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Abstract: The primary treatment for malignant brain tumors is surgical resection. While gross total
resection improves the prognosis, a supratotal resection may result in neurological deficits. On the
other hand, accurate intraoperative identification of the tumor boundaries may be very difficult,
resulting in subtotal resections. Histological examination of biopsies can be used repeatedly to help
achieve gross total resection but this is not practically feasible due to the turn-around time of the tissue
analysis. Therefore, intraoperative techniques to recognize tissue types are investigated to expedite
the clinical workflow for tumor resection and improve outcome by aiding in the identification and
removal of the malignant lesion. Hyperspectral imaging (HSI) is an optical imaging technique with
the power of extracting additional information from the imaged tissue. Because HSI images cannot
be visually assessed by human observers, we instead exploit artificial intelligence techniques and
leverage a Convolutional Neural Network (CNN) to investigate the potential of HSI in twelve in
vivo specimens. The proposed framework consists of a 3D-2D hybrid CNN-based approach to
create a joint extraction of spectral and spatial information from hyperspectral images. A comparison
study was conducted exploiting a 2D CNN, a 1D DNN and two conventional classification methods
(SVM, and the SVM classifier combined with the 3D-2D hybrid CNN) to validate the proposed
network. An overall accuracy of 80% was found when tumor, healthy tissue and blood vessels
were classified, clearly outperforming the state-of-the-art approaches. These results can serve as
a basis for brain tumor classification using HSI, and may open future avenues for image-guided
neurosurgical applications.

Keywords: hyperspectral imaging; glioblastoma; ant-colony-based band selection; tumor tissue
classification; deep learning; brain imaging
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1. Introduction

Glioblastoma multiforme (GBM) is one of the most aggressive forms of malignant gliomas [1].
Surgery aims to achieve gross total resection, which, when combined with radio- and chemotherapy,
is associated with improved survival. During surgery, tumor margins are identified visually in the
surgical microscope. However, GBM infiltrates the normal parenchyma and the likelihood of recurrence
or residual tumor is very high when only visual delineation is used. Conversely, supratotal resection
can cause severe neurological impairment [2]. Assistance in defining the tumor margins is provided
by preoperative imaging, mainly magnetic resonance imaging (MRI). Intraoperative neurosurgical
navigation techniques help the surgeon to define the intended resection. However, due to the
brain-shift phenomenon, tumor boundaries change during the course of a surgery, yielding an
inaccurate navigation [3]. Intraoperative imaging modalities such as ultrasound and MRI, as well as
fluorescent tumor agents, may be used to provide up-to-date information. Intraoperative MRI has
been suggested as a method to compensate for brain shift, but suffers the drawbacks of poor spatial
resolution, high cost and time-consuming workflow [4]. In addition, it is not feasible to perform
multiple intraoperative MRI cycles during a single surgery [4,5]. Intraoperative fluorescent agents
can help to identify GBM tissue, but the definition of tumor margins remains difficult due to the
infiltrative growth [6]. Histopathological examinations are used to verify tumor-free margins and total
resection in oncological surgery. However, this is not applicable to glioma surgery. The turn-around
time of tissue analysis is counted in hours and gliomas cannot be resected with a wide tumor-free
margin, due to the risk of neurological impairment.

Thus, intraoperative and non-ionizing imaging techniques able to real-time identification of tumor
tissue could considerably expedite the clinical workflow for tumor resection and improve outcomes by
facilitating gross total resection.

Hyperspectral imaging (HSI) is a spectral-based imaging modality that acquires data in almost
contiguous narrow spectral bands. HSI systems can collect hundreds of bands in specific parts of the
electromagnetic spectrum, reconstructing a 3D cube which forms a set of 2D images, the so-called
hyperspectral (HS) cube [7]. The HS cube combines conventional imaging and spectroscopy to capture
the spatial and the spectral information, providing hundreds of spectral bands for each pixel in the 2D
plane [8]. Each pixel contains an almost continuous spectrum to create a spectral signature representing
radiance, reflectance and absorption, acting as a fingerprint (the so-called spectral signature) which
reflects the chemical composition of that particular pixel [8]. The main advantage of this technology
is that it only uses white light to acquire the wavelengths of interest, where an HS camera can
scan through those wavelengths so that the spectral and spatial information can be detected in a
non-invasive way without physical contact [9]. While originally employed in the remote sensing
field, HSI has recently found use in the detection and diagnosis of diseases, in particular cancer,
since cancer involves changes in the biochemical mechanism of the cells [10]. The changes in the
cellular morphology and metabolism can be detected as changes in the absorption and reflectance of
light within tissue and thus consequentially detected with the HSI camera. HSI in combination with
cutting-e.g., machine learning and deep learning algorithms [9-11] has been used to detect prostate [12],
breast [13,14], colon [11,15], oral, tongue [16-21], cervix [22], and skin cancer [23,24]. In this scenario,
brain tumors are extremely difficult to identify with the naked eye, because they deeply infiltrate
the healthy brain tissue [25]. Furthermore, it is crucial to preserve the surrounding healthy areas,
where there is no redundancy and usually the resected tumor margins are less healthy tissue [26].
In GBM surgery, HSI has been applied to create an in vivo HS human-brain image database [25] and
develop a framework for qualitative tumor margin detection [27,28], with the aim of providing a
surgical tool that is capable of visualizing the parenchymal area of the brain and the tumor location.
Since HSI allows the surgeon to observe what cannot be seen with the human eye, several challenging
aspects should be considered. First, the HS data consist of a combination of spectral and spatial
information, and it is crucial to jointly catch both types of information when performing a classification
task. Second, the HS data are high-dimensional data, characterized by high redundancy on the
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amount of image bands, which may potentially degrade the information and decrease the classification
accuracy. Third, HS data are heavy to compute, which is an important aspect for real-time use in
surgery. To overcome these challenges, it is necessary to deploy processing algorithms able to reduce
the dimensionality of the HS data without losing the relevant information and combine them with
a classification tool able to exploit the spectral and spatial information [29]. Roy et al. proposed a
fusion of 3D-2D CNN, a so-called Hybrid-SpectraNet (HybridSN), to jointly discriminate the features
from both spectral and spatial information [30]. We have previously applied a modified version of the
HybridSN, to assess colon cancer margins [15].

In this work, a hybrid deep learning-based framework is presented to quantitatively classify
brain and tumor tissue on using an in vivo HS brain dataset. An automated band-selection algorithm
was applied to reduce the computation time and provide insights about the relevant spectral bands
towards a real-time HSI acquisition system [29]. Our framework demonstrates the feasibility for
HSI-based classification of tumor tissue and highlights the differentiation between healthy brain tissue
and blood vessels, all together. The framework provides a basis for aiding neurosurgeons in their
critical surgical procedure during brain tumor surgery, while showing higher accuracy compared to
the state-of-the-art approaches.

2. Materials and Methods

This section presents the HSI system used to acquire the in vivo HS brain cancer dataset, as well
as the proposed framework for HS image pre-processing, band selection and brain tissue classification.

2.1. Intraoperative HS Image Acquisition System

An HSI acquisition system was designed to collect data for the creation of an in vivo HS
human-brain database [25]. This acquisition system is described in detail in [31]. HS data were captured
in the VNIR (visible and near-infrared) spectral range between 400 and 1000 nm. The system employed
is a Hyperspec® VNIR A-Series pushbroom camera (Headwall Photonics Inc., Fitchburg, MA, USA)
able to obtain 826 bands with a spectral resolution of 2-3 nm and a sampling interval of 0.73 nm.
The HS camera captures the complete spectral dimensions and only one spatial dimension of the scene
in a single shot. For this reason, it is necessary for the scanning to apply a linear displacement stage.
By sliding the camera with the scanning technique, the complete HS cube is obtained. The maximum
spatial dimensions is 1004 x 826 pixels. The working distance is 40 cm, covering an maximum effective
area of 129 x 230 mm. The pixel size is 128.7 um. The HS acquisition system was installed at the
University Hospital Doctor Negrin of Las Palmas de Gran Canaria (Spain) and the University Hospital
of Southampton (UK) and was used to capture brain surface exposed to white light. The illumination
system based on a 150-W QTH (quartz-tungsten-halogen) lamp is connected to a cold light emitter
via a fiber-optical light guide. The cold light emitter ensures that the brain is not subjected to high
temperatures produced by the QTH lamp in the exposed brain surface.

2.2. In Vivo Human-Brain HS Dataset

Within the context of the European project HELICoiD (HypErspectral Imaging Cancer Detection)
(Grant Agreement 618080), an in vivo human-brain HS database was collected, consisting of twenty-six
images (n = 26) from sixteen adult patients [25]. This project had the main goal of demonstrating,
as a proof-of-concept, that the use of HSI can be helpful for the identification and delineation of
in-vivo human brain tumor boundaries in real time during neurosurgical operations. The study
presented in this manuscript employs data from 16 patients collected in this project which are publicly
available in [25]. Nine patients had a histopathologically confirmed Grade IV glioblastoma (GBM),
while the remaining seven patients were either affected by other types of tumors, or affected by other
pathologies that required a craniotomy. Next, a brief description of the procedure followed to acquire
such data during the neurosurgical operations (Figure 1a) within the HELICoiD project execution is
presented. More details can be found in [25]. During surgery, after craniotomy and dural opening,
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the neurosurgeon used preoperative imaging data to identify and mark normal brain and tumor
tissue by placing rubber-ring markers (with an external diameter of 10 mm), as shown in Figure 1b.
HS images were then captured during surgery and biopsies of the tissue inside the tumor marker were
taken to confirm the presence of malignant tumor and determine its type and grade. Resected tissue
was sent for histopathological analysis. In case of superficial tumors, HS images were acquired after
the opening of the dura. Tumors located in a deep layer were recorded after beginning tumor resection.
The labelling tool based on the Spectral Angle Mapper (SAM) algorithm was employed to label data as
described in [25]. This tool was employed by the operating neurosurgeons to create the ground truth
dataset. Reference pixels for the normal and tumor classes were selected in the image inside the ring
markers and then pixels with similar spectrum in the image were selected to conform the ground truth
for such classes (according to the neurosurgeons criteria). Additionally, the tumor marker is employed
to identify the place where the tissue biopsy was performed for confirming the pathological diagnosis
of the tumor. The SAM was then applied to the pixels previously selected and a threshold was set to
find and select other pixels with almost the same spectral properties. Tumor pixels were labelled based
on the biopsy assessment. Neurosurgeons labeled the normal tissue, blood vessels and background
by visual inspection according to their experience. In previous works, the blood vessels class was
called hyper-vascularized. However, since the labelled pixels in such class involves mainly blood
vessels, in this work we redefined this term because hyper-vascularized can be confusing for medical
readers. Figure 1b shows an example of the synthetic RGB image of brain tissue and Figure 1c the
corresponding obtained ground-truth map, where green, red, blue and black pixels represent normal,
tumor, blood vessels and background labeled samples, respectively. The background class includes
tissue and materials other than the brain parenchyma, such as dura mater or surgical material, etc.,
exposed in the HS images. More details can be found in [25]. Figure 1d-g depict examples of gray-scale
band representations for different wavelengths in the employed spectral range. The total numbers of
labeled pixels for each class within the HS images are listed in Table 1. The technology adopted from
Fabelo et al. [25], was not modified for performing new HS acquisitions in this study. The study and
consent procedures were approved by the Comité Etico de Investigaciéon Clinica-Comité de Etica en la
Investigacién (CEIC/CEI)of the University Hospital Doctor Negrin and the National Research Ethics
Service (NRES) Committee South Central—Oxford C for the University Hospital of Southampton.
Written consents were obtained from all participating patients.

Table 1. Summary of the hyperspectral (HS) images. NT is normal tissue, TT is tumor tissue, BV is
blood vessel, BG is background.

Number of Pixels

Patient ID-Image ID

NT TT BV BG
1 =008-01 2295 1221 1331 630
2 =008-02 2187 138 1000 7444
3 =010-03 10,626 0 2332 3972
4=012-01 4516 855 8697 1685
5=012-02 6553 3139 6041 8731
6 = 014-01 0 30 64 1866
7 =015-01 1251 2046 4089 696
8 =016-04 1178 0 1064 956
9 =016-05 2643 0 452 5125
10 = 017-01 1328 0 68 3069
11 = 020-01 1842 3655 1513 2625
12 = 025-02 977 1282 907 3687

Total 35,396 12,366 27,558 40,486
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Figure 1. (a) HELICoiD intraoperative HS acquisition system (reproduced from [28]). (b) Synthetic
RGB image of the brain tissue extracted from the hyperspectral cube. The marker has an external
diameter of 10 mm. (c) Annotated ground truth obtained with the semi-automated Spectral Angle
Mapper (SAM) labeling tool. Normal, tumor, blood vessels and background classes are represented
in green, red, blue, and black color, respectively. White pixels correspond with non-labeled data.
(d—g) Examples of four gray-scale band representations for different wavelengths in the employed
spectral range. These wavelengths were selected by visual inspection of this HS cube in order to
illustrate the four of the most different spectral bands.

2.3. HS Data Preprocessing and Band Selection

HS image preprocessing is a very important step due to the instrumentation noise and the curse
of data dimensionality. The raw data acquired by the sensor are normalized for correction of the dark
noise, using a dark and a white reference, following Equation (1):

Traw (Pk) — Igark (pk)

with k€ l1,..,K], 1
Iwhite (Pk) - Idark(Pk) [ ] ( )

Lref (pk) =

where I is the normalized reflectance value, Iaw is the diffuse reflectance value at the k pixel
Pis Lwhite Tepresents the intensity value for the white reference plate and Iy, represents the dark
reference. The white reference was obtained by capturing a standard white reference tile just before
the HS intraoperative acquisitions, keeping the same illumination conditions. The dark reference was
acquired by keeping the camera shutter closed. As indicated in [25], the low- and high-frequency
bands showed high noise generated by the low performance of the CCD sensor in these extreme bands.
For this reason, Bands 1-55 (from 400-440 nm) and Bands 700-826 (from 902-1000 nm) were removed,
obtaining HS cubes with 645 spectral bands covering the range comprised between 440 and 902 nm.
However, the large number of spectral bands leads to a high-dimensional dataset with high redundancy,
which can cause a high computation cost and a decrease of the classification accuracy.

In order to reduce dimensionality but preserve the most relevant spectral information, we applied
a band-selection algorithm to optimally select a subset of bands. The objective of band selection
is to select an optimal set of bands that preserves the discriminative features and achieves a good
classification accuracy. Searching strategies based on metaheuristic algorithms are widely adopted
to derive the optimal combination of bands [32,33]. These algorithms are often inspired by nature
and have satisfactory convergence behavior. Based on the information gain and the spectral curve,
Xie et al. [34] proposed a gray wolf optimizer (GWO) framework, which was verified on the Indian
Pines and Salinas HS dataset with the aid of support vector machine (SVM) classifier. Gao et al. [33]
performed an ant colony optimization (ACO)-based band selection technique, using both supervised
and unsupervised objective functions. The ACO-based band-selection experiments and results showed
that the classification accuracy on selected bands was higher than the accuracy found when using all
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the bands [33]. Prior to band selection, a band-calibration step was applied, by calculating the mean
value every eight bands from the original bands.

Band selection has the advantage of preserving the spectral information by removing redundant
bands. In this study, The ACO band-selection algorithm was employed to choose the bands with
the most distinctive information with respect to the multi-class classification accuracy. The ACO
algorithm is created to solve the optimization problem by imitating the behavior of real ants in
searching for food [35]. When ants are trying to find the food source, pheromones are released on the
route. The shorter the road, the more pheromones will be released. This chemical substance contains
information which can attract other ants, so there are always more ants on the route with a higher
concentration of pheromones. The pheromone also has an evaporation coefficient, and it gradually
vanishes on the route where there are few ants. Due to the positive feedback, the ants can find the
shortest route to the food source after a short enough time. In the ACO band-selection algorithm,
the artificial ants pass a route that contains n different vertices of the graph. The number of vertices
represents the chosen bands. During one iteration, the pheromone would be updated after all the ants
find a route. The pheromone updating rule can be written as [33]:

Tij =P Tj + AT, 2
AT = Q- F(fbest) v, vj € routepest , 3)
g 0 Uj, Uj & routepest

where p is the evaporation coefficient, AT;; is the increasing pheromone, Q is a constant and F is a
function that can control the pheromone according to the value of objective function f. A better fpeg
denotes a higher At;;. The object function is set to the subset accuracy of a linear SVM classifier to
perform supervised band selection.

2.4. HS Image Classification: A Deep Spectral-Spatial Approach

Traditional classification algorithms (e.g., spectral unmixing, SAM, SVM) have been extensively
studied for HSI classification [9]. Recently, convolutional neural networks (CNNs) have been gaining
attention in the field of HSI analysis. Despite their efficiency in feature extraction, 2D and 3D CNNs blur
the relationship between spectral and spatial dimensions in the HS data. The 2D CNN alone is unable to
extract good discriminating feature maps from the spectral dimensions [30]. Unfortunately, 3D CNNs
are more complex architectures, which do not show discriminating power for data with similarity
over many spectral bands [30]. Combining 3D- and 2D CNNs may overcome the shortcomings of
the single models and extract both spatial and spectral information. Paoletti et al. [36] proposed
a spectral-spatial capsule network to learn the HS features, while Fang et al. [37] introduced deep
hashing neural networks for HSI feature extraction Recently, Roy et al. [30] and Luo et al. [38] proposed
the concatenation of 3D convolution and 2D convolution operations to obtain both spatial and spectral
information and reduce the complexity of the 3D CNN model. Inspired by the joint assembly of
3D and 2D CNNs and the strategy to achieve a maximum possible accuracy with a hybrid CNN
model, we propose the model architecture shown in Figure 2, which is a deeper version of the network
proposed by [30]. As input for the network, Roy et al. reduced the number of spectral bands to
remove the spectral redundancy with principal component analysis (PCA). PCA is a band extraction
method that generates a new set of linearly uncorrelated features where the first few contain most
of the original-signal variation [39]. However, the linear projection transformation leads to mixing
the original spectral information [39]. As input for our network a band selection algorithm was
applied, with the advantage of selecting a subset of bands, preserving their physical meaning and the
spatial information. The HybridSN by Roy et al. consists of three 3D convolutional layers, one 2D
convolutional layer, three dense layers and a softmax classifier. Our hybrid CNN architecture contains
four 3D convolutional layers, two 2D convolutional layers and three fully connected layers where the
last layer is a softmax layer. The added convolutional layers may extract more features and improve
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the classification accuracy in our dataset. Between 3D and 2D convolutions, a reshape layer converts
5D feature vectors to 4D feature vectors. It can be noticed that an HS patch has the shape of P x P x 100
where P is the patch size and 100 is the number of bands. Using a 2D CNN model to perform the
HSI classification, the input patch data will be converted to a P x (P x 100) vector, subsequently
mixing the spatial and spectral information. The 2D CNN model is not able to perform spectral-feature
learning. With a deep 3D CNN model, the computation complexity increases drastically, and the
classification performance is not satisfactory for classes that have similar spectral signatures [30].
The hybrid architecture combines the advantages of both 2D and 3D CNNSs, keeping the discriminating
spectral-spatial features with lower computation complexity. The 3D convolutional layers extract the
spectral information, while the 2D convolutional layers learn the distinctive spatial features of different
spectral losses. Furthermore, the band selection combined with our low complex model would
strengthen the efficiency of using CNN extracting spatial and spectral information in HS data [40].
At last, a softmax activation function is used to give the four-class classification results. The results
from the above-described model were benchmarked with the results obtained by using a 2D CNN
with three 2D convolutions, one average pooling, and three fully-connected layers. A patch-based
classification was performed, dividing the HS cubes into non-overlapping 3D patches. The frequency
of each class was counted within every patch and the patch label was assigned based on the majority
class within the patch. Non-overlapping 3D patches of size 11 x 11 x 100 were created from each
HS image. The 11 x 11 2D patch dimension was empirically chosen as the one achieving higher
classification accuracy, after having conducted experiments with several patch sizes (e.g., 6 X 6 and
22 x 22).

L]
L]
.

3DConvx 4 2D Convx 2 Flatten Fully Connected
. _. . . _.'ﬁ
Band selection Patch extraction

M x N x 645 M x N x 100 PxPx100 Lx1lx4

Hyperspectral Image Hyperspectral Image Softmax
+ T 1
L o o o o e e e mmmmmmmmmmm— - I T, 1
Spectral —Spatial Learning Spatial Learning

Figure 2. A 3D-2D hybrid Convolutional Neural Network (CNN) architecture for feature extraction
and classification adapted from Roy et al. [30]. At the left, the band selection and patch extraction are
shown. In the middle, the feature extraction by using 3D and 2D CNNs used for giving the final output
depicted at the right.

2.5. Traditional Supervised Classification Methods

The results of the proposed framework were compared with traditional supervised classification
techniques. The first alternative was to replace the softmax function with a linear SVM classifier.
This means that a transfer learning approach was applied, in order to use a CNN as feature extractor
and train an SVM classifier. The pre-trained hybrid model was used, and the fully connected layers
were removed. The output of the last convolutional layer was then used as an input for the SVM
classifier. After the training and validation phase, the results were compared with the previously
found results obtained by using the softmax function, and a linear kernel-based SVM model, as shown
in Figure 3.
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Figure 3. A 3D-2D hybrid CNN architecture for feature extraction and classification adapted from
Roy et al. [30]. At the left the band selection and patch extraction is shown. In the middle, (1) feature
extraction is shown by using 3D and 2D CNN for giving the final classification output based on an
SVM classifier. (2) The intensity values of the patch extracted are used to feed an SVM classifier and
perform a supervised classification.

3. Experiments

3.1. Evaluation Protocols

The four-class classification of normal tissue (NT), tumor tissue (TT), blood vessels (BV) and
background (BG) was validated by performing an inter-patient classification. Leave-One-Patient-Out
Cross-Validation (LOPOCV) was employed to avoid the double usage of the same patient. To evaluate
the performances of each approach, the overall accuracy, per-class sensitivity, and specificity metrics
were calculated. Equation (4) defines the accuracy, where TP denotes the number of true positives,
TN is the number of true negatives, FP is the number of false positives, and FN the number of false
negatives. Sensitivity and specificity are the true positive rate and true negative rate, respectively.
They are defined in the same order by Equations (5) and (6):

TP+ TN

ACCUracy = b TN 1 FP 4 EN @
. TP
Sensitivity = TP EN (5)
e TN
Specificity = TN+ FDP" (6)

In addition, the receiver operating characteristic (ROC) curve was computed and the area under
the curve (AUC) metric was provided for each class in the results, in one-vs-all way. For each image,
a ground-truth map with the labeled pixels of the four classes (NT, TT, HT, and BG) is used for
computing the above defined performance metrics.

3.2. Results

The proposed framework was evaluated on twelve HS images from nine patients with GBM tumor.
The ACO band-selection algorithm required almost three hours of computations by using the subset
accuracy of SVM as object function for selecting 100 bands, covering the spectral ranges of 410-423 nm,
457-485 nm, 500-533 nm, 593-621 nm, 638-667 nm, 731-740 nm, 757-771 nm and 802-824 nm.
The identified spectral ranges approximately correspond to the ranges found in [29], where an extensive
analysis was made for choosing the best ranges in twenty-six HS images, obtained from sixteen adult
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patients from the same in vivo brain database. In our study, the ACO band-selection algorithm
was applied by using the following parameters (described in Section 2.3), chosen as in the original
paper [33]: ant count = 30, generation = 30, « = 1.0, f = 10.0, p = 0.5, g = 10 and strategy = 2.

In order to evaluate our classification model, a four-class classification was performed to test the
3D-2D hybrid network against traditional deep learning and machine learning algorithms. The overall
per-class accuracy, sensitivity, specificity and AUC of the four-class classification obtained with the
3D-2D CNN are shown in Table 2. The proposed approach is compared with a 2D CNN and with
conventional approaches such as SVM and with the combination of SVM when spatial-spectral features
are extracted from the pre-trained 3D-2D CNN, as reported in Table 2. The extended results for each
patient and each approach are included in the Appendix A as Tables A1-A4. It should be noted that
data distribution is not uniform for all cases, so that any value is applicable for tumor and healthy
tissue sensitivity, specificity and AUC in patients 010-03, 014-01, 016-04, 016-05 and 017-01. The 3D-2D
hybrid CNN model achieves a mean accuracy of 80% which is 8% higher compared to the accuracy
reached with the 2D CNN-based model, implying that more discriminative features are extracted
from the 3D-2D hybrid CNN model. The average accuracy of the 3D-2D hybrid CNN combined with
the SVM classifier (3D-2D CNN + SVM) is 75%, showing a similar performance of the SVM model
(accuracy equal to 76%). Since the combination of 3D and 2D CNN5s performs better than the SVM in
preserving features, the softmax classifier is more suitable for our experiments. The 3D-2D hybrid
CNN has a lower sensitivity in classifying the tumor tissue (68%), compared to the healthy and the
blood vessels classification (76% and 74%, respectively). However, higher sensitivity values are found
when using the hybrid model compared to the SVM classifier or the 3D-2D hybrid CNN combined
with the SVM model. The tumor tissue sensitivity decreases when the 2D CNN is applied, leading to
the conclusion that this is an unsatisfactory model. This means that tumor tissue may be ignored,
and the left-behind tumor tissue is potentially risky for the patient, since it could cause the recurrence
of cancer. It is noteworthy that the sensitivity of the background is higher than 90% for the hybrid
model (3D-2D CNN) and the 3D-2D CNN combined with the SVM (3D-2D CNN + SVM) and more
than 70% for the SVM and the 2D CNN. Most of the background samples are classified correctly. For all
four methods, the results show high tumor specificity, with values higher than 97%, indicating that all
methods have a high confidence in classifying non-tumor tissue. This is crucial to avoid the resection
of normal tissue during the surgery.

Overall, the 3D-2D hybrid CNN achieves the best results with a mean accuracy of 80%,
sensitivity of 76%, 68%, 74%, 96%, specificity of 87%, 98%, 92%, 87%, and AUC of 78%, 70%, 84%, 91%,
for normal, tumor, blood vessels and background, respectively (Table 2). While the obtained AUCs for
the four classes with the four methods are quite similar, the AUC for the tumor tissue is higher when
the 3D-2D hybrid CNN is combined with the SVM classifier.

For benchmarking, we have compared our approach with the results found after having applied
the 1D DNN (Deep Neural Network) by Fabelo et al. [28]. This 1D DNN was conformed by two
hidden layers of 28 and 40 nodes, respectively, using the rectified linear unit as an activation function.
These results are presented in detail Table A5 from the Appendix A. The comparison of the results for
each patient, obtained after the ACO band selection, for the overall accuracy, tumor tissue sensitivity,
normal tissue sensitivity and tumor tissue AUC are shown in Figures 4-7. Due to non-uniform data
distribution, Figures 5-7 have some not applicable (n/a) values and missing bars.

Furthermore, for the HS images 020-01 and 025-01, a sensitivity of zero is found for the tumor
tissue. On one hand, in case of the 020-01 image, the detection of the tumor area is quite challenging,
since the tumor is not clearly visible in the surface of the brain during data capturing, although the
neuronavigation system indicated the contrary during surgery. Hence, as can be seen in Figure 8a,
the spectral signatures from the labeled tumor (red) and normal (blue) tissue are quite similar.
Considering the other tumor spectral signatures found in the database, for example from the images
012-01 (Figure 8c) and 015-01 (Figure 8d), the tumor signature from 020-01 is more similar to the normal
tissue signature than the tumor tissue signatures from 012-01 and 015-01 images. The differences
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found between tumor and normal tissue in the spectral range of 600 to 800 nm in 012-01 and 015-01 are
not found in 020-01. This could explain the misclassifications of the tumor samples in 020-01 using
the LOPOCV methodology. On the other hand, all the HS brain data employed in this study were
acquired at the University Hospital Doctor Negrin of Las Palmas de Gran Canaria (Spain), except for
the 025-01 image, which was captured at the University Hospital of Southampton (UK). As shown
in Figure 8b, a decrease in the level of reflection from 700 nm is produced in the labeled spectral
signatures of this image, which are quite different from the other data in the database. Although a
specific acquisition protocol was followed to acquire the data, this HS image seems to suffer from a
different illumination condition. One possibility is that some kind of protection element was placed in
front of the illumination system of the camera lens, thereby filtering the light in the infrared region.
Another possibility could be the use of the surgical lights illuminating the brain surface during
the capturing process, which can interfere with the acquisition process. The surgical lights are quite
powerful and affect the capturing process by interfering with the halogen light of the system, disrupting
the calibration stage. In most cases, the proposed algorithms outperform the 1D CNN for the detection
of tumor tissue. Similar results are found for the sensitivity of the normal tissue. One of the reasons
is that the 1D CNN exploits only the spectral information with a pixel-based approach, where each
pixel has a dimension of 1 x 128. Furthermore, the labeling process highly relies on the pathological
examination. The ground truth was generated mostly based on the examination results. However,
the excision area was very limited, and the data were not sufficient for a 2D-pixel-wise classification.
Therefore, 2D CNN in combination with the 3D CNN, used in this study, jointly exploits both spectral
and spatial information, using image patches from each pixel with a dimension of 11 x 11 pixels.

The classification results are visualized in Figure 9 for patients 008-01, 008-02, 010-03, 012-01,
showing that the proposed 3D-2D hybrid CNN approach is able to correctly discriminate the tumor
area, which overlaps with the ground truth. As suggested by Fabelo et al., the obtained low sensitivities
are caused by the relatively lower number of tumor samples in the training set, and by the fact that
only pixels with a high certainty of correct class were selected, which causes the sparse distributions
visualized in Figure 9 [28].

Table 2. Overall results comparison for the approaches evaluated in this study. Accuracy, sensitivity,
specificity, and AUC are calculated for each class NT: Normal tissue, TT: Tumor tissue, BV: blood vessels,
BG: Background.

Sensitivity Specificity AUC
Approach Accuracy
NT TT BV BG NI TTr BV BG NT TT BV BG
Proposed Mean 0.80 076 068 074 096 087 098 092 087 078 070 0.84 0.91
3D-2D CNN Std.D. 0.18 028 047 025 004 015 002 008 026 011 021 010 013

Mean 0.75 068 042 073 091 086 098 091 087 081 076 082 091
Std.D. 0.18 030 041 023 009 015 003 008 027 013 020 012 012

Mean 0.76 070 043 074 093 087 098 092 087 078 070 084 091

3D-2D-CNN + SVM

SVM Std.D. 0.18 030 042 023 009 015 002 008 026 011 021 010 013
2D CNN Mean 0.72 069 014 077 093 088 097 089 083 088 071 093 093

Std.D. 0.17 029 015 027 008 014 005 012 029 017 023 0.07 0.16
1D DNN Mean 0.78 079 019 084 083 094 097 09 082 091 089 089 087

Std.D. 0.16 031 025 029 024 009 005 013 031 023 008 022 029
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Figure 5. Average sensitivity results for the normal tissue classification of the leave-one-patient-out
cross-validation of the four-class classification for each method: 1D CNN, 3D-2D hybrid CNN, 3D-2D
hybrid CNN + SVM, the SVM and the 2D CNN.
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Figure 6. Average sensitivity results for the tumor tissue classification of the leave-one-patient-out
cross-validation of the four-class classification for each method: 1D CNN, 3D-2D hybrid CNN, 3D-2D
hybrid CNN + SVM, only SVM and the 2D CNN.
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Figure 7. Average AUC results for the tumor tissue classification of the leave-one-patient-out
cross-validation of the four-class classification for each method: 1D CNN, 3D-2D hybrid CNN, 3D-2D
hybrid CNN + SVM, only SVM and the 2D CNN.
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Figure 8. Examples of the different means and variances of the normal (blue) and tumor (red) spectral
signatures from different HS images that compose the labeled dataset. (a) Data from image 020-01.
(b) Data from image 025-02. (c) Data from image 012-01. (d) Data from image 015-01.
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Figure 9. Multi-class classification maps of four of the test hyperspectral (HS) images obtained
with the 3D-2D hybrid CNN model. (a—d) depict the predicted map of their respective ground
truth, (a’-d”) Normal, tumor tissue and blood vessels are represented in green, red, and blue colors,
respectively, while the background is represented in black.

4. Discussion

HSI is a non-invasive, non-ionizing technique already employed for brain tumor detection and
other neurosurgical applications [28,39]. In this study, new experiments performed on an in vivo HS
brain database are presented [25]. The proposed 3D-2D hybrid CNN approach, shows promising
results for achieving the highest multi-class classification results, compared with supervised machine
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learning as well as conventional 2D CNN and 1D CNN approaches. A sensitivity of 68%, specificity of
98% and AUC of 70% for tumor tissue classification is achieved. The obtained specificity is 10% higher
compared to the current state of the art [28], where twenty-six in vivo HS cubes from sixteen different
patients with glioblastoma and other type of brain tumors are analyzed. This demonstrates a better
identification of the tumor pixels with the joint normal, blood vessels and background classification.
In [28] Fabelo et al. proposed a 1D DNN architecture as main classifier. In that work, the training set
included patients who underwent craniotomy for other diagnoses than GBM. Only the GBM cases
were employed for testing the algorithm and the rest of the cases were used for the healthy and blood
vessels classification. The accuracy reached by the 1D DNN was 77%, and the same result was achieved
with the 2D CNN and a traditional SVM-based approach. In order to reduce the false positives in
the multiclass classification, Fabelo et al. [28] proposed to combine the 1D DNN with the 2D CNN
applied to a gray-scale representation of the HS data. However, the tumor classification accuracy
did not improve (42%). An accurate tumor detection is crucial to delineate the malignant lesions,
thereby reducing the risk for recurrence.

In this study, GBM patients were used to train and test the models and to classify tumor,
healthy and blood vessels by performing an interpatient cross-validation. When implementing the 1D
DNN architecture, introduced by Fabelo et al., the results show an increase of the overall accuracy by
2%, and a tumor sensitivity of 68%, compared to the 19%, achieved by the 1D DNN [28]. Aiming at
identifying brain tumor margins to aid the surgeon during resection, the results are promising and are
improved compared to the state-of-the-art for the multiclass classification of the in-vivo human-brain
HS dataset. As observed by Fabelo et al., since the sensitivity for the tumor tissue was higher in the
binary classification, the false negatives are caused by the presence of blood vessels and background
classes [28]. In Figure 9a’,b’,d” tumor pixels are classified as blood vessels. The specificity found for the
tumor classes, is quite high on average, leading to the conclusion that the algorithm correctly identifies
the non-tumor tissue. This is an important feature for a future intraoperative tool, ensuring that the
resected areas are not normal brain tissue which can positively impact the patient outcome. It should be
noted that part of the HS acquisitions were made when the superficial tumor was resected, either when
normal tissue was removed to visualize the tumor in deeper layers. This procedure may have affected
the area acquired, where bleeding and irrigation fluid can have resulted in misclassifications of the
tumor pixels [28]. Although the surface of the brain was cleaned prior to HS image acquisition,
blood may still have interfered with the images due to the time required for the acquisition process
(=1 min). This may have caused misclassifications, especially between the blood vessels and the
tumor classes. This study also has a number of limitations. First, the gold standard map is based on
similarities in the HS cubes which introduces a bias, as these same HS similarities are later exploited by
the subsequent classification methods. Other important limitations are the lack of a dense ground truth
as well as the absence of clinical evaluations on the tumor boundaries. Furthermore, the non-uniform
distribution in some cases my cause a very high background sensitivity, while leading to a loss
of generalization. As suggested by Fabelo et al. [28], a negative mask in the background could
potentially reduce the effects of the non-uniform data distribution in the ground truth. The large
variability between different patients represents a further limitation in this study, mainly due to
different acquisitions done in the two clinical centers. This difference can affect the robustness of the
method. A simple way to address this would be a preceding system processing step that would identify
the patient scans on which the system will not work well, and label those as low-confidence predictions.

Further studies should be conducted to evaluate the influence of resection on the spectral
signature of tissues. Furthermore, a snapshot HS acquisition system would allow real-time acquisition,
without the constraint of acquiring HS images at certain surgical times. A snapshot HS acquisition
system may also increase the accuracy of the proposed CNN method, by adding spatial resolution to
the system.

In this study, a visualization map was created to evaluate the ability of the system for detecting
and localizing the tumor during neuronavigation. The tumor tissue overlapped with the ground truth
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and the main mismatches were found for the blood vessels which were sometimes classified as tumor.
Tumor tissues have higher metabolism, hyperplasia and are more vascularized compared to the normal
tissue [9]. This can cause the mismatched classification of blood vessels as tumor tissue. In this sense,
HSI could be combined with spectroscopy to better analyze the biological differences between tumor
and blood vessels, as proposed by Lai et al. [41]. Analyzing the spectral properties of hemoglobin on
the brain surface, for instance, can also lead to a better understanding of the classification outcome [28].
Further research must be performed regarding to the relation between the relevant wavelengths and
the biological properties of the different tissue classes. Particularly more research could be in the
identification of blood vessels where scattering measurements could be considered for improving their
delineation and differentiation.

The aim of this study was to extend the investigation of novel deep learning approaches to
discriminate between tumor, normal, blood vessels in the human brain. These results can serve as a
basis for defining tumor margins using HSIL

5. Conclusions

This study presents a novel 3D-2D hybrid CNN employed for brain tissue classification on
glioblastoma patients, using an intraoperative HSI system. The 3D-2D hybrid CNN shows higher
accuracy in detecting tumor, healthy and blood vessels compared with the state-of-the-art approaches.
Both spectral and spatial features are jointly revealed by using a patch-based classification obtained
with a hybrid network. A comparison study has been conducted to exploit the potential of extracting
the most discriminative features. A 2D CNN and two conventional classification methods (the SVM,
and the SVM classifier combined with the 3D-2D hybrid CNN for feature extraction) have been used to
validate the proposed network. Moreover, the method has been compared with the 1D CNN proposed
by Fabelo et al., outperforming it in accuracy and tumor sensitivity. This framework only involves
data normalization and calibration as a preprocessing step. While in [28] a preprocessing step was
added to filter the noise in the spectral signatures, our framework applies the filtering in the learning
process, resulting in a higher sensitivity [28].

While further experiments are warranted to optimize the deep learning algorithm and the
multi-class classification, the spectral-spatial approach outperforms traditional deep and machine
learning techniques and can serve as a robust basis for a future intraoperative real-time system.
While the four-class classification is a challenging task, it is essential to provide surgeons with an easy
interpretation of the classification map, in which different structures are visualized. The ability of the
proposed framework to detect tumor and improve the surgical outcome should be further studied
and extended, employing larger patient datasets. Nevertheless, the results achieved in this study
prove the feasibility of tumor identification using HSI. These results can serve as a basis for improving
the detection of tumor and surrounded tissue using HSI and may open a future for image-guided
neurosurgery applications.
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Appendix A

Table Al. Overall results for the 3D-2D hybrid CNN. Accuracy, sensitivity, specificity, and AUC are

calculated for each class. NT: Normal tissue, TT: Tumor tissue, BV: blood vessels, BG: Background.

3D-2D Hybrid CNN

Image ID  Accuracy Sensitivity Specificity AUC

NT Tr BV BG NT TT BV BG NT TT BV BG
008-01 0.79 087 100 035 098 099 081 100 09 072 048 078 092
008-02 0.97 0.89 100 094 099 100 099 098 099 084 084 089 093
010-03 0.91 097 - 074 08 08 - 098 099 08 - 087 097
012-01 0.78 093 092 066 095 074 098 100 099 086 093 086 093
012-02 0.79 082 084 074 095 080 100 097 095 087 073 086 081
014-01 0.97 - - 1.00 097 097 - 1.00 100 - - 095 099
015-01 0.87 082 098 078 098 091 099 097 095 09 095 089 097
016-04 0.91 089 - 09 095 097 - 091 099 08 - 077 094
016-05 0.82 073 - 09 09 097 - 091 08 08 - 09 097
017-01 0.83 048 - 100 100 100 - 084 093 069 - 09 099
020-01 0.56 094 - 069 087 051 099 099 095 076 050 087 093
025-02 0.35 0.01 - 020 100 09 100 1.00 0.08 050 049 057 054
Mean 0.80 076 068 074 096 087 098 092 087 078 070 084 091
Std.D. 0.18 028 047 025 004 015 002 008 026 011 021 010 013

Table A2. Overall results for the 3D-2D hybrid CNN + SVM applied to the features extracted with the
hybrid model. Accuracy, sensitivity, specificity, and AUC are calculated for each class. NT: Normal

tissue, TT: Tumor tissue, BV: blood vessels, BG: Background.

3D-2D Hybrid CNN + SVM

Image ID  Accuracy Sensitivity Specificity AUC

NT TT BV BG NI TT BV BG NT TT BV BG
008-01 0.60 072 0.07 057 09 068 099 083 081 098 089 067 099
008-02 0.88 072 079 092 093 097 09 094 096 084 088 093 095
010-03 0.90 0.95 - 0.69 091 0.84 - 097 099 0.90 - 0.83 0.95
012-01 0.82 093 084 076 086 080 099 09 099 087 092 086 093
012-02 0.74 093 036 079 069 077 098 086 097 086 067 0.84 084
014-01 0.96 - - 091 093 097 - 096 1.00 - - 0.95 0.98
015-01 0.87 091 0.88 0.84 094 089 1.00 094 099 091 094 089 096
016-04 0.69 0.63 - 0.67 0.83 0.98 - 0.76  0.88 0.81 - 0.73 087
016-05 0.83 067 - 087 097 097 - 0.89 090 082 - 0.88 0.95
017-01 0.78 0.38 - 093 099 100 - 0.78 0.99 0.69 - 0.86 0.99
020-01 0.57 090 - 073 089 053 100 098 091 072 050 086 093
025-02 0.32 - - 0.09 1.00 096 093 1.00 004 049 049 054 054
Mean 0.75 068 042 073 091 086 098 091 087 081 076 0.82 091
Std.D. 0.18 030 041 023 009 015 003 008 027 013 020 012 012
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Table A3. Overall results for the SVM model. Accuracy, sensitivity, specificity, and AUC are calculated

for each class. NT: Normal tissue, TT: Tumor tissue, BV: blood vessels, BG: Background.

SVM
Image ID  Accuracy Sensitivity Specificity AUC

NT Tr BV BG NT TTr BV BG NT TT BV BG
008-01 0.61 073 - 066 096 064 09 086 081 072 048 078 092
008-02 0.87 070 072 085 093 099 095 093 091 084 084 089 093

010-03 0.92 09% - 076 08 - 098 100 08 - 087 097
012-01 0.81 093 087 074 091 079 100 097 098 086 093 086 093
012-02 0.74 094 049 081 065 076 097 089 097 087 073 086 081
014-01 0.98 - - 091 098 098 - 1.00 100 - - 095 099
015-01 0.87 089 090 082 097 089 100 09 098 09 095 089 097
016-04 0.73 0.61 - 053 09 098 - 078 091 080 - 077 094
016-05 0.82 0.61 - 09 099 098 - 084 093 08 - 090 097
017-01 0.80 039 - 1.00 100 100 - 079 09 069 - 090 099
020-01 0.59 095 - 075 091 055 100 099 089 076 050 087 093
025-02 0.33 - - 014 100 099 09 1.00 0.06 050 049 057 054
Mean 0.76 070 043 074 093 087 098 092 087 078 070 084 091
Std 0.18 030 042 023 009 015 002 008 026 011 021 010 013

Table A4. Overall results for the 2D CNN. Accuracy, sensitivity, specificity, and AUC are calculated for
each class. NT: Normal tissue, TT: Tumor tissue, BV: blood vessels, BG: Background.

2D CNN
Image ID  Accuracy Sensitivity Specificity AUC

NT TTr BV BG NT TI BV BG NT TT BV BG
008-01 0.66 089 - 063 100 100 08 071 093 099 050 081 1.00
008-02 0.83 068 019 1.00 09 093 099 093 082 092 087 100 094
010-03 0.83 082 - 08 084 08 - 091 100 092 - 093 098
012-01 0.66 092 038 056 09 064 093 100 091 082 087 097 099
012-02 0.74 09 015 081 075 077 097 087 098 097 091 095 097
014-01 0.99 - - 091 o091 100 - 100 1.00 - - 100 1.00
015-01 0.64 077 023 079 098 067 1.00 088 091 0.83 090 093 0.99
016-04 0.76 065 - 090 08 095 - 074 099 094 - 089 1.00
016-05 0.71 033 - 100 100 100 - 068 100 093 - 093 1.00
017-01 0.88 064 - 100 100 100 - 091 08 099 - 099 1.00
020-01 0.59 088 - 078 093 079 1.00 100 051 093 035 099 0.90
025-02 0.30 - - 004 1.00 100 100 1.00 002 040 058 081 044
Mean 0.72 069 014 077 093 088 097 089 083 08 071 093 093
Std.D. 0.17 029 015 027 008 014 005 012 029 017 023 007 0.16

Table A5. Overall results for the 1D DNN. Accuracy, sensitivity, specificity, and AUC are calculated for

each class. NT: Normal tissue, TT: Tumor tissue, BV: blood vessels, BG: Background.

1D DNN
Image ID  Accuracy Sensitivity Specificity AUC

NT TT BV BG NT TT BV BG NT TT BV BG
008-01 0.67 099 002 057 100 099 087 071 099 1.00 082 082 1.00
008-02 0.89 084 032 08 092 096 098 097 087 097 09 099 096
010-03 0.90 08 - 100 09% 098 - 09 100 098 - 100 1.00
012-01 0.90 085 065 093 100 092 096 100 099 095 09 1.00 1.00
012-02 0.70 1.00 003 095 054 073 097 079 100 091 085 097 0.90
014-01 1.00 - - 100 100 1.00 - 100 1.00 - - 024 -
015-01 0.78 099 029 093 100 080 1.00 100 092 097 083 1.00 098
016-04 0.72 092 - 093 023 100 - 061 100 1.00 - 082 1.00
016-05 0.96 08 - 100 100 100 - 09 100 099 - 100 1.00
017-01 0.77 041 - 100 092 100 - 089 064 099 - 099 096
020-01 0.59 094 - 08 100 09 1.00 100 046 098 082 1.00 1.00
025-02 0.45 - 002 - 100 100 100 1.00 001 021 099 088 070
Mean 0.78 079 019 084 088 094 097 09 082 091 089 089 087
Std.D. 0.16 031 025 029 024 009 005 013 031 023 008 022 029
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