetic properties of crude extracts from rice bran and husk of Sang 5 CMU, focusing on antioxidant, anti-inflammatory, anti-melanogenesis, and collagen-regulating properties. Our findings suggest that both extracts possess antioxidant potential against DPPH, ABTS radicals, and metal ions. Additionally, they could downregulate TBARS levels from 125% to 100% of the control, approximately, while increasing the expression of genes related to the NRF2-mediated antioxidant pathway, such as NRF2 and HO-1, in H2O2-induced human fibroblast cells. Notably, rice bran and husk extracts could increase mRNA levels of HO-1 more greatly than the standard L-ascorbic acid, by about 1.29 and 1.07 times, respectively. Furthermore, the crude extracts exhibited anti-inflammatory activity by suppressing nitric oxide production in both mouse macrophage and human fibroblast cells. Specifically, the bran and husk extracts inhibited the gene expression of the inflammatory cytokine IL-6 in LPS-induced inflammation in fibroblasts. Moreover, both extracts demonstrated potential for inhibiting melanin production and intracellular tyrosinase activity in human melanoma cells by decreasing the expression of the transcription factor MITF and the pigmentary genes TYR, TRP-1, and DCT. They also exhibit collagen-stimulating effects by reducing MMP-2 expression in H2O2-induced fibroblasts from 135% to 80% of the control, approximately, and increasing the gene associated with type I collagen production, COL1A1. Overall, the rice bran and husk extracts of Sang 5 CMU showed promise as effective natural ingredients for cosmetic applications. Full article
Show Figures

Figure 1

18 pages, 14717 KB  
Review
Platelet-Rich Plasma (PRP) in Dermatology: Cellular and Molecular Mechanisms of Action
by Denisa Vladulescu, Lucian G. Scurtu, Anca Angela Simionescu, Francesca Scurtu, Marco I. Popescu and Olga Simionescu
Biomedicines 2024, 12(1), 7; https://doi.org/10.3390/biomedicines12010007 - 19 Dec 2023
Cited by 43 | Viewed by 20249
Abstract
Platelet-rich plasma (PRP) therapy has gained attention in the scientific field due to its potential regenerative effects and great benefit–risk ratio. This review extensively explores the most studied mechanisms of this therapy according to the etiopathogenesis of skin diseases: cellular proliferation, matrix formation, [...] Read more.
Platelet-rich plasma (PRP) therapy has gained attention in the scientific field due to its potential regenerative effects and great benefit–risk ratio. This review extensively explores the most studied mechanisms of this therapy according to the etiopathogenesis of skin diseases: cellular proliferation, matrix formation, regulation of inflammation, angiogenesis, collagen synthesis, and the remodeling of new tissue. Moreover, it draws on newly reported and lesser-known effects of PRP: its anti-apoptotic effects, immunological suppression, decrease in melanin synthesis, anti-microbial effects, overexpression of miR-155, antioxidant effects, and their involved pathways. This work aims to provide a complete update for understanding PRP’s benefits and clinical relevance in wound healing, alopecia, pigmentary disorders, scars, rejuvenation, lichen sclerosus, and other inflammatory dermatoses, based on the current evidence. Furthermore, recent reports with novel indications for PRP therapy are highlighted, and new potential pathways correlated with the pathogenesis of skin diseases are explored. Full article
Show Figures

Figure 1

12 pages, 309 KB  
Commentary
Uses of Polypodium leucotomos Extract in Oncodermatology
by Paolo Calzari, Silvia Vaienti and Gianluca Nazzaro
J. Clin. Med. 2023, 12(2), 673; https://doi.org/10.3390/jcm12020673 - 14 Jan 2023
Cited by 8 | Viewed by 10389
Abstract
The effects of UV radiation on the skin and its damage mechanisms are well known. New modalities of exogenous photoprotection have been studied. It was demonstrated that Polypodium leucotomos extract acts as an antioxidant, photoprotectant, antimutagenic, anti-inflammatory, and immunoregulator. It is effective when [...] Read more.
The effects of UV radiation on the skin and its damage mechanisms are well known. New modalities of exogenous photoprotection have been studied. It was demonstrated that Polypodium leucotomos extract acts as an antioxidant, photoprotectant, antimutagenic, anti-inflammatory, and immunoregulator. It is effective when taken orally and/or applied topically to support the prevention of skin cancers. It also has an important role in preventing photoaging. This review aims to report the mechanisms through which Polypodium leucotomos acts and to analyze its uses in oncodermatology with references to in vitro and in vivo studies. Additionally, alternative uses in non-neoplastic diseases, such as pigmentary disorders, photosensitivity, and atopic dermatitis, have been considered. Full article
(This article belongs to the Section Dermatology)
17 pages, 4698 KB  
Article
SNA077, an Extract of Marine Streptomyces sp., Inhibits Melanogenesis by Downregulating Melanogenic Proteins via Inactivation of cAMP/PKA/CREB Signaling
by Su-Jin Lim, Da-Won Jung, Prima F. Hillman, Sang-Jip Nam and Chang-Seok Lee
Int. J. Mol. Sci. 2022, 23(23), 14922; https://doi.org/10.3390/ijms232314922 - 29 Nov 2022
Cited by 5 | Viewed by 2640
Abstract
Excess melanin in skin is known to be the main cause of hyper-pigmentary skin diseases such as freckles and lentigo. This study aimed to evaluate the depigmenting efficacy of an extract from the marine microorganism strain, Streptomyces sp. SNA077. To determine the anti-melanogenic [...] Read more.
Excess melanin in skin is known to be the main cause of hyper-pigmentary skin diseases such as freckles and lentigo. This study aimed to evaluate the depigmenting efficacy of an extract from the marine microorganism strain, Streptomyces sp. SNA077. To determine the anti-melanogenic efficacy of SNA077, we assessed the melanin contents of SNA077-treated B16, Melan-a, and MNT-1 cells. We observed the expression of key enzymes in melanogenesis via qRT-PCR and Western blot analyses. We further estimated the skin-whitening effect of SNA077 using a skin-equivalent model. SNA077 dramatically decreased the melanin production of B16 cells, Melan-a, and MNT-1 cells. In B16 cells treated with SNA077, the activity of cellular tyrosinase was clearly inhibited. In addition, the mRNA and protein expression levels of melanogenic genes were suppressed by SNA077 treatment in B16 and MNT-1 cells. Upstream of tyrosinase, the expression levels of phospho-CREB, phospho-p38, PKA activity, cyclic AMP production, and MC1R gene expression were inhibited by SNA077. Finally, SNA077 clearly showed a skin-brightening effect with a reduced melanin content in the skin tissue model. Collectively, our results suggest for the first time that an extract of marine Streptomyces sp. SNA077 could be a novel anti-melanogenic material for skin whitening. Full article
(This article belongs to the Special Issue Melanins and Melanogenesis 3.0: From Nature to Applications)
Show Figures

Figure 1

12 pages, 276 KB  
Review
Anti-Pigmentary Natural Compounds and Their Mode of Action
by Kyuri Kim, YoonJung Huh and Kyung-Min Lim
Int. J. Mol. Sci. 2021, 22(12), 6206; https://doi.org/10.3390/ijms22126206 - 8 Jun 2021
Cited by 41 | Viewed by 6743
Abstract
Hyper-activated melanocytes are the major cause of skin hyper-pigmentary disorders, such as freckles and melasma. Increasing efforts have been made to search for materials with depigmenting activity to develop functional cosmetics. As a result, numerous materials have been reported to have depigmenting activity [...] Read more.
Hyper-activated melanocytes are the major cause of skin hyper-pigmentary disorders, such as freckles and melasma. Increasing efforts have been made to search for materials with depigmenting activity to develop functional cosmetics. As a result, numerous materials have been reported to have depigmenting activity but some of them are known to cause unwanted side effects. Consequently, anti-pigmentary natural compounds without concern of toxicity are in great demand. Virtually all sorts of natural sources have been investigated to find anti-pigmentary natural compounds. This review summarizes recently reported anti-pigmentary natural compounds and their mode of action from the ocean, plants, and bacteria. Full article
20 pages, 1177 KB  
Review
Antifibrotic and Anti-Inflammatory Actions of α-Melanocytic Hormone: New Roles for an Old Player
by Roshan Dinparastisaleh and Mehdi Mirsaeidi
Pharmaceuticals 2021, 14(1), 45; https://doi.org/10.3390/ph14010045 - 8 Jan 2021
Cited by 26 | Viewed by 11943
Abstract
The melanocortin system encompasses melanocortin peptides, five receptors, and two endogenous antagonists. Besides pigmentary effects generated by α-Melanocytic Hormone (α-MSH), new physiologic roles in sexual activity, exocrine secretion, energy homeostasis, as well as immunomodulatory actions, exerted by melanocortins, have been described recently. Among [...] Read more.
The melanocortin system encompasses melanocortin peptides, five receptors, and two endogenous antagonists. Besides pigmentary effects generated by α-Melanocytic Hormone (α-MSH), new physiologic roles in sexual activity, exocrine secretion, energy homeostasis, as well as immunomodulatory actions, exerted by melanocortins, have been described recently. Among the most common and burdensome consequences of chronic inflammation is the development of fibrosis. Depending on the regenerative capacity of the affected tissue and the quality of the inflammatory response, the outcome is not always perfect, with the development of some fibrosis. Despite the heterogeneous etiology and clinical presentations, fibrosis in many pathological states follows the same path of activation or migration of fibroblasts, and the differentiation of fibroblasts to myofibroblasts, which produce collagen and α-SMA in fibrosing tissue. The melanocortin agonists might have favorable effects on the trajectories leading from tissue injury to inflammation, from inflammation to fibrosis, and from fibrosis to organ dysfunction. In this review we briefly summarized the data on structure, receptor signaling, and anti-inflammatory and anti-fibrotic properties of α-MSH and proposed that α-MSH analogues might be promising future therapeutic candidates for inflammatory and fibrotic diseases, regarding their favorable safety profile. Full article
(This article belongs to the Special Issue Lung Injury and Repair)
Show Figures

Figure 1

8 pages, 375 KB  
Review
Ascorbic Acid in Skin Health
by Soledad Ravetti, Camila Clemente, Sofía Brignone, Lisandro Hergert, Daniel Allemandi and Santiago Palma
Cosmetics 2019, 6(4), 58; https://doi.org/10.3390/cosmetics6040058 - 1 Oct 2019
Cited by 114 | Viewed by 74847
Abstract
Ascorbic acid (vitamin C) is a water-soluble vitamin and a recognized antioxidant drug that is used topically in dermatology to treat and prevent the changes associated with photoaging, as well as for the treatment of hyperpigmentation. Ascorbic acid has neutralizing properties of free [...] Read more.
Ascorbic acid (vitamin C) is a water-soluble vitamin and a recognized antioxidant drug that is used topically in dermatology to treat and prevent the changes associated with photoaging, as well as for the treatment of hyperpigmentation. Ascorbic acid has neutralizing properties of free radicals, being able to interact with superoxide, hydroxyl and free oxygen ions, preventing the inflammatory processes, carcinogens, and other processes that accelerate photoaging in the skin. Current research focuses on the search for stable compounds of ascorbic acid and new alternatives for administration in the dermis. Unlike plants and most animals, humans do not have the ability to synthesize our own ascorbic acid due to the deficiency of the enzyme L-gulono-gamma-lactone oxidase, which catalyzes the passage terminal in the ascorbic acid biosynthesis. To deal with this situation, humans obtain this vitamin from the diet and/or vitamin supplements, thus preventing the development of diseases and achieving general well-being. Ascorbic acid is involved in important metabolic functions and is vital for the growth and maintenance of healthy bones, teeth, gums, ligaments, and blood vessels. Ascorbic acid is a very unstable vitamin and is easily oxidized in aqueous solutions and cosmetic formulations. Ascorbic acid is extensively used as an ingredient in anti-aging cosmetic products, as sodium ascorbate or ascorbyl palmitate. This review discusses and describes the potential roles for ascorbic acid in skin health and their clinical applications (antioxidative, photoprotective, anti-aging, and anti-pigmentary effects) of topical ascorbic acid on the skin and main mechanisms of action. Considering the instability and difficulty in administering ascorbic acid, we also discuss the importance of several factors involved in the formulation and stabilization of their topical preparations in this review. Full article
(This article belongs to the Special Issue Topical Pharmaceutical Products and Cosmetics)
Show Figures

Figure 1

13 pages, 3315 KB  
Article
Anti-Pigmentary Effect of (-)-4-Hydroxysattabacin from the Marine-Derived Bacterium Bacillus sp.
by Kyuri Kim, Alain S. Leutou, Haein Jeong, Dayoung Kim, Chi Nam Seong, Sang-Jip Nam and Kyung-Min Lim
Mar. Drugs 2017, 15(5), 138; https://doi.org/10.3390/md15050138 - 13 May 2017
Cited by 22 | Viewed by 5458
Abstract
Bioactivity-guided isolation of a crude extract from a culture broth of Bacillus sp. has led to the isolation of (-)-4-hydroxysattabacin (1). The inhibitory effect of (-)-4-hydroxysattabacin (1) was investigated on melanogenesis in the murine melanoma cell line, B16F10, and human melanoma cell line, [...] Read more.
Bioactivity-guided isolation of a crude extract from a culture broth of Bacillus sp. has led to the isolation of (-)-4-hydroxysattabacin (1). The inhibitory effect of (-)-4-hydroxysattabacin (1) was investigated on melanogenesis in the murine melanoma cell line, B16F10, and human melanoma cell line, MNT-1, as well as a pigmented 3D-human skin model. (-)-4-Hydroxysattabacin treatment decreased melanin contents in a dose-dependent manner in α-melanocyte stimulating hormone (α-MSH)-stimulated B16F10 cells. Quantitative real time PCR (qRT–PCR) demonstrated that treatment with (-)-4-hydroxysattabacin down-regulated several melanogenic genes, including tyrosinase, tyrosinase-related protein 1 (TRP-1), and tyrosinase-related protein 2 (TRP-2) while their enzymatic activities were unaffected. The anti-melanogenic effects of (-)-4-hydroxysattabacin were further demonstrated in a pigmented 3D human epidermal skin model, MelanodermTM, and manifested as whitening and regression of melanocyte activation in the tissue. Full article
Show Figures

Graphical abstract

Back to TopTop