Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = anthracenedione

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3567 KiB  
Article
Heteroleptic Copper(II) Complexes Containing an Anthraquinone and a Phenanthroline as Synthetic Nucleases and Potential Anticancer Agents
by Ívina P. de Souza, Júlia R. L. Silva, Amanda O. Costa, Jennifer T. J. Freitas, Renata Diniz, Rodrigo B. Fazzi, Ana M. da Costa Ferreira and Elene C. Pereira-Maia
Inorganics 2023, 11(11), 445; https://doi.org/10.3390/inorganics11110445 - 19 Nov 2023
Cited by 1 | Viewed by 2132
Abstract
Two ternary copper(II) complexes with an anthraquinone and a N,N-heterocyclic donor, [Cu(dmp)(L)(H2O)](ClO4) (1), [Cu(bpy)(L)(dmso)](ClO4) (2), in which dmp = 2,9-dimethyl-1,10-phenanthroline, bpy = 2,2′-bipyridine, and HL = 1-hydroxyanthracene-9,10-dione were synthesized and fully characterized by [...] Read more.
Two ternary copper(II) complexes with an anthraquinone and a N,N-heterocyclic donor, [Cu(dmp)(L)(H2O)](ClO4) (1), [Cu(bpy)(L)(dmso)](ClO4) (2), in which dmp = 2,9-dimethyl-1,10-phenanthroline, bpy = 2,2′-bipyridine, and HL = 1-hydroxyanthracene-9,10-dione were synthesized and fully characterized by conductivity, elemental, and spectral analyses (FTIR and UV-Vis; EPR and ESI-MS). The structure of 1 reveals that Cu(II) is bound to two oxygens of L, two nitrogens of dmp, and a molecule of water in the fifth position. In complex 2.1, Cu(II) is also pentacoordinated with an O-bonded dmso in the axial position. The presence of the heteroleptic complexes in solution was evidenced by ESI-MS, EPR in dmso solution and UV-Vis spectrophotometry. All complexes bind to CT-DNA with affinity constants of approximately 104. Complex 2 can nick plasmid DNA but no cleavage was performed by complex 1. The investigation of DNA interactions by spectrofluorimetry using ethidium bromide (EB) showed that it was displaced from DNA sites by the addition of the complexes. The complexes inhibited the growth of chronic myelogenous leukemia and human squamous carcinoma cells with low IC50 values, complex 1 being the most effective. Full article
(This article belongs to the Special Issue 10th Anniversary of Inorganics: Bioinorganic Chemistry)
Show Figures

Graphical abstract

13 pages, 2231 KiB  
Article
Myocardial Strain during Surveillance Screening Is Associated with Future Cardiac Dysfunction among Survivors of Childhood, Adolescent and Young Adult-Onset Cancer
by Wendy J. Bottinor, Xiaoyan Deng, Dipankar Bandyopadhyay, Gary Coburn, Corey Havens, Melissa Carr, Daniel Saurers, Chantelle Judkins, Wu Gong, Chang Yu, Debra L. Friedman, Scott C. Borinstein and Jonathan H. Soslow
Cancers 2023, 15(8), 2349; https://doi.org/10.3390/cancers15082349 - 18 Apr 2023
Cited by 1 | Viewed by 2310
Abstract
Cardiovascular disease is a leading contributor to mortality among childhood, adolescent and young adult (C-AYA) cancer survivors. While serial cardiovascular screening is recommended in this population, optimal screening strategies, including the use of echocardiography-based myocardial strain, are not fully defined. Our objective was [...] Read more.
Cardiovascular disease is a leading contributor to mortality among childhood, adolescent and young adult (C-AYA) cancer survivors. While serial cardiovascular screening is recommended in this population, optimal screening strategies, including the use of echocardiography-based myocardial strain, are not fully defined. Our objective was to determine the relationship between longitudinal and circumferential strain (LS, CS) and fractional shortening (FS) among survivors. This single-center cohort study retrospectively measured LS and CS among C-AYAs treated with anthracycline/anthracenedione chemotherapy. The trajectory of LS and CS values over time were examined among two groups of survivors: those who experienced a reduction of >5 fractional shortening (FS) units from pre-treatment to the most recent echocardiogram, and those who did not. Using mixed modeling, LS and CS were used to estimate FS longitudinally. A receiver operator characteristic curve was generated to determine the ability of our model to correctly predict an FS ≤ 27%. A total of 189 survivors with a median age of 14 years at diagnosis were included. Among the two survivor groups, the trajectory of LS and CS differed approximately five years from cancer diagnosis. A statistically significant inverse relationship was demonstrated between FS and LS −0.129, p = 0.039, as well as FS and CS −0.413, p < 0.001. The area under the curve for an FS ≤ 27% was 91%. Among C-AYAs, myocardial strain measurements may improve the identification of individuals with cardiotoxicity, thereby allowing earlier intervention. Full article
Show Figures

Figure 1

19 pages, 4475 KiB  
Article
Thiosemicarbazones Can Act Synergistically with Anthracyclines to Downregulate CHEK1 Expression and Induce DNA Damage in Cell Lines Derived from Pediatric Solid Tumors
by Silvia Paukovcekova, Maria Krchniakova, Petr Chlapek, Jakub Neradil, Jan Skoda and Renata Veselska
Int. J. Mol. Sci. 2022, 23(15), 8549; https://doi.org/10.3390/ijms23158549 - 1 Aug 2022
Cited by 4 | Viewed by 2492
Abstract
Anticancer therapy by anthracyclines often leads to the development of multidrug resistance (MDR), with subsequent treatment failure. Thiosemicarbazones have been previously suggested as suitable anthracycline partners due to their ability to overcome drug resistance through dual Pgp-dependent cytotoxicity-inducing effects. Here, we focused on [...] Read more.
Anticancer therapy by anthracyclines often leads to the development of multidrug resistance (MDR), with subsequent treatment failure. Thiosemicarbazones have been previously suggested as suitable anthracycline partners due to their ability to overcome drug resistance through dual Pgp-dependent cytotoxicity-inducing effects. Here, we focused on combining anthracyclines (doxorubicin, daunorubicin, and mitoxantrone) and two thiosemicarbazones (DpC and Dp44mT) for treating cell types derived from the most frequent pediatric solid tumors. Our results showed synergistic effects for all combinations of treatments in all tested cell types. Nevertheless, further experiments revealed that this synergism was independent of Pgp expression but rather resulted from impaired DNA repair control leading to cell death via mitotic catastrophe. The downregulation of checkpoint kinase 1 (CHEK1) expression by thiosemicarbazones and the ability of both types of agents to induce double-strand breaks in DNA may explain the Pgp-independent synergism between anthracyclines and thiosemicarbazones. Moreover, the concomitant application of these agents was found to be the most efficient approach, achieving the strongest synergistic effect with lower concentrations of these drugs. Overall, our study identified a new mechanism that offers an avenue for combining thiosemicarbazones with anthracyclines to treat tumors regardless the Pgp status. Full article
(This article belongs to the Special Issue Novel Therapeutic Strategies for Cancer)
Show Figures

Figure 1

14 pages, 2743 KiB  
Article
Evaluation of an Ozone Chamber as a Routine Method to Decontaminate Firefighters’ PPE
by Marcella A. de Melo Lucena, Félix Zapata, Filipe Gabriel M. Mauricio, Fernando E. Ortega-Ojeda, M. Gloria Quintanilla-López, Ingrid Távora Weber and Gemma Montalvo
Int. J. Environ. Res. Public Health 2021, 18(20), 10587; https://doi.org/10.3390/ijerph182010587 - 9 Oct 2021
Cited by 4 | Viewed by 3060
Abstract
Ozone chambers have emerged as an alternative method to decontaminate firefighters’ Personal Protective Equipment (PPE) from toxic fire residues. This work evaluated the efficiency of using an ozone chamber to clean firefighters’ PPE. This was achieved by studying the degradation of pyrene and [...] Read more.
Ozone chambers have emerged as an alternative method to decontaminate firefighters’ Personal Protective Equipment (PPE) from toxic fire residues. This work evaluated the efficiency of using an ozone chamber to clean firefighters’ PPE. This was achieved by studying the degradation of pyrene and 9-methylanthracene polycyclic aromatic hydrocarbons (PAHs). The following experiments were performed: (i) insufflating ozone into PAH solutions (homogeneous setup), and (ii) exposing pieces of PPE impregnated with the PAHs to an ozone atmosphere for up to one hour (heterogeneous setup). The ozonolysis products were assessed by Fourier Transform Infrared Spectroscopy (FTIR), Thin-Layer Chromatography (TLC), and Mass Spectrometry (MS) analysis. In the homogeneous experiments, compounds of a higher molecular weight were produced due to the incorporation of oxygen into the PAH structures. Some of these new compounds included 4-oxapyren-5-one (m/z 220) and phenanthrene-4,5-dicarboxaldehyde (m/z 234) from pyrene; or 9-anthracenecarboxaldehyde (m/z 207) and hydroxy-9,10-anthracenedione (m/z 225) from 9-methylanthracene. In the heterogeneous experiments, a lower oxidation was revealed, since no byproducts were detected using FTIR and TLC, but only using MS. However, in both experiments, significant amounts of the original PAHs were still present even after one hour of ozone treatment. Thus, although some partial chemical degradation was observed, the remaining PAH and the new oxygenated-PAH compounds (equally or more toxic than the initial molecules) alerted us of the risks to firefighters’ health when using an ozone chamber as a unique decontamination method. These results do not prove the ozone-advertised efficiency of the ozone chambers for decontaminating (degrading the toxic combustion residues into innocuous compounds) firefighters’ PPE. Full article
Show Figures

Graphical abstract

17 pages, 1525 KiB  
Article
Activity of Anthracenediones and Flavoring Phenols in Hydromethanolic Extracts of Rubia tinctorum against Grapevine Phytopathogenic Fungi
by Natalia Langa-Lomba, Eva Sánchez-Hernández, Laura Buzón-Durán, Vicente González-García, José Casanova-Gascón, Jesús Martín-Gil and Pablo Martín-Ramos
Plants 2021, 10(8), 1527; https://doi.org/10.3390/plants10081527 - 26 Jul 2021
Cited by 19 | Viewed by 4348
Abstract
In this work, the chemical composition of Rubia tinctorum root hydromethanolic extract was analyzed by GC–MS, and over 50 constituents were identified. The main phytochemicals were alizarin-related anthraquinones and flavoring phenol compounds. The antifungal activity of this extract, alone and in combination with [...] Read more.
In this work, the chemical composition of Rubia tinctorum root hydromethanolic extract was analyzed by GC–MS, and over 50 constituents were identified. The main phytochemicals were alizarin-related anthraquinones and flavoring phenol compounds. The antifungal activity of this extract, alone and in combination with chitosan oligomers (COS) or with stevioside, was evaluated against the pathogenic taxa Diplodia seriata, Dothiorella viticola and Neofusicoccum parvum, responsible for the so-called Botryosphaeria dieback of grapevine. In vitro mycelial growth inhibition tests showed remarkable activity for the pure extract, with EC50 and EC90 values as low as 66 and 88 μg·mL−1, respectively. Nonetheless, enhanced activity was attained upon the formation of conjugate complexes with COS or with stevioside, with synergy factors of up to 5.4 and 3.3, respectively, resulting in EC50 and EC90 values as low as 22 and 56 μg·mL−1, respectively. The conjugate with the best performance (COS-R. tinctorum extract) was then assayed ex situ on autoclaved grapevine wood against D. seriata, confirming its antifungal behavior on this plant material. Finally, the same conjugate was evaluated in greenhouse assays on grafted grapevine plants artificially inoculated with the three aforementioned fungal species, resulting in a significant reduction in the infection rate in all cases. This natural antifungal compound represents a promising alternative for developing sustainable control methods against grapevine trunk diseases. Full article
(This article belongs to the Special Issue Advances in Alternative Measures in Plant Protection)
Show Figures

Graphical abstract

10 pages, 1475 KiB  
Article
Analysis of Chemical Composition of Extractives by Acetone and the Chromatic Aberration of Teak (Tectona Grandis L.F.) from China
by Hongyun Qiu, Ru Liu and Ling Long
Molecules 2019, 24(10), 1989; https://doi.org/10.3390/molecules24101989 - 23 May 2019
Cited by 33 | Viewed by 4012
Abstract
In order to clarify the chemical color change of teak (Tectona grandis L.F.), the difference of chemical composition between the heartwood and sapwood of teak was investigated by gas chromatography–mass spectrometry (GC-MS) based on the acetone extractive compounds. The results showed that [...] Read more.
In order to clarify the chemical color change of teak (Tectona grandis L.F.), the difference of chemical composition between the heartwood and sapwood of teak was investigated by gas chromatography–mass spectrometry (GC-MS) based on the acetone extractive compounds. The results showed that the difference in content of the main components between heartwood and sapwood was not obvious. However, the amount of extractives in heartwood was higher than that in sapwood, especially for phenols, quinones, and ketones. The most obvious different substances in the acetone extractive between heartwood and sapwood were 4-tert-butyl-2-phenyl-phenol,2-methyl-anthraquinone, and 2,3-dimethyl-1,4,4a,9a-tetrahydro-9,10-anthracenedione, which might be the main composition for the chromatic aberration of teak. This paper focuses on a preliminary study and further work such as high-performance liquid chromatography (HPLC) with ultraviolet photometric detector (UV)/mass spectrometry (MS) will be carried out. Full article
Show Figures

Figure 1

64 pages, 26900 KiB  
Review
Anthraquinones and Derivatives from Marine-Derived Fungi: Structural Diversity and Selected Biological Activities
by Mireille Fouillaud, Mekala Venkatachalam, Emmanuelle Girard-Valenciennes, Yanis Caro and Laurent Dufossé
Mar. Drugs 2016, 14(4), 64; https://doi.org/10.3390/md14040064 - 25 Mar 2016
Cited by 150 | Viewed by 21708
Abstract
Anthraquinones and their derivatives constitute a large group of quinoid compounds with about 700 molecules described. They are widespread in fungi and their chemical diversity and biological activities recently attracted attention of industries in such fields as pharmaceuticals, clothes dyeing, and food colorants. [...] Read more.
Anthraquinones and their derivatives constitute a large group of quinoid compounds with about 700 molecules described. They are widespread in fungi and their chemical diversity and biological activities recently attracted attention of industries in such fields as pharmaceuticals, clothes dyeing, and food colorants. Their positive and/or negative effect(s) due to the 9,10-anthracenedione structure and its substituents are still not clearly understood and their potential roles or effects on human health are today strongly discussed among scientists. As marine microorganisms recently appeared as producers of an astonishing variety of structurally unique secondary metabolites, they may represent a promising resource for identifying new candidates for therapeutic drugs or daily additives. Within this review, we investigate the present knowledge about the anthraquinones and derivatives listed to date from marine-derived filamentous fungi′s productions. This overview highlights the molecules which have been identified in microorganisms for the first time. The structures and colors of the anthraquinoid compounds come along with the known roles of some molecules in the life of the organisms. Some specific biological activities are also described. This may help to open doors towards innovative natural substances. Full article
Show Figures

Graphical abstract

16 pages, 1358 KiB  
Review
Advances in the Study of the Structures and Bioactivities of Metabolites Isolated from Mangrove-Derived Fungi in the South China Sea
by Xin Wang, Zhi-Gang Mao, Bing-Bing Song, Chun-Hua Chen, Wei-Wei Xiao, Bin Hu, Ji-Wen Wang, Xiao-Bing Jiang, Yong-Hong Zhu and Hai-Jun Wang
Mar. Drugs 2013, 11(10), 3601-3616; https://doi.org/10.3390/md11103601 - 30 Sep 2013
Cited by 30 | Viewed by 8357
Abstract
Many metabolites with novel structures and biological activities have been isolated from the mangrove fungi in the South China Sea, such as anthracenediones, xyloketals, sesquiterpenoids, chromones, lactones, coumarins and isocoumarin derivatives, xanthones, and peroxides. Some compounds have anticancer, antibacterial, antifungal and antiviral properties, [...] Read more.
Many metabolites with novel structures and biological activities have been isolated from the mangrove fungi in the South China Sea, such as anthracenediones, xyloketals, sesquiterpenoids, chromones, lactones, coumarins and isocoumarin derivatives, xanthones, and peroxides. Some compounds have anticancer, antibacterial, antifungal and antiviral properties, but the biosynthesis of these compounds is still limited. This review summarizes the advances in the study of secondary metabolites from the mangrove-derived fungi in the South China Sea, and their biological activities reported between 2008 and mid-2013. Full article
(This article belongs to the Special Issue Cytogenetic and Molecular Effects of Marine Compounds)
Show Figures

Figure 1

29 pages, 2962 KiB  
Article
Cancer Cell Response to Anthracyclines Effects: Mysteries of the Hidden Proteins Associated with These Drugs
by Jirina Tyleckova, Rita Hrabakova, Katerina Mairychova, Petr Halada, Lenka Radova, Petr Dzubak, Marian Hajduch, Suresh J. Gadher and Hana Kovarova
Int. J. Mol. Sci. 2012, 13(12), 15536-15564; https://doi.org/10.3390/ijms131215536 - 22 Nov 2012
Cited by 11 | Viewed by 8669
Abstract
A comprehensive proteome map of T-lymphoblastic leukemia cells and its alterations after daunorubicin, doxorubicin and mitoxantrone treatments was monitored and evaluated either by paired comparison with relevant untreated control and using multivariate classification of treated and untreated samples. With the main focus on [...] Read more.
A comprehensive proteome map of T-lymphoblastic leukemia cells and its alterations after daunorubicin, doxorubicin and mitoxantrone treatments was monitored and evaluated either by paired comparison with relevant untreated control and using multivariate classification of treated and untreated samples. With the main focus on early time intervals when the influence of apoptosis is minimized, we found significantly different levels of proteins, which corresponded to 1%–2% of the total amount of protein spots detected. According to Gene Ontology classification of biological processes, the highest representation of identified proteins for all three drugs belong to metabolic processes of proteins and nucleic acids and cellular processes, mainly cytoskeleton organisation and ubiquitin-proteasome pathway. Importantly, we observed significant proportion of changes in proteins involved in the generation of precursor metabolites and energy typical for daunorubicin, transport proteins participating in response to doxorubicin and a group of proteins of immune system characterising response to mitoxantrone. Both a paired comparison and the multivariate evaluation of quantitative data revealed daunorubicin as a distinct member of the group of anthracycline/anthracenedione drugs. A combination of identified drug specific protein changes, which may help to explain anti-cancer activity, together with the benefit of blocking activation of adaptive cancer pathways, presents important approaches to improving treatment outcomes in cancer. Full article
(This article belongs to the Special Issue Advances in Proteomic Research)
Show Figures

Graphical abstract

13 pages, 525 KiB  
Article
Anthracenedione Derivatives as Anticancer Agents Isolated from Secondary Metabolites of the Mangrove Endophytic Fungi
by Jian-ye Zhang, Li-yang Tao, Yong-ju Liang, Li-ming Chen, Yan-jun Mi, Li-sheng Zheng, Fang Wang, Zhi-gang She, Yong-cheng Lin, Kenneth Kin Wah To and Li-wu Fu
Mar. Drugs 2010, 8(4), 1469-1481; https://doi.org/10.3390/md8041469 - 23 Apr 2010
Cited by 94 | Viewed by 14414
Abstract
In this article, we report anticancer activity of 14 anthracenedione derivatives separated from the secondary metabolites of the mangrove endophytic fungi Halorosellinia sp. (No. 1403) and Guignardia sp. (No. 4382). Some of them inhibited potently the growth of KB and KBv200 cells, among [...] Read more.
In this article, we report anticancer activity of 14 anthracenedione derivatives separated from the secondary metabolites of the mangrove endophytic fungi Halorosellinia sp. (No. 1403) and Guignardia sp. (No. 4382). Some of them inhibited potently the growth of KB and KBv200 cells, among which compound 6 displayed strong cytotoxicity with IC50 values of 3.17 and 3.21 μM to KB and KBv200 cells, respectively. Furthermore, we demonstrate that the mechanism involved in the apoptosis induced by compound 6 is probably related to mitochondrial dysfunction. Additionally, the structure-activity relationships of these compounds are discussed. Full article
Show Figures

Back to TopTop