Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = ant-colony-based band selection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3441 KiB  
Article
Improving the Accuracy of Soil Organic Carbon Estimation: CWT-Random Frog-XGBoost as a Prerequisite Technique for In Situ Hyperspectral Analysis
by Jixiang Yang, Xinguo Li and Xiaofei Ma
Remote Sens. 2023, 15(22), 5294; https://doi.org/10.3390/rs15225294 - 9 Nov 2023
Cited by 15 | Viewed by 2685
Abstract
Rapid and accurate measurement of the soil organic carbon (SOC) content is a pre-condition for sustainable grain production and land development, and contributes to carbon neutrality in the agricultural industry. To provide technical support for the development and utilization of land resources, the [...] Read more.
Rapid and accurate measurement of the soil organic carbon (SOC) content is a pre-condition for sustainable grain production and land development, and contributes to carbon neutrality in the agricultural industry. To provide technical support for the development and utilization of land resources, the SOC content can be estimated using Vis-NIR diffuse reflectance spectroscopy. However, the spectral redundancy and co-linearity issues of Vis-NIR spectra pose extreme challenges for spectral analysis and model construction. This study compared the effects of different pre-processing methods and feature variable algorithms on the estimation of the SOC content. To this end, in situ hyperspectral data and soil samples were collected from the lakeside oasis of Bosten Lake in Xinjiang, China. The results showed that the combination of continuous wavelet transform (CWT)-random frog could rapidly estimate the SOC content with excellent estimation accuracy (R2 of 0.65–0.86). The feature variable selection algorithm effectively improved the estimation accuracy (average improvement of (0.30–0.48); based on their ability to improve model estimation on average, the algorithms can be ranked as follows: particle swarm optimization (PSO) > ant colony optimization (ACO) > random frog > Boruta > simulated annealing (SA) > successive projections algorithm (SPA). The CWT-XGBoost model based on random frog showed the best results, with R2 = 0.86, RMSE = 2.44, and RPD = 2.78. The feature bands accounted for only 0.57% of the Vis-NIR bands, and the most important sensitive bands were distributed at 755–1195 nm, 1602 nm, 1673 nm, and 2213 nm. These findings are of significance for the extraction of precise information on lakeside oases in arid areas, which would aid in achieving human–land sustainability. Full article
Show Figures

Figure 1

21 pages, 5007 KiB  
Article
Classification of Organic and Conventional Vegetables Using Machine Learning: A Case Study of Brinjal, Chili and Tomato
by Sowmya Natarajan and Vijayakumar Ponnusamy
Foods 2023, 12(6), 1168; https://doi.org/10.3390/foods12061168 - 9 Mar 2023
Cited by 8 | Viewed by 3454
Abstract
Growing organic food is becoming a challenging task with increasing demand. Food fraud activity has increased considerably with the increase in population growth. Consumers cannot visually distinguish between conventional and organically grown food products. Spectroscopic methodologies are presented to identify chemicals in food, [...] Read more.
Growing organic food is becoming a challenging task with increasing demand. Food fraud activity has increased considerably with the increase in population growth. Consumers cannot visually distinguish between conventional and organically grown food products. Spectroscopic methodologies are presented to identify chemicals in food, thereby identifying organic and conventional food. Such spectroscopic techniques are laboratory-based, take more time to produce an outcome, and are costlier. Thus, this research designed a portable, low-cost multispectral sensor system to discriminate between organic and conventional vegetables. The designed multispectral sensor system uses a wavelength range (410 nm–940 nm) that includes three bands, namely visible (VIS), ultraviolet (UV) and near-infrared (NIR) spectra, to enhance the accuracy of detection. Tomato, brinjal and green chili samples are employed for the experiment. The organic and conventional discrimination problem is formulated as a classification problem and solved through random forest (RF) and neural network (NN) models, which achieve 92% and 89% accuracy, respectively. A two-stage enhancement mechanism is proposed to improve accuracy. In the first stage, the fuzzy logic mechanism generates additional feature sets. Ant colony optimization (ACO) algorithm-based parameter tuning and feature selection are employed in the second stage to enhance accuracy further. This two-stage improvement mechanism results in 100% accuracy in discriminating between organic and conventional vegetable samples. The detected adulterant is displayed on a web page through an IoT-developed application module to be accessed from anywhere. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Graphical abstract

20 pages, 17834 KiB  
Article
Hyperspectral Imaging for Glioblastoma Surgery: Improving Tumor Identification Using a Deep Spectral-Spatial Approach
by Francesca Manni, Fons van der Sommen, Himar Fabelo, Svitlana Zinger, Caifeng Shan, Erik Edström, Adrian Elmi-Terander, Samuel Ortega, Gustavo Marrero Callicó and Peter H. N. de With
Sensors 2020, 20(23), 6955; https://doi.org/10.3390/s20236955 - 5 Dec 2020
Cited by 61 | Viewed by 6819
Abstract
The primary treatment for malignant brain tumors is surgical resection. While gross total resection improves the prognosis, a supratotal resection may result in neurological deficits. On the other hand, accurate intraoperative identification of the tumor boundaries may be very difficult, resulting in subtotal [...] Read more.
The primary treatment for malignant brain tumors is surgical resection. While gross total resection improves the prognosis, a supratotal resection may result in neurological deficits. On the other hand, accurate intraoperative identification of the tumor boundaries may be very difficult, resulting in subtotal resections. Histological examination of biopsies can be used repeatedly to help achieve gross total resection but this is not practically feasible due to the turn-around time of the tissue analysis. Therefore, intraoperative techniques to recognize tissue types are investigated to expedite the clinical workflow for tumor resection and improve outcome by aiding in the identification and removal of the malignant lesion. Hyperspectral imaging (HSI) is an optical imaging technique with the power of extracting additional information from the imaged tissue. Because HSI images cannot be visually assessed by human observers, we instead exploit artificial intelligence techniques and leverage a Convolutional Neural Network (CNN) to investigate the potential of HSI in twelve in vivo specimens. The proposed framework consists of a 3D–2D hybrid CNN-based approach to create a joint extraction of spectral and spatial information from hyperspectral images. A comparison study was conducted exploiting a 2D CNN, a 1D DNN and two conventional classification methods (SVM, and the SVM classifier combined with the 3D–2D hybrid CNN) to validate the proposed network. An overall accuracy of 80% was found when tumor, healthy tissue and blood vessels were classified, clearly outperforming the state-of-the-art approaches. These results can serve as a basis for brain tumor classification using HSI, and may open future avenues for image-guided neurosurgical applications. Full article
(This article belongs to the Special Issue Trends and Prospects in Medical Hyperspectral Imagery)
Show Figures

Figure 1

Back to TopTop