Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (81)

Search Parameters:
Keywords = anti-contamination strategy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1299 KB  
Review
From Natural Defense to Synthetic Application: Emerging Bacterial Anti-Phage Mechanisms and Their Potential in Industrial Fermentation
by Hengwei Zhang, Jiajia You, Guomin Li, Zhiming Rao and Xian Zhang
Fermentation 2026, 12(1), 17; https://doi.org/10.3390/fermentation12010017 - 29 Dec 2025
Viewed by 615
Abstract
Bacteriophage contamination remains a persistent and costly challenge in industrial bio-manufacturing. Traditional control strategies rely heavily on physical exclusion and chemical disinfection, yet these passive measures often fail to address the rapid evolutionary adaptation of phages and their persistence in complex fermentation environments. [...] Read more.
Bacteriophage contamination remains a persistent and costly challenge in industrial bio-manufacturing. Traditional control strategies rely heavily on physical exclusion and chemical disinfection, yet these passive measures often fail to address the rapid evolutionary adaptation of phages and their persistence in complex fermentation environments. Recent genomic and biochemical discoveries have revealed a diverse arsenal of bacterial antiviral immune systems beyond the classical Restriction-Modification and CRISPR-Cas pathways, including cyclic oligonucleotide-based signaling systems and various abortive infection mechanisms. This review systematically summarizes the latest advances in bacterial anti-phage defense mechanisms, categorizing them into adsorption inhibition, replication interference, nucleic acid degradation, and population-level suicide defense. Furthermore, we discuss the application of synthetic biology in integrating these defense modules to construct broad-spectrum “pan-immune” microbial chassis. This active defense strategy offers a fundamental solution to phage predation and provides a theoretical basis for developing robust next-generation cell factories. Full article
(This article belongs to the Special Issue Feature Review Papers in Industrial Fermentation, 2nd Edition)
Show Figures

Figure 1

37 pages, 3824 KB  
Review
Unlocking the Oxidative Performance of Peracetic Acid: A Comprehensive Review of Activation Pathways and Mechanisms for Environmental Remediation
by Chun Xiao, Lihong Ai, Jinxi Chen, Wu Ren, Jinran Feng, Yue Lu, Yaoyao Chen, Yunxiu Luo, Xindong Yang, Min Dai, Jiangfei Cao, Jianqiao Qin and Chunsheng Xie
Toxics 2026, 14(1), 6; https://doi.org/10.3390/toxics14010006 - 19 Dec 2025
Viewed by 607
Abstract
The activation of peracetic acid (PAA) to generate highly reactive species has emerged as a promising advanced oxidation process (AOP) for the degradation of refractory organic pollutants. This review systematically summarizes the recent advancements in PAA-based AOPs, encompassing various activation strategies, underlying reaction [...] Read more.
The activation of peracetic acid (PAA) to generate highly reactive species has emerged as a promising advanced oxidation process (AOP) for the degradation of refractory organic pollutants. This review systematically summarizes the recent advancements in PAA-based AOPs, encompassing various activation strategies, underlying reaction mechanisms, and applications across different environmental matrices. The activation methods are critically discussed, including direct energy activation, homogeneous catalysis, and heterogeneous catalysis. The generation process of diverse reactive species, like hydroxyl radicals (HO·), organic radicals (CH3C(O)O·, CH3C(O)OO·), and singlet oxygen (1O2), was introduced, and their oxidation selectivity and anti-interference ability were compared. Furthermore, the practical applications of PAA-based AOPs in treating wastewater, groundwater, and contaminated soil/sediments are reviewed. Finally, this review outlines critical challenges, including potential toxic byproduct formation, catalyst stability, and economic feasibility, and proposes future research directions to facilitate the transition of PAA-based AOPs from laboratory-scale research to full-scale implementation. This review provides insights for developing efficient, selective, and sustainable oxidation technologies, thereby contributing to the mitigation of emerging contaminant threats and the advancement of environmental remediation practices. Full article
Show Figures

Graphical abstract

25 pages, 8383 KB  
Article
MemLoTrack: Enhancing TIR Anti-UAV Tracking with Memory-Integrated Low-Rank Adaptation
by Jae Kwan Park and Ji-Hyeong Han
Sensors 2025, 25(23), 7359; https://doi.org/10.3390/s25237359 - 3 Dec 2025
Viewed by 604
Abstract
Tracking small, fast-moving unmanned aerial vehicles (UAVs) in thermal infrared (TIR) imagery is a significant challenge due to low-resolution targets, Dynamic Background Clutter, and frequent occlusions. To address this, we introduce MemLoTrack, a novel onestream Vision Transformer tracker that integrates a memory mechanism [...] Read more.
Tracking small, fast-moving unmanned aerial vehicles (UAVs) in thermal infrared (TIR) imagery is a significant challenge due to low-resolution targets, Dynamic Background Clutter, and frequent occlusions. To address this, we introduce MemLoTrack, a novel onestream Vision Transformer tracker that integrates a memory mechanism into a parameterefficient LoRA framework. MemLoTrack enhances a baseline tracker (LoRAT) with two key components: (i) a gated First-In, First-Out (FIFO) memory bank (MB) for temporal context aggregation and (ii) a lightweight Memory Attention Layer (MAL) for effective information retrieval. A key component of our method is a selective memory update policy, which commits a frame to the memory bank only when it satisfies both a classification confidence threshold (τ) and a Kalman filter-based motion consistency check. This gating mechanism robustly prevents memory contamination due to distractors, occlusions, and reappearance events. Our training is highly efficient, updating only the LoRA adapters, MAL, and prediction head while the pretrained DINOv2 backbone remains frozen. Evaluated on the challenging Anti-UAV410 benchmark, MemLoTrack (Lmem = 7, τ = 0.8) achieves an AUC of 63.6 and a State Accuracy (SA) of 64.0, representing a significant improvement over the LoRAT baseline by +1.4 AUC and +1.5 SA. Compared to the state-of-the-art method FocusTrack, MemLoTrack demonstrates superior robustness with higher AUC (63.6 vs. 62.8) and SA (64.0 vs. 63.9), while trading lower precision (P/P-Norm) scores. Furthermore, MemLoTrack operates at 153 FPS on a single RTX 4070 Ti SUPER, demonstrating that parameter-efficient fine-tuning with a selective memory mechanism is a powerful and deployable strategy for real-time Anti-UAV tracking in demanding TIR environments. Full article
(This article belongs to the Special Issue Vision Sensors for Object Detection and Tracking)
Show Figures

Figure 1

17 pages, 1695 KB  
Review
The Multifunctional Role of Salix spp.: Linking Phytoremediation, Forest Therapy, and Phytomedicine for Environmental and Human Benefits
by Giovanni N. Roviello
Forests 2025, 16(12), 1808; https://doi.org/10.3390/f16121808 - 2 Dec 2025
Viewed by 578
Abstract
Air pollution, soil contamination, and rising illness demand integrated, nature-based solutions. Willow trees (Salix spp.) uniquely combine ecological resilience with therapeutic value, remediating polluted environments while supporting human well-being. This review synthesizes recent literature on the established role of Salix spp. in [...] Read more.
Air pollution, soil contamination, and rising illness demand integrated, nature-based solutions. Willow trees (Salix spp.) uniquely combine ecological resilience with therapeutic value, remediating polluted environments while supporting human well-being. This review synthesizes recent literature on the established role of Salix spp. in phytoremediation and growing contribution to forest therapy through emissions of biogenic volatile organic compounds (BVOCs). As urbanization accelerates and environmental pressures intensify globally, the surprising adaptability and multifunctionality of Salix justify the utilization of this genus in building resilient and health-promoting ecosystems. The major points discussed in this work include willow-based phytoremediation strategies, such as rhizodegradation, phytoextraction, and phytostabilization, contributing to restoring even heavily polluted soils, especially when combined with specific strategies of microbial augmentation and trait-based selection. Salix plantations and even individual willow trees may contribute to forest therapy (and ‘forest bathing’ approaches) through volatile compounds emitted by Salix spp. such as ocimene, β-caryophyllene, and others, which exhibit neuroprotective (against Parkinson’s disease), anti-inflammatory, and mood-enhancing properties. Willow’s significantly extended foliage season in temperate regions allows for prolonged ‘forest bathing’ opportunities, enhancing passive therapeutic engagement in urban green infrastructures. Remarkably, the pharmacological potential of willow extends beyond salicin, encompassing a diverse array of phytocompounds with applications in phytomedicine. Finally, willow’s ease of propagation and adaptability make this species a convenient solution for multifunctional landscape design, where ecological restoration and human well-being converge. Overall, this review demonstrates the integrative value of Salix spp. as a keystone genus in sustainable landscape planning, combining remarkable environmental resilience with therapeutic benefits. Future studies should explore standardized methods to evaluate the combined ecological and therapeutic performance of Salix spp., integrating long-term field monitoring with analyses of BVOC emissions under varying environmental stresses. Full article
Show Figures

Figure 1

18 pages, 2927 KB  
Article
Machine Learning-Based Discovery of Antimicrobial Peptides and Their Antibacterial Activity Against Staphylococcus aureus
by Yuetong Fu, Zeyu Yan, Jingtao Yuan, Yishuai Wang, Wenqiang Zhao, Ziguang Wang, Jingyu Pan, Jing Zhang, Yang Sun and Ling Jiang
Fermentation 2025, 11(12), 669; https://doi.org/10.3390/fermentation11120669 - 28 Nov 2025
Cited by 1 | Viewed by 1001
Abstract
The escalating crisis of antibiotic resistance, particularly concerning foodborne pathogens such as Staphylococcus aureus and its biofilm contamination, has emerged as a major global challenge to food safety and public health. Biofilm formation significantly enhances the pathogen’s resistance to environmental stresses and disinfectants, [...] Read more.
The escalating crisis of antibiotic resistance, particularly concerning foodborne pathogens such as Staphylococcus aureus and its biofilm contamination, has emerged as a major global challenge to food safety and public health. Biofilm formation significantly enhances the pathogen’s resistance to environmental stresses and disinfectants, underscoring the urgent need for novel antimicrobial agents. In this study, we isolated Bacillus strain B673 from the saline–alkali environment of Xinjiang, conducted whole-genome sequencing, and applied antiSMASH analysis to identify ribosomally synthesized and post-translationally modified peptide (RiPP) gene clusters. By integrating an LSTM-Attention-BERT deep learning framework, we screened and predicted nine novel antimicrobial peptide sequences. Using a SUMO-tag fusion tandem strategy, we achieved efficient soluble expression in an E. coli system, and the purified products exhibited remarkable inhibitory activity against Staphylococcus aureus (MIC = 3.13 μg/mL), with inhibition zones larger than those of the positive control. Molecular docking and dynamic simulations demonstrated that the peptides can stably bind to MurE, a key enzyme in cell wall synthesis, with negative binding free energy, suggesting an antibacterial mechanism via MurE inhibition. This study provides promising candidate molecules for the development of anti-drug-resistant agents and establishes an integrated research framework for antimicrobial peptides, spanning gene mining, intelligent screening, efficient expression, and mechanistic elucidation. Full article
(This article belongs to the Special Issue Applied Microorganisms and Industrial/Food Enzymes, 2nd Edition)
Show Figures

Figure 1

25 pages, 5018 KB  
Review
Antimicrobial Activity Versus Virulence Potential of Hyaluronic Acid: Balancing Advantages and Disadvantages
by Kamila Korzekwa, Kamil Sobolewski, Miriam Wiciejowska and Daria Augustyniak
Int. J. Mol. Sci. 2025, 26(23), 11549; https://doi.org/10.3390/ijms262311549 - 28 Nov 2025
Cited by 1 | Viewed by 933
Abstract
Hyaluronic acid (HA) is a ubiquitous glycosaminoglycan essential for maintaining tissue hydration, structural integrity, and immunological homeostasis in vertebrates. Although traditionally regarded as a host-derived molecule, HA is also produced by a range of microorganisms, most notably Streptococcus spp., through specialized hyaluronan synthases [...] Read more.
Hyaluronic acid (HA) is a ubiquitous glycosaminoglycan essential for maintaining tissue hydration, structural integrity, and immunological homeostasis in vertebrates. Although traditionally regarded as a host-derived molecule, HA is also produced by a range of microorganisms, most notably Streptococcus spp., through specialized hyaluronan synthases (HAS). Microbial HA and host-derived HA fragments play key roles not only in tissue physiology but also in infection biology, influencing microbial virulence, biofilm formation, and immune evasion. In bacteria, HA-rich capsules promote adhesion, shield pathogens from complement-mediated opsonization and phagocytosis, and facilitate dissemination through host tissues. Conversely, HA-degrading enzymes and reactive oxygen species generate low-molecular-weight HA fragments that amplify inflammation by activating—toll-like receptor 2 (TLR2)/toll-like receptor 4 (TLR4) signaling, contributing to chronic inflammatory states. Furthermore, microbial HA modulates biofilm organization in both bacterial and fungal pathogens, enhancing persistence and antimicrobial tolerance. Clinically, widespread use of HA-based dermal fillers has generated increasing concern over delayed biofilm-associated infections, diagnostic challenges, and complications arising from microbial contamination and host–microbe interactions. Recent advances in HA engineering, including anti-microbial HA conjugates and receptor-targeted biomaterials, offer promising strategies to mitigate infection risk while expanding therapeutic applications. This review synthesizes current knowledge on HA biosynthesis across biological kingdoms, its dualistic role in health and disease, and its emerging relevance at the interface of microbiology, immunology, and biomedical applications. Full article
Show Figures

Figure 1

24 pages, 4187 KB  
Review
Climate-Driven Changes in the Nutritional Value and Food Safety of Legume Seeds
by Mateusz Labudda, Wesley Borges Wurlitzer, Tomasz Niedziński, Julia Renata Schneider, Jakub Frankowski, Szymon Florczak, Ewa Muszyńska, Mirosława Górecka, Monika Tomczykowa, Beata Prabucka, Anna Rybarczyk-Płońska, Wojciech Makowski, Maria Goreti de Almeida Oliveira, Katarzyna Leszczyńska, Iwona Morkunas, Noeli Juarez Ferla and Michał Tomczyk
Nutrients 2025, 17(23), 3703; https://doi.org/10.3390/nu17233703 - 26 Nov 2025
Viewed by 911
Abstract
Background/Objectives: Leguminous plants (Fabaceae) are essential for global food and nutritional security due to their high protein content, bioactive compounds, and ecological role in nitrogen fixation. However, climate change poses significant threats to their productivity, quality, and safety. This review aims to summarize [...] Read more.
Background/Objectives: Leguminous plants (Fabaceae) are essential for global food and nutritional security due to their high protein content, bioactive compounds, and ecological role in nitrogen fixation. However, climate change poses significant threats to their productivity, quality, and safety. This review aims to summarize the nutritional, biochemical, and health-related importance of legumes, while highlighting the effects of climate change—particularly heat stress and pest pressure—on their nutritional value and public health implications. Methods: This review is based on an integrative literature review drawing on scientific databases including Web of Science, Scopus, ScienceDirect, Google Scholar, and PubMed (March–October 2025). The relevant literature on climate change, legume composition, stress physiology, pest–plant interactions, and nutrition- and health-related outcomes was identified using targeted search terms. Evidence from diverse study types was synthesized to provide a broad, interdisciplinary perspective rather than a systematic assessment. Results: Legume seeds are rich in proteins, complex carbohydrates, fibers, and essential fatty acids, and contain valuable phytochemicals, including polyphenols, carotenoids, saponins, and bioactive peptides, with antioxidant, anti-inflammatory, and cardioprotective effects. Nevertheless, elevated CO2 levels and temperature stress can reduce protein, iron, and zinc contents, while altering phenolic and isoflavone profiles. Simultaneously, warming enhances pest proliferation and fungal contamination, increasing mycotoxin exposure and associated health risks. Integrated pest management (IPM) strategies, particularly those emphasizing biological control, show promise in mitigating these risks while ensuring sustainable legume production. Conclusions: Safeguarding the nutritional and ecological value of legumes under changing climatic conditions requires coordinated efforts across plant breeding, agronomy, and food science. Enhancing thermotolerance and pest resistance, reducing pesticide use through IPM, and valorizing legume by-products are key to preserving food safety and human health. Legumes, thus, represent both a challenge and an opportunity in achieving resilient, climate-smart nutrition systems for future generations. Full article
(This article belongs to the Special Issue Food Security, Food Insecurity, and Nutritional Health)
Show Figures

Figure 1

13 pages, 2298 KB  
Article
Study on the Protective Mechanism of Dihydromyricetin Against Aflatoxin B1-Induced Injury in Madin–Darby Canine Kidney Cells
by He Zhai, Liuwei Xie, Baoan Li, Mingqiang Song, Xiao Li, Shu Xu, Yao Wang and Chao Xu
Curr. Issues Mol. Biol. 2025, 47(11), 947; https://doi.org/10.3390/cimb47110947 - 13 Nov 2025
Viewed by 468
Abstract
Aflatoxin B1 (AFB1) is a common contaminant in canine diets that can cause significant damage to metabolic organs with prolonged exposure. Dihydromyricetin (DMY), a flavonoid compound abundant in Ampelopsis grossedentata, is widely used in functional foods due to its [...] Read more.
Aflatoxin B1 (AFB1) is a common contaminant in canine diets that can cause significant damage to metabolic organs with prolonged exposure. Dihydromyricetin (DMY), a flavonoid compound abundant in Ampelopsis grossedentata, is widely used in functional foods due to its diverse biological activities. This study aimed to investigate the mechanism by which DMY alleviates AFB1-induced damage in MDCK cells. Four experimental groups were established: a control group with culture medium only (CON group), a group treated with 5 μg/mL AFB1 (AFB1 group), and two treatment groups treated with 5 μg/mL AFB1 combined with either 25 mmol/L or 50 mmol/L DMY—concentrations with more robust and stable protective effects than 100 mmol/L DMY, as confirmed by experimental screening. The results showed that AFB1 significantly reduced MDCK cell viability at concentrations of 5–30 μg/mL (p < 0.01), while DMY at 25–100 mmol/L markedly improved cell viability (p < 0.01). AFB1 treatment led to a significant increase in reactive oxygen species (ROS), malondialdehyde (MDA), tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) levels, along with a reduction in superoxide dismutase (SOD) and catalase (CAT) activities (p < 0.01). 25 mmol/L and 50 mmol/L DMY treatment reversed these effects, decreasing ROS, MDA, TNF-α, IL-6, and IL-1β levels while increasing SOD and CAT activities (p < 0.01). Furthermore, 25 mmol/L and 50 mmol/L DMY improved mitochondrial membrane potential (p < 0.01), counteracting AFB1’s inhibitory effects on autophagy-related proteins by promoting p-AMPK and Beclin-1 expression while inhibiting p-mTOR, p53, and p62 expression (p < 0.05). In conclusion, DMY mitigates AFB1-induced damage in MDCK cells by enhancing anti-inflammatory and antioxidant defenses and promoting autophagy, providing a theoretical foundation for future treatment strategies for canine kidney damage. Full article
Show Figures

Graphical abstract

27 pages, 1343 KB  
Review
Nanoformulated Curcumin for Food Preservation: A Natural Antimicrobial in Active and Smart Packaging Systems
by Edith Dube
Appl. Biosci. 2025, 4(4), 46; https://doi.org/10.3390/applbiosci4040046 - 13 Oct 2025
Viewed by 1587
Abstract
Food spoilage and contamination remain pressing global challenges, undermining food security and safety while driving economic losses. Conventional preservation strategies, including thermal treatments, refrigeration, and synthetic additives, often compromise nutritional quality and raise sustainability concerns, thereby necessitating natural, effective alternatives. Curcumin, a polyphenolic [...] Read more.
Food spoilage and contamination remain pressing global challenges, undermining food security and safety while driving economic losses. Conventional preservation strategies, including thermal treatments, refrigeration, and synthetic additives, often compromise nutritional quality and raise sustainability concerns, thereby necessitating natural, effective alternatives. Curcumin, a polyphenolic compound derived from Curcuma longa, has demonstrated broad-spectrum antimicrobial, antioxidant, and anti-inflammatory activities, making it a promising candidate for food preservation. However, its poor solubility, instability, and low bioavailability limit direct applications in food systems. Advances in nanotechnology have enabled the development of nanoformulated curcumin, enhancing solubility, stability, controlled release, and functional efficacy. This review examines the antimicrobial mechanisms of curcumin and its nanoformulations, including membrane disruption, oxidative stress via reactive oxygen species, quorum sensing inhibition, and biofilm suppression. Applications in active and smart packaging are highlighted, where curcumin nanoformulation not only extends shelf life but also enables freshness monitoring through pH-responsive color changes. Evidence across meats, seafood, fruits, dairy, and beverages shows improved microbial safety, oxidative stability, and sensory quality. Multifunctional systems, such as hybrid composites and stimuli-responsive carriers, represent next-generation tools for sustainable packaging. However, challenges remain with scale-up, migration safety, cytotoxicity, and potential promotion of antimicrobial resistance gene (ARG) transfer. Future research should focus on safety validation, advanced nanocarriers, ARG-aware strategies, and regulatory frameworks. Overall, nanoformulated curcumin offers a natural, versatile, and eco-friendly approach to food preservation that aligns with clean-label consumer demand. Full article
Show Figures

Figure 1

15 pages, 2386 KB  
Article
Chlorogenic Acid Targets Cell Integrity and Virulence to Combat Vibrio parahaemolyticus
by Huan Liu, Jie Zhao, Yile Shi, Juanjuan Cao and Yanni Zhao
Foods 2025, 14(19), 3416; https://doi.org/10.3390/foods14193416 - 3 Oct 2025
Cited by 1 | Viewed by 806
Abstract
Vibrio parahaemolyticus is a primary foodborne pathogen in seafood that endangers consumers’ health. It is vital to develop novel prevention and control strategies due to its extensive transmission and drug resistance. This work aimed to examine the antibacterial and anti-virulence efficiency of chlorogenic [...] Read more.
Vibrio parahaemolyticus is a primary foodborne pathogen in seafood that endangers consumers’ health. It is vital to develop novel prevention and control strategies due to its extensive transmission and drug resistance. This work aimed to examine the antibacterial and anti-virulence efficiency of chlorogenic acid (CA) against V. parahaemolyticus. The minimum inhibitory concentration (MIC) of CA is 6 mg/mL. CA realized its antibacterial effect by damaging the cell wall and membrane, evidenced by the leakage of alkaline phosphatase, intracellular proteins and nucleic acids, potassium ion, and glucose, the increasing malondialdehyde and reactive oxygen species, as well as morphological observations under scanning and transmission microscopes and live and dead cell observations under laser confocal microscopy. When V. parahaemolyticus was treated with CA at sub-inhibitory doses, its hydrophobicity, extracellular polysaccharide synthesis, motility, and biofilm formation were all significantly inhibited. Moreover, CA effectively protected salmon from the contamination of V. parahaemolyticus with a prolonged shelf life. These findings indicate that CA possesses antibacterial activity against V. parahaemolyticus, suggesting its potential value for controlling V. parahaemolyticus-associated seafood infections. Full article
(This article belongs to the Section Foods of Marine Origin)
Show Figures

Figure 1

34 pages, 8883 KB  
Review
Next-Generation Natural Hydrogels in Oral Tissue Engineering
by Mariana Chelu, Monica Popa and José María Calderón Moreno
Pharmaceutics 2025, 17(10), 1256; https://doi.org/10.3390/pharmaceutics17101256 - 25 Sep 2025
Cited by 3 | Viewed by 2083
Abstract
Hydrogels have emerged as promising biomaterials for oral tissue regeneration thanks to their high-water content, excellent biocompatibility, and ability to mimic native tissue environments. These versatile materials can be tailored to support cell adhesion, proliferation, and differentiation, making them suitable for repairing both [...] Read more.
Hydrogels have emerged as promising biomaterials for oral tissue regeneration thanks to their high-water content, excellent biocompatibility, and ability to mimic native tissue environments. These versatile materials can be tailored to support cell adhesion, proliferation, and differentiation, making them suitable for repairing both soft and hard oral tissues. When engineered from natural polymers and enriched with bioactive agents, hydrogels offer enhanced regenerative potential. Biopolymer-based hydrogels, derived from materials such as chitosan, alginate, collagen, hyaluronic acid, and gelatin, are particularly attractive due to their biodegradability, bioactivity, and structural similarity to the extracellular matrix, creating an optimal microenvironment for cell growth and tissue remodeling. Recent innovations have transformed these systems into multifunctional platforms capable of supporting targeted regeneration of periodontal tissues, alveolar bone, oral mucosa, dental pulp, and dentin. Integration of bioactive molecules, particularly essential oils, bio-derived constituents, cells, or growth factors, has introduced intrinsic antimicrobial, anti-inflammatory, and antioxidant functionalities, addressing the dual challenge of promoting tissue regeneration while at the same time attenuating microbial contamination in the oral environment. This review explores the design strategies, material selection, functional properties, and biomedical applications in periodontal therapy, guided tissue regeneration, and implant integration of natural polymer-based hydrogels enriched with bioactive factors, highlighting their role in promoting oral tissue regeneration. In addition, we discuss current challenges related to mechanical stability, degradation rates, and clinical translation, while highlighting future directions for optimizing these next-generation bioactive hydrogel systems in regenerative dentistry. Full article
Show Figures

Graphical abstract

30 pages, 3062 KB  
Review
Separation and Detection of Microplastics in Human Exposure Pathways: Challenges, Analytical Techniques, and Emerging Solutions
by Asim Laeeq Khan and Asad A. Zaidi
J. Xenobiot. 2025, 15(5), 154; https://doi.org/10.3390/jox15050154 - 23 Sep 2025
Cited by 2 | Viewed by 4125
Abstract
Microplastics (MPs) are increasingly recognized as widespread environmental contaminants, with confirmed presence in human tissues and biological fluids through ingestion, inhalation, and direct systemic exposure. Their potential impacts on human health have become an important subject of scientific investigation. The detection and quantification [...] Read more.
Microplastics (MPs) are increasingly recognized as widespread environmental contaminants, with confirmed presence in human tissues and biological fluids through ingestion, inhalation, and direct systemic exposure. Their potential impacts on human health have become an important subject of scientific investigation. The detection and quantification of MPs, particularly nanoplastics, in complex biological matrices remain challenging because of their low concentrations, diverse physicochemical properties, and interference from organic and inorganic matter. This review presents a critical assessment of current methods for the separation and detection of MPs from human-relevant samples. It examines pre-treatment, separation, and analytical approaches including physical filtration, density-based separation, chemical and enzymatic digestion, vibrational spectroscopy, thermal analysis, and electron microscopy, highlighting their principles, advantages, and limitations. Key challenges such as low sample throughput, absence of standardized procedures, and the difficulty of nanoplastic detection are identified as major barriers to accurate exposure assessment and risk evaluation. Recent advances, including functionalized adsorbents, improved anti-fouling membranes, integrated microfluidic systems, and artificial intelligence-assisted spectral analysis, are discussed for their potential to provide sensitive, scalable, and standardized analytical workflows. By integrating current challenges with recent innovations, this review aims to guide multidisciplinary research toward the development of reliable and reproducible detection strategies that can support MPs exposure assessment and inform evidence-based health policies. Full article
Show Figures

Figure 1

14 pages, 1772 KB  
Article
Biosurfactant-Mediated Inhibition of Salmonella Typhimurium Biofilms on Plastics: Influence of Lipopolysaccharide Structure
by Shadi Khonsari, Andrea Cossu, Milan Vu, Dallas Roulston, Massimiliano Marvasi and Diane Purchase
Microorganisms 2025, 13(9), 2130; https://doi.org/10.3390/microorganisms13092130 - 11 Sep 2025
Cited by 1 | Viewed by 933
Abstract
Salmonella enterica subsp. enterica serovar Typhimurium is a major foodborne pathogen whose ability to form biofilms contributes to persistent contamination in food-processing and clinical environments. This study investigated the anti-biofilm activity of the biosurfactant surfactin, produced by Bacillus subtilis, against S. [...] Read more.
Salmonella enterica subsp. enterica serovar Typhimurium is a major foodborne pathogen whose ability to form biofilms contributes to persistent contamination in food-processing and clinical environments. This study investigated the anti-biofilm activity of the biosurfactant surfactin, produced by Bacillus subtilis, against S. Typhimurium wild type (LT2) and its lipopolysaccharide (LPS)-modified mutants on commonly used plastic surfaces such as polypropylene (PP) and polystyrene (PS). Biofilm formation was quantified using the crystal violet assay, revealing significantly higher biomass on PS compared to PP (p < 0.0001). Surfactin at 5 µg/mL was identified as the minimum biofilm inhibitory concentration (MBIC), significantly reducing biofilm formation in the wild-type and LPS mutants rfaL, rfaJ, rfaF (all p < 0.0001), and rfaI (p < 0.01). Further analysis using fluorescence microscopy and SYPRO® Ruby staining confirmed a significant reduction in extracellular polymeric substances (EPSs) on PP surfaces following surfactin treatment, particularly in strains LT2 (p < 0.0001), rfa (p < 0.01), rfaL (p < 0.0001), rfaG (p < 0.05), and rfaE (p < 0.0001). These findings highlight the influence of LPS structure on biofilm development and demonstrate surfactin’s potential as an eco-friendly antimicrobial agent for controlling S. Typhimurium biofilms on food-contact surfaces. Analysis of mutants revealed that disruption of the rfa gene, which is involved in the biosynthesis of the outermost region of the lipopolysaccharide (LPS), significantly reduced bacterial attachment to polypropylene. This suggests that interactions between the external LPS layer and the plastic surface are important for colonisation. In contrast, mutants in core LPS biosynthesis genes such as rfaE and rfaD did not show any notable differences in attachment compared to the wild-type strain. This highlights the specific importance of outer LPS components, particularly under surfactant conditions, in mediating interactions with plastic surfaces. This work supports the application of biosurfactants in food safety strategies to reduce the risk of biofilm-associated contamination. Full article
(This article belongs to the Section Biofilm)
Show Figures

Figure 1

42 pages, 1635 KB  
Review
Review of Toxoplasmosis: What We Still Need to Do
by Muhammad Farhab, Muhammad Waqar Aziz, Aftab Shaukat, Ming-Xing Cao, Zhaofeng Hou, Si-Yang Huang, Ling Li and Yu-Guo Yuan
Vet. Sci. 2025, 12(8), 772; https://doi.org/10.3390/vetsci12080772 - 18 Aug 2025
Cited by 2 | Viewed by 11260
Abstract
Toxoplasma gondii is responsible for the disease toxoplasmosis and has the broadest host range among apicomplexan parasites, as it infects virtually all warm-blooded vertebrates. Toxoplasmosis is a zoonotic and emerging public health concern with considerable morbidity and mortality, especially in the developing world, [...] Read more.
Toxoplasma gondii is responsible for the disease toxoplasmosis and has the broadest host range among apicomplexan parasites, as it infects virtually all warm-blooded vertebrates. Toxoplasmosis is a zoonotic and emerging public health concern with considerable morbidity and mortality, especially in the developing world, affecting approximately one-third of the world’s human population. Clinical presentation varies among species, and the infection establishes lifelong chronicity in hosts. Most of the host species (including healthy humans) are asymptomatic on the one hand, it is fatal to marsupials, neotropical primates and some marine mammals on the other hand. In immunocompetent humans, infection is typically asymptomatic, whereas immunocompromised individuals may develop disseminated disease affecting virtually any organ system—most commonly reproductive, cerebral, and ocular systems. Toxoplasmosis spreads by ingestion of food or water contaminated with T. gondii oocysts, consumption of undercooked/raw meat containing tissue cysts, transplacental transmission from mother to fetus, or by receiving infected organ/blood from the infected individual. Toxoplasmosis is mainly diagnosed by serologic tests and polymerase chain reaction (PCR). It is treated with pyrimethamine combined with sulfadiazine or clindamycin, often supplemented with leucovorin, atovaquone, and dexamethasone. Despite having many potent anti-T. gondii antigenic candidates, there is no commercially available vaccine for humans due to many factors, including the complex life cycle of the parasite and its evasion strategies. To date, the only commercially available anti-T. gondii vaccine is for sheep, licensed for veterinary use to prevent ovine abortions. In this review, we have summarized the current understanding of toxoplasmosis. Full article
Show Figures

Figure 1

20 pages, 457 KB  
Review
Cultivating Value from Waste: Creating Novel Food, Feed, and Industrial Applications from Bambara Groundnut By-Products
by Mercy Lungaho, Omena Bernard Ojuederie, Kehinde Titilope Kareem, Kafilat Abiodun Odesola, Jacob Olagbenro Popoola, Linus Owalum Onawo, Francis Aibuedefe Igiebor, Anthonia Uselu, Taofeek Tope Adegboyega and Beckley Ikhajiagbe
Sustainability 2025, 17(16), 7378; https://doi.org/10.3390/su17167378 - 15 Aug 2025
Viewed by 2057
Abstract
Bambara groundnut (Vigna subterranea), a vital yet underutilized African legume, significantly boosts food security due to its nutritional value and adaptability to harsh climates and soils. However, its processing yields substantial waste like husks, shells, and haulms, which are often carelessly [...] Read more.
Bambara groundnut (Vigna subterranea), a vital yet underutilized African legume, significantly boosts food security due to its nutritional value and adaptability to harsh climates and soils. However, its processing yields substantial waste like husks, shells, and haulms, which are often carelessly discarded, causing environmental damage. This paper highlights the urgent need to valorize these waste streams to unlock sustainable growth and economic development. Given their lignocellulosic composition, Bambara groundnut residues are ideal for generating biogas and bioethanol. Beyond energy, these wastes can be transformed into various bio-based products, including adsorbents for heavy metal removal, activated carbon for water purification, and bioplastics. Their inherent nutritional content also allows for the extraction of valuable components like dietary fiber, protein concentrates, and phenolic compounds for food products or animal feed. The nutrient-rich organic matter can also be composted into fertilizer, improving soil fertility. These valorization strategies offer multiple benefits, such as reduced waste, less environmental contamination, and lower greenhouse gas emissions, alongside new revenue streams for agricultural producers. This integrated approach aligns perfectly with circular economy principles, promoting resource efficiency and maximizing agricultural utility. Despite challenges like anti-nutritional factors and processing costs, strategic investments in technology, infrastructure, and supportive policies can unlock Bambara groundnut’s potential for sustainable innovation, job creation, and enhanced food system resilience across Africa and globally. Ultimately, valorizing Bambara groundnut waste presents a transformative opportunity for sustainable growth and improved food systems, particularly within African agriculture. Full article
(This article belongs to the Special Issue RETASTE: Rethink Food Resources, Losses and Waste)
Show Figures

Figure 1

Back to TopTop