Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = antenna sidelobe error

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 13267 KiB  
Article
Theoretical Proof and Implementation of Digital Beam Control and Beamforming Algorithm for Low Earth Orbit Satellite Broadcast Signal Reception Processing Terminal
by Haoran Shen, Jian Li, Xiaozhi Li, Ruiqi Cheng, Kexin Hao and Ziwei Wang
Electronics 2025, 14(3), 440; https://doi.org/10.3390/electronics14030440 - 22 Jan 2025
Viewed by 1930
Abstract
Compared to analog beamforming, digital beamforming offers better self-calibration and lower sidelobe performance, which has a profound impact on improving low Earth orbit receiver performance. The Digital Beamforming (DBF) module in the low Earth orbit satellite broadcast signal reception terminal can use digital [...] Read more.
Compared to analog beamforming, digital beamforming offers better self-calibration and lower sidelobe performance, which has a profound impact on improving low Earth orbit receiver performance. The Digital Beamforming (DBF) module in the low Earth orbit satellite broadcast signal reception terminal can use digital phase shifting to compensate for the phase differences caused by path and spatial distance variations due to inconsistent Radio Frequency (RF) channel delays. This compensation ensures in-phase summation, thereby achieving maximum energy reception in the desired direction. Although DBF has gained widespread attention in the radar field due to its unique functions and advantages, its application is limited by beamforming accuracy and gain. Therefore, with the development of DBF technology, how to improve its accuracy and gain has also attracted extensive attention both domestically and internationally. To address this issue, this paper proposes a beamforming method based on a cap-shaped array for low Earth orbit satellite broadcast signal reception and processing terminals. The method combines prior information and spatial domain search for beam control, and employs a lookup table for beam synthesis. It derives formulas for the Signal-to-Noise Ratio, noise figure, processing flow of the beamforming network, and the determination of beamforming weights for the spherical antenna array. The paper presents a beam control approach that combines prior information with spatial domain search, along with an implementation process for beam synthesis using a lookup table. It also details the corresponding Field-Programmable Gate Array (FPGA) implementation process. Finally, the beamforming algorithm is experimentally validated, and error analysis is conducted. The experimental results show that the measured beamforming sensitivity at all incident angles is below −133 dBm and the G/T values are all greater than −9 dB/K, the beam uniformity at three operating frequencies is less than 3°, and the measured errors in pitch and azimuth angles are both below 2°. The beam pointing error is also below 2°. Full article
Show Figures

Figure 1

12 pages, 2900 KiB  
Article
Modeling of Coupled Structural Electromagnetic Statistical Concept for Examining Performance Sensitivity of Antenna Array to Distortion at Millimeter-Wave
by Oluwole John Famoriji and Thokozani Shongwe
Appl. Sci. 2024, 14(16), 7111; https://doi.org/10.3390/app14167111 - 13 Aug 2024
Cited by 2 | Viewed by 1055
Abstract
Millimeter-wave (mmWave) antenna arrays are pivotal components in modern wireless communication systems, offering high data rates and improved spectrum efficiency. However, the performance of mmWave antenna arrays can be significantly affected by structural distortions, such as mechanical deformations and environmental conditions, which may [...] Read more.
Millimeter-wave (mmWave) antenna arrays are pivotal components in modern wireless communication systems, offering high data rates and improved spectrum efficiency. However, the performance of mmWave antenna arrays can be significantly affected by structural distortions, such as mechanical deformations and environmental conditions, which may lead to deviations in beamforming characteristics and radiation patterns. In this paper, we present a comprehensive sensitivity study of mmWave antenna arrays to structural distortion, employing a coupled structural–electromagnetic statistical concept. The proposed model integrates structural analysis techniques with electromagnetic simulations to assess the impact of structural distortions on the performance of mmWave antenna arrays. In addition, the model incorporates random element positioning, making it easy to analyze radiation pattern sensitivity to structural deformation. Demonstrating the applicability of the model, a 10 × 10 microstrip patch antenna array is designed to assess the performance of the model with a random position error and saddle shape distortion. The results of the model are then compared against the acceptable results from the HFSS software (version 13.0), where a good agreement is observed between the two results. The results show the gain variation and sidelobe level under various degrees of distortion and random errors, respectively. These results provide a guide for design, deployment, and optimization of mmWave communication networks in real-world environments. In addition, the model provides valuable insights into the trade-offs between antenna performance, structural integrity, and system reliability, paving the way for more efficient and dependable mmWave communication systems in the era of 5G and beyond. Full article
Show Figures

Figure 1

16 pages, 8924 KiB  
Article
Improvement Method of Antenna Negative Sidelobes on Cross Beam Correlation Microwave Radiometer
by Xiaolong Feng, Hao Liu, Cheng Zhang, Donghao Han and Lijie Niu
Remote Sens. 2024, 16(7), 1245; https://doi.org/10.3390/rs16071245 - 31 Mar 2024
Viewed by 1336
Abstract
A weighting method is proposed for the correlation radiation measurement system based on Mills cross array. The Mills cross array achieves high spatial resolution by the product of two orthogonal fan beams. However, the product power pattern of the Mills cross array lacks [...] Read more.
A weighting method is proposed for the correlation radiation measurement system based on Mills cross array. The Mills cross array achieves high spatial resolution by the product of two orthogonal fan beams. However, the product power pattern of the Mills cross array lacks a square operation, resulting in sidelobe deterioration and the presence of negative sidelobes. Therefore, a window function is necessary to improve beam performance. However, because of the negative sidelobes, the antenna array is sensitive to the weighting function, and common window functions such as Hanning and Hamming are not suitable for achieving optimal antenna performance. A weighting method is proposed to fully utilize the feature that the received energy of positive and negative sidelobes cancel each other out and to reduce the influence of antenna sidelobe errors in radiation measurement. Such a weighting function can be obtained by combining the combined cosine window function with the existing particle swarm optimization (PSO). The optimized window function is evaluated through numerical simulation and compared with the typical window function weighting results. The results show that this weighting method can minimize the impact of negative sidelobes and reduce the loss of spatial resolution. Full article
(This article belongs to the Section Engineering Remote Sensing)
Show Figures

Figure 1

11 pages, 2187 KiB  
Article
Analysis of the Influence of Fabrication Errors on the Far-Field Performance of Si and Si3N4 Antennas
by Yifan Xin, Wenyuan Liao, Lei Yu, Pengfei Ma, Zheng Wang, Yibo Yang, Licheng Chen, Pengfei Wang, Yejin Zhang and Jiaoqing Pan
Photonics 2024, 11(1), 81; https://doi.org/10.3390/photonics11010081 - 16 Jan 2024
Cited by 1 | Viewed by 1686
Abstract
Antennas are important components in optical phased arrays. However, their far-field performance deteriorates when random phase noise is introduced because of fabricating errors. For the first time, we use a finite-difference time-domain solution to quantitatively analyze the far-field characteristics of Si and Si [...] Read more.
Antennas are important components in optical phased arrays. However, their far-field performance deteriorates when random phase noise is introduced because of fabricating errors. For the first time, we use a finite-difference time-domain solution to quantitatively analyze the far-field characteristics of Si and Si3N4 antennas considering process errors. Under rough surface conditions based on a fishbone structure, we find that the quality of the main lobe of the Si antenna deteriorates badly, with −0.87 dB and −0.51 dB decreases in the sidelobe level and 5.78% and 3.74% deteriorations in the main peak power in the φ (phase-controlled) and θ (wavelength-controlled) directions, respectively. However, the Si3N4 antenna is only slightly impacted, with mere 0.39% and 0.71% deteriorations in the main peak power in the φ and θ directions, respectively, which is statistically about 1/15 of the Si antenna in the φ direction and 1/5 in the θ direction. The decreases in the sidelobe level are also slight, at about −0.08 dB and −0.01 dB, respectively. Furthermore, the advantages of the Si3N4 antenna become more remarkable with the introduction of random errors into the waveguide width and thickness. This work is of great significance for the design and optimization of OPA chips. Full article
(This article belongs to the Special Issue Sciences and Applications of Nano-Photonics)
Show Figures

Figure 1

15 pages, 6298 KiB  
Article
An S-Band-Receiving Phased-Array Antenna with a Phase-Deviation-Minimized Calibration Method for LEO Satellite Ground Station Applications
by Dong-Hyo Lee, Jung-Won Seo, Myeong-Shin Lee, Daewon Chung, Dongkook Lee, Jae-Hoon Bang, Bagas Satriyotomo and Seongmin Pyo
Electronics 2022, 11(23), 3847; https://doi.org/10.3390/electronics11233847 - 22 Nov 2022
Cited by 3 | Viewed by 6015
Abstract
This study presents a new S-band-receiving phased-array antenna with a phase-deviation-minimized calibration method for the ground station of a low Earth orbit (LEO) satellite. The proposed antenna consists of 16 subarrays, 16 beamforming receiving RF modules (BF-RFMs), a power/control board, and a 16-way [...] Read more.
This study presents a new S-band-receiving phased-array antenna with a phase-deviation-minimized calibration method for the ground station of a low Earth orbit (LEO) satellite. The proposed antenna consists of 16 subarrays, 16 beamforming receiving RF modules (BF-RFMs), a power/control board, and a 16-way feed network. The subarray was achieved by joining two 8 × 1 arrays with a two-way power combiner. The 16-element antenna subarrays showed a gain of 16.1 dBi and a reflection coefficient of less than −10 dB from 2.12 GHz to 2.45 GHz. The BF-RFM, which consists of three low-noise amplifiers (LNAs), a power combiner, a phase shifter, and a digital attenuator, was designed and fabricated. The BF-RFMs were provided by the power/control board and showed a gain of 30.8 ± 0.8 dB, an amplitude root-mean-square (RMS) error from 0.25 dB to 0.28 dB, and a phase RMS error from 1.8° to 2.5° over the Rx frequency range. The arrangement procedures of the 16 BF-RFMs are presented to increase beam pointing accuracy at the desired angle. A commercial 16-way feed network was employed to combine all the output ports of the 16 BF-RFMs. The assembled antenna, which has dimensions of 1.58 m × 1.58 m × 0.2 m, was measured by partial and full scans in the near-field scanning system. The back-projected algorithm was employed to calibrate the antenna’s gain patterns in the partial scan. The implemented phased-array antenna had a gain greater than 28.14 dBi, sidelobe levels less than −17.1 dB, and beam pointing errors less than 0.07° over the beam pointing angle of −20~+20°. Based on the implemented antenna system, we conducted a field test using KOMPSAT-5, which is actually operating in South Korea, in order to verify the performance of the low Earth orbit (LEO) satellite ground station system. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

18 pages, 1223 KiB  
Article
Performance Analysis of Linearly Arranged Concentric Circular Antenna Array with Low Sidelobe Level and Beamwidth Using Robust Tapering Technique
by Imteaz Rahaman, Md Ashraful Haque, Narinderjit Singh Sawaran Singh, Md. Shakiul Jafor, Pallab Kumar Sarkar, Md Afzalur Rahman, Mohd Azman Zakariya, Ghulam E. Mustafa Abro and Nayan Sarker
Micromachines 2022, 13(11), 1959; https://doi.org/10.3390/mi13111959 - 11 Nov 2022
Cited by 10 | Viewed by 2645
Abstract
In this research, a novel antenna array named Linearly arranged Concentric Circular Antenna Array (LCCAA) is proposed, concerning lower beamwidth, lower sidelobe level, sharp ability to detect false signals, and impressive SINR performance. The performance of the proposed LCCAA beamformer is compared with [...] Read more.
In this research, a novel antenna array named Linearly arranged Concentric Circular Antenna Array (LCCAA) is proposed, concerning lower beamwidth, lower sidelobe level, sharp ability to detect false signals, and impressive SINR performance. The performance of the proposed LCCAA beamformer is compared with geometrically identical existing beamformers using the conventional technique where the LCCAA beamformer shows the lowest beamwidth and sidelobe level (SLL) of 12.50° and −15.17 dB with equal elements accordingly. However, the performance is degraded due to look direction error, for which robust techniques, fixed diagonal loading (FDL), optimal diagonal loading (ODL), and variable diagonal loading (VDL), are applied to all the potential arrays to minimize this problem. Furthermore, the LCCAA beamformer is further simulated to reduce the sidelobe applying tapering techniques where the Hamming window shows the best performance having 17.097 dB less sidelobe level compared to the uniform window. The proposed structure is also analyzed under a robust tapered (VDL-Hamming) method which reduces around 69.92 dB and 48.39 dB more sidelobe level compared to conventional and robust techniques. Analyzing all the performances, it is clear that the proposed LCCAA beamformer is superior and provides the best performance with the proposed robust tapered (VDL-Hamming) technique. Full article
(This article belongs to the Special Issue Exploring the Potential of 5G and Millimeter-Wave Array Antennas)
Show Figures

Figure 1

13 pages, 4371 KiB  
Article
Determination of Excitation Amplitude and Phase for Wide-Band Phased Array Antenna Based on Spherical Wave Expansion and Mode Filtering
by Yao Su, Zixuan Song, Shuai Zhang and Shuxi Gong
Electronics 2022, 11(21), 3479; https://doi.org/10.3390/electronics11213479 - 26 Oct 2022
Cited by 2 | Viewed by 2790
Abstract
A new method for solving the excitation amplitude and phase of wide-band phased array antenna is presented, in which spherical wave expansion and mode filtering (SWEMF) techniques are applied for the first time. Different from the previous methods that are required of matrix [...] Read more.
A new method for solving the excitation amplitude and phase of wide-band phased array antenna is presented, in which spherical wave expansion and mode filtering (SWEMF) techniques are applied for the first time. Different from the previous methods that are required of matrix inversion or optimization iteration, the proposed SWEMF method is a forward calculation process. Thus, the solution is unique, and the result is closer to the true value. On the other hand, the SWEMF method only needs the total radiated field data of the array antenna in a small angular domain to ensure that the operation is simple and efficient. The effectiveness of the SWEMF method is successfully verified by examples of low sidelobe planar and linear arrays. The mean square error of the excitation amplitude can reach −38.88 dB. The range of excitation amplitude error is 0.05 v, and the excitation phase error is within 5.2°. This method takes about 60 s to calculate amplitude and phase at any one time. The feed amplitude and phase can be only calculated with the data in a small angular domain, and when the amount of data is small. Full article
(This article belongs to the Special Issue Wideband and Multiband Antennas for Wireless Applications)
Show Figures

Figure 1

17 pages, 1176 KiB  
Article
Multi-User Hybrid Beamforming Design for Physical Layer Secured mmWave LOS Communications
by Jianguo Li, Neng Ye, Siqi Ma, Xiangyuan Bu and Jianping An
Electronics 2021, 10(21), 2635; https://doi.org/10.3390/electronics10212635 - 28 Oct 2021
Cited by 2 | Viewed by 2341
Abstract
This paper proposes a hybrid beamforming design algorithm for a multi-user physical layer security modulation technique. The hybrid beamforming scheme is used in the base station to generate multi-beams according to the direction angle of the target users. The base station first uses [...] Read more.
This paper proposes a hybrid beamforming design algorithm for a multi-user physical layer security modulation technique. The hybrid beamforming scheme is used in the base station to generate multi-beams according to the direction angle of the target users. The base station first uses a secure analog beamforming scheme to generate analog beams in multiple desired directions, then uses minimum mean square error (MMSE) to design the digital beamforming matrix to eliminate inter-beam interference. Due to randomly selecting a subset of antennas to transmit signals at the symbol rate, the base station transmits the defined constellation to the target users and projects the randomized constellation in the other angles. In addition, the superposition of signals is affected by a randomly selected antennas subset, resulting in higher sidelobe energy. However, due to the integer optimization target, the optimization problem of antenna subsets is non-trivial. Therefore, this paper proposes a cross-entropy iteration method to choose the optimal antenna combination to reduce the sidelobe energy. The simulation shows that the proposed method in this paper has about 10 dB lower sidelobe energy than the random selection method. Besides, the eavesdropper’s symbol error rate of QPSK is always 0.75, while the multi-target users meet the quality of service requirements. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

14 pages, 3705 KiB  
Article
A 28-GHz Switched-Beam Antenna with Integrated Butler Matrix and Switch for 5G Applications
by Sujae Lee, Yongho Lee and Hyunchol Shin
Sensors 2021, 21(15), 5128; https://doi.org/10.3390/s21155128 - 29 Jul 2021
Cited by 33 | Viewed by 5136
Abstract
This work presents a 28-GHz Butler matrix based switched-beam antenna for fifth-generation (5G) wireless applications. It integrates a 1 × 4 microstrip antenna, a 4 × 4 Butler matrix, and a single-pole four-throw (SP4T) absorptive switch in a single planar printed circuit board [...] Read more.
This work presents a 28-GHz Butler matrix based switched-beam antenna for fifth-generation (5G) wireless applications. It integrates a 1 × 4 microstrip antenna, a 4 × 4 Butler matrix, and a single-pole four-throw (SP4T) absorptive switch in a single planar printed circuit board and is housed in a metal enclosure. Co-integration of a packaged switch chip with the Butler matrix based switched-beam antenna greatly enhances the form factor and integration level of the entire system. A wideband two-section branch line coupler is employed to minimize the phase and magnitude errors and variations of the Butler matrix. The aluminum metal enclosure stabilizes the electrical performances, reduces the sidelobes, and improves the structural stability. The fabricated antenna with the metal enclosure assembled has a dimension of 37 × 50 × 6.2 mm3. With an RF input signal fed to the antenna’s input port through a single Ka-band connector, and the switching states chosen by 2-bit dc control voltages, the antenna successfully demonstrates four directional switched beams. The beam switching operations are verified through the over-the-air far-field measurements. The measured results show that the four beam steering directions are −43°, −17°, +10°, +34° with side lobe levels < −5.3 dB at 28 GHz. The antenna also shows reasonably wideband radiation patterns over 27–29 GHz band. The 10-dB impedance bandwidth is 25.4–27.6 GHz, while a slightly relaxed 8-dB bandwidth is 25.2–29.6 GHz. Compared to previous works, this four-directional switched-beam antenna successfully exhibits the advantages of high integration level and satisfactory performances for the 28-GHz 5G wireless applications. Full article
(This article belongs to the Special Issue Advanced Antenna Techniques for IoT and 5G Applications)
Show Figures

Figure 1

18 pages, 43704 KiB  
Article
Non-Contact Monitoring of Human Vital Signs Using FMCW Millimeter Wave Radar in the 120 GHz Band
by Wenjie Lv, Wangdong He, Xipeng Lin and Jungang Miao
Sensors 2021, 21(8), 2732; https://doi.org/10.3390/s21082732 - 13 Apr 2021
Cited by 71 | Viewed by 10607
Abstract
A non-contact heartbeat/respiratory rate monitoring system was designed using narrow beam millimeter wave radar. Equipped with a special low sidelobe and small-sized antenna lens at the front end of the receiving and transmitting antennas in the 120 GHz band of frequency-modulated continuous-wave (FMCW) [...] Read more.
A non-contact heartbeat/respiratory rate monitoring system was designed using narrow beam millimeter wave radar. Equipped with a special low sidelobe and small-sized antenna lens at the front end of the receiving and transmitting antennas in the 120 GHz band of frequency-modulated continuous-wave (FMCW) system, this sensor system realizes the narrow beam control of radar, reduces the interference caused by the reflection of other objects in the measurement background, improves the signal-to-clutter ratio (SCR) of the intermediate frequency signal (IF), and reduces the complexity of the subsequent signal processing. In order to solve the problem that the accuracy of heart rate is easy to be interfered with by respiratory harmonics, an adaptive notch filter was applied to filter respiratory harmonics. Meanwhile, the heart rate obtained by fast Fourier transform (FFT) was modified by using the ratio of adjacent elements, which helped to improve the accuracy of heart rate detection. The experimental results show that when the monitoring system is 1 m away from the human body, the probability of respiratory rate detection error within ±2 times for eight volunteers can reach 90.48%, and the detection accuracy of the heart rate can reach 90.54%. Finally, short-term heart rate measurement was realized by means of improved empirical mode decomposition and fast independent component analysis algorithm. Full article
Show Figures

Figure 1

29 pages, 15707 KiB  
Article
Passive Radar Array Processing with Non-Uniform Linear Arrays for Ground Target’s Detection and Localization
by Nerea Del-Rey-Maestre, David Mata-Moya, Maria-Pilar Jarabo-Amores, Pedro-Jose Gómez-del-Hoyo, Jose-Luis Bárcena-Humanes and Javier Rosado-Sanz
Remote Sens. 2017, 9(7), 756; https://doi.org/10.3390/rs9070756 - 22 Jul 2017
Cited by 25 | Viewed by 10382
Abstract
The problem of ground target detection with passive radars is considered. The design of an antenna array based on commercial elements is presented, based on a non-uniform linear array optimized according to sidelobe level requirements. Array processing techniques are applied in the cross-ambiguity [...] Read more.
The problem of ground target detection with passive radars is considered. The design of an antenna array based on commercial elements is presented, based on a non-uniform linear array optimized according to sidelobe level requirements. Array processing techniques are applied in the cross-ambiguity function domain to exploit integration gain, system resolution and the sparsity of targets in this domain. A modified two-stage detection scheme is described, which is based on a previously-published one by other authors. All of these contributions are validated in a real semiurban scenario, proving the capabilities of detection, the direction of arrival estimation and the tracking of ground targets in the presence of big buildings that generate strong clutter returns. Detection performance is validated through the probability of false alarm and the probability of detection estimation with specified estimation errors. Full article
(This article belongs to the Special Issue Radar Systems for the Societal Challenges)
Show Figures

Graphical abstract

Back to TopTop