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Abstract: Rapid and accurate measurement of the soil organic carbon (SOC) content is a pre-condition
for sustainable grain production and land development, and contributes to carbon neutrality in the
agricultural industry. To provide technical support for the development and utilization of land
resources, the SOC content can be estimated using Vis-NIR diffuse reflectance spectroscopy. However,
the spectral redundancy and co-linearity issues of Vis-NIR spectra pose extreme challenges for
spectral analysis and model construction. This study compared the effects of different pre-processing
methods and feature variable algorithms on the estimation of the SOC content. To this end, in situ
hyperspectral data and soil samples were collected from the lakeside oasis of Bosten Lake in Xinjiang,
China. The results showed that the combination of continuous wavelet transform (CWT)-random
frog could rapidly estimate the SOC content with excellent estimation accuracy (R2 of 0.65–0.86).
The feature variable selection algorithm effectively improved the estimation accuracy (average
improvement of (0.30–0.48); based on their ability to improve model estimation on average, the
algorithms can be ranked as follows: particle swarm optimization (PSO) > ant colony optimization
(ACO) > random frog > Boruta > simulated annealing (SA) > successive projections algorithm (SPA).
The CWT-XGBoost model based on random frog showed the best results, with R2 = 0.86, RMSE = 2.44,
and RPD = 2.78. The feature bands accounted for only 0.57% of the Vis-NIR bands, and the most
important sensitive bands were distributed at 755–1195 nm, 1602 nm, 1673 nm, and 2213 nm. These
findings are of significance for the extraction of precise information on lakeside oases in arid areas,
which would aid in achieving human–land sustainability.

Keywords: soil organic carbon content; in situ hyperspectral data; feature variable selection algorithm;
lakeside oasis of Bosten Lake

1. Introduction

Oases are non-zonal landscapes formed under dry climatic conditions with a desert
substrate, lakes, and oasis land as main patches, supporting high agricultural productivity.
Physicochemical processes in lakeside oasis soil environments are controlled by soil organic
carbon (SOC), which is also a key determinant of soil fertility and agricultural potential [1,2].
Therefore, the rapid monitoring of the SOC content could provide a scientific basis for the
rational development of land resources and precision agriculture. High-precision data
on the SOC content could provide theoretical support to local governments for the imple-
mentation of relevant farmland policies [3]. However, the traditional chemical analysis
method and the indoor Vis-NIR spectroscopy method for determining the SOC content
are time-consuming, laborious, and expensive, and they are not suitable for large-scale
estimations [4]. Recently, hyperspectral technology has been widely used to extract soil
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information, and Vis-NIR-IR hyperspectral technology has emerged as a rapid, accurate,
economical, and non-destructive soil analysis method [5]. Using this technique, the soil
organic carbon content can be accurately estimated based on the spectral reflectance of
only a small number of soil samples. It could effectively replace the traditional method [6].
In particular, in situ spectra are more effective and simpler than traditional laboratory
methods and could improve estimation accuracy [7].

Drying and grinding soils greatly increases the accuracy and determination of soil
properties [8]. However, the accuracy of related estimation models is limited by the in-
stability factor of outdoor environments and the redundancy of spectral data. Therefore,
spectral pre-processing and feature variable selection are prerequisites for the accurate
estimation of the SOC content. Traditional methods for reducing the interference of spectral
information include Savitzky–Golay smoothing, continuum removal, normalization, and
spectral logarithm [9]. However, no single pre-processing method (or combination) is
currently applicable to different geographic soil landscapes. Many scholars have attempted
to use standard normal variate (SNV) and multiplicative scatter correction (MSC) to solve
spectral errors associated with scattering and the spectral differences arising from differ-
ent scattering levels [10,11]. Continuous wavelet transformation (CWT) has an excellent
capability for time–frequency analysis, and it has potential as an effective method for
enhancing the spectral response, characterizing local features of the spectral signal, and
more effectively extracting information of small spectral features in soil [12]. It has also
been proven to be effective as a pre-processing method [2,13]. The accuracy of SOC content
estimation is affected by various factors, such as outdoor temperature, vegetation cover,
soil surface roughness, wind, and the redundancy of the full-band spectra. Therefore,
current research is focusing on solutions toward reducing the interference of irrelevant
variables and improving the accuracy of SOC content estimation using in situ Vis-NIR
spectroscopy [14]. Model accuracy can be improved and model complexity can be reduced
by using a reasonable feature variable algorithm to select feature bands [15]. Previous stud-
ies have reported good results using in situ spectroscopy combined with particle swarm
optimization (PSO), ant colony optimization (ACO), and simulated annealing (SA) for
estimating the soil organic matter content in the desert areas of southern Xinjiang [16]. The
successive projections algorithm (SPA) and Boruta algorithm eliminate a certain amount of
redundancy in spectral information and effectively preserve the integrity of the spectral
data and the physical meaning of the original bands [17]. The random frog algorithm,
which has been shown to be a better variable selection algorithm, simulates a smoothly
distributed Markov chain in the feature space and calculates the probability of each variable
being selected to perform the selection of important variables [18]. However, the results
of these methods show certain differences, which may affect the final estimation accuracy.
Therefore, a comprehensive assessment is required.

The ability to accurately estimate the SOC content depends on the modeling strategies
constructed. Partial least squares regression (PLSR) is a conventional linear model that can
reduce the collinearity problem caused by spectral overlap and thus improve the accuracy
and robustness of the estimation model [19]. However, problems such as autocorrelation
and the multicollinearity of the samples are ignored when constructing the model using
the linear model. Meanwhile, the complexity and uncertainty of soil spectral reflectance
and possible noise reduce the fit and reliability of the estimation model for SOC content
estimation. Previous studies have shown that the feature variables are not simply linearly
related to soil organic matter [16]. Therefore, various nonlinear models have been widely
used for the estimation of SOC contents, including extreme gradient boosting machine
(XGBoost), back propagation neural network (BPNN), and random forest (RF) [2,19]. This
study mainly focused on the ability of (in situ) hyperspectral imaging systems to estimate
the SOC content in a lakeside oasis in the dry zone of Xinjiang. The research objectives are
as follows: (1) Assessment of the effects of different pre-processing methods and feature
variable algorithms combined with in situ soil hyperspectral data on the accuracy of SOC
content estimation in lakeside oases in arid regions. (2) Constructing optimal modeling
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strategies. (3) Exploring the sensitive bands of the SOC of the lakeside oasis. The findings
provide technical support for monitoring soil fertility in lakeside oases.

2. Materials and Methods
2.1. Study Area

The study area is located in Bohu County in Xinjiang, northwestern China (Geograph-
ical coordinates: 41◦45′–42◦10′N, 86◦15′–86◦55′E). It has a total area of 1360 km2 (Figure 1)
and a continental desert climate. The average monthly temperatures in summer and winter
are 22.80 ◦C and 9.00 ◦C, respectively, and the average annual temperature ranges from 8.00
to 8.60 ◦C. The frost-free period is 176–200 d, the average annual precipitation is 83.55 mm,
and the annual evaporation is 1880–2785.80 mm. The main soil types are fluvo-aquic soils,
meadow soils, and bog soils. The land use types in the study area are mainly cropland and
unused land.
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landscape of the study area (b–d).

2.2. Soil Sampling and Laboratory SOC Measurement

According to previous studies, 33% of the SOC content is distributed within the soil
depth of 1 m, with the topsoil (0–20 cm) playing an important role in plant growth by
determining soil fertility [20]. A total of 70 sampling points (0–20 cm) were selected for
this study on 22–25 April 2023 based on the typical landscape characteristics of the study
area. The latitude and longitude of the soil sampling points were recorded using a portable
GPS device (Garmin GPS 72, accuracy < 10 m). The samples were then transferred to the
Xinjiang Laboratory of Lake Environment and Resources in Arid Zone. Impurities (plant
roots and rock fragments) were removed from the collected soil samples, and then the
samples were air-dried, ground, and filtered through a 0.14 mm sieve. The SOC content
was determined using the potassium dichromate–external heating method.

2.3. In Situ Spectral Measurement and Pre-Processing

The soil hyperspectral data were obtained using an ASD FieldSpec3 geophysical
spectrometer (Analytical Spectral Devices, Inc., Boulder, CO, USA), which has a spectral
range of 350–2500 nm. The equipment was warmed up for 30 min, the white reference
panel was calibrated (25 cm × 25 cm, 99% reflectance) before measuring the spectral
data, and the white reference panel was performed at intervals of 10 samples during the
measurement. The spectral data were required to be collected on a clear and windless day
with less than 5% cloud cover, less than 45◦ solar zenith angle, stable solar illumination,
and the sun as the only light source during the measurement period. The collection time
ranged from 11:00 to 14:00 Beijing time. Spectral bands located at the edges (350–399 nm
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and 2451–2500 nm) were excluded because they included severe noise. The spectral bands
near 1400 nm and 1900 nm are affected by water vapor due to outdoor environmental
factors [16]. In this study, the 1360–1570 nm and 1831–1930 nm wavelength ranges were
affected by atmospheric water vapor absorption, which were thus excluded. The soil
samples were filtered using a 0.14 mm sieve prior to spectral measurements. The spectral
measurements were taken at a vertical distance of 15 cm from the ground (with a ground
field of view at 25◦), in which 10 measurements were taken at each sampling point, and
then averaged as in situ spectral reflectance. The raw spectral data were exported in ASCII
format. The acquired in situ spectral data were sequentially subjected to standard normal
variation to reduce scattering-related errors, multiple scattering correction to eliminate
multiplicative interferences, and CWT to enhance the spectral response. Figure 2 depicts
the in situ hyperspectral data collection and pre-processing workflow.
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2.4. Feature Variable Selection Algorithms

For the feature variable selection algorithm, the interaction between spectral variables
was considered, which could effectively eliminate unrelated variables, thus improving the
estimation accuracy and robustness of the model [21].

The successive projections algorithm (SPA) is a forward selection method that has
widely been used for feature band selection in Vis-NIR. It can effectively reduce informa-
tion overlaps and minimize the covariance between variables [22]. At the same time, it
significantly reduces the number of modeling variables and effectively improves modeling
efficiency [23].

Proposed by Kennedy and Eberhart in 1995, particle swarm optimization (PSO) was
inspired by the basic idea of modeling and simulating the behavior of bird populations.
Its core idea is to use the sharing of information by individuals in a group to induce the
evolution of the motion of the whole group, from disorder to order in the problem solution
space, so as to obtain the optimal solution of the problem [24].

The simulated annealing (SA) was proposed by Metropolis et al. [25] in 1953 as a
stochastic optimization algorithm based on the Monte–Carlo iterative solution strategy,
which starts from a high initial temperature and decreases with the temperature parameter,
combining the probabilistic jump property to randomly find the global optimal solution of
the objective function in the solution space.

Ant colony optimization (ACO) was proposed by M. Dorigo in 1991 as an optimization
algorithm that simulates the foraging behavior of ants. In nature, during the foraging
process of ants, the colony is always able to follow and find an optimal path between the
nest and the food source [16].
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The Boruta algorithm is a feature selection method based on two core ideas: shadow
features and binomial distribution, and the algorithm automatically performs feature
selection on a dataset by making a copy of the original feature and randomly breaking it
by rows, creating shadow features. Starting from X, for each real feature R, the order is
randomly disrupted and the disrupted original features are called shadow features. At
this point, the shadow data j matrix is appended to the original data frame to obtain a new
data j matrix with twice the number of columns of X. In Boruta, the original features do not
compete with each other. Instead, the original features compete with the shuffled features
(shadow features) [26].

Random frog is a novel feature variable algorithm proposed by Eusuff et al. [27] for
solving combinatorial optimization problems. It enables model construction using only a
small number of variable iterations, which is very effective for variable selection involving
high-dimensional data. The algorithm aims to optimize the prediction accuracy of the
calibration model; taking the probability of each wavelength being selected in the cyclic
calculation as a benchmark, through cyclic iteration, the 10 feature wavelengths with the
highest probability are selected to build the prediction model [28].

2.5. Model Strategies

PLSR is widely used for quantitative analysis in Vis-NIR bands and has become a
common method for building linear quantitative correction models in spectral analysis.
It is a method combining principal component analysis, typical correlation analysis, and
multiple linear regression analysis that can facilitate regression modeling, data structure
simplification, and correlation analysis between two sets of variables [29]. PLSR finds the
best function match for the data by minimizing the sum of the squares of the errors, using
least squares to easily find unknown data and minimize the sum of the squares of the errors
between these found data and the actual data. In hyperspectral modeling, PLSR analysis
can facilitate the quantitative prediction of SOC [30,31].

Random forest (RF) is a bagging principle method based on classification and re-
gression tree analysis and classification. It is advantageous in that the regression process
can be used to assess the importance of each feature through unbiased estimation, and it
offers higher efficiency than the traditional linear model while handling complex nonlinear
relationships [32,33].

BPNN is a multilayer feed-forward neural network trained according to the error back-
propagation algorithm, with excellent nonlinear simulation capability and flexible network
structure, consisting of the input layer (spectral data: full bands and featured bands),
implicit layer (also known as the intermediate layer), and output layer (SOC content), and
it is the most widely used neural network [34,35].

XGBoost is a boosting integration algorithm for solving classification or regression
problems. Its core idea is to use the residuals obtained from the training of the previous
weak classifier as a reference, and then optimize the next new weak classifier. This manner
of fitting residuals could effectively reduce the loss of training samples, optimize the
complexity of the model, and essentially improve the accuracy and robustness of the
model [36,37]. While the traditional GBDT uses only first-order derivative information
(negative gradient) in optimization, XGBoost performs a second-order Taylor expansion of
the cost function using both first- and second-order derivatives. Figure 3 shows the specific
flow chart.
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Figure 3. Construction process of the soil organic carbon content model for the study area.

2.6. Model Accuracy Evaluation

The coefficient of determination (R2), root mean square error (RMSE), and relative
analysis error (RPD) were used to assess model robustness and stability. The closer R2 is to
1, the smaller the RMSE; RPD < 1.40 indicates that the model has a poor ability to estimate
accuracy, 1.4 < RPD < 2 indicates that the model has an average ability to estimate accuracy,
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and RPD > 2 indicates that the model has an excellent ability to estimate accuracy [38–40].
The specific calculation formulae are as follows:

R2 = 1−

n
∑

i=0
(SOCi − SOCPi)

2

n
∑

i=0
(SOCi − SOCi, mean)2

(1)

RMSE =

√√√√√ n
∑

i=1
(SOCi − SOCPi)

2

n
(2)

RPD =
SD

RMSE
(3)

where SOCi is the measured soil organic carbon content, SOCPi is the predicted value based
on the SOC content prediction model, SOCi,mean is the mean of the measured soil organic
content, and SD is the standard deviation based on the predicted value of the SOC content.

3. Results and Analysis
3.1. Descriptive Statistics of Soil Organic Carbon Content

The soil samples were divided into calibration sets and validation sets according
to 3:1 using the SPXY method. Descriptive statistics of the total set, calibration set, and
validation set of the SOC content are shown in Table 1. The mean value of the calibration set
(1.40–40.92 g/kg) and the mean value of the validation set (0.91–23.29 g/kg) for SOC con-
tent were 13.02 g/kg and 11.93 g/kg, with standard deviations of 7.59 g/kg and 7.35 g/kg,
respectively, and coefficients of variation (CV) of 58.33% and 61.67%, respectively. The mean
value of the total set of SOC content was 12.76 g/kg, with standard deviation of 7.50 g/kg
and CV of variation of 58.80%. CV indicates the degree of dispersion; CV ≥ 100% indicates
strong variability; 10% ≤ CV ≤ 100% indicates moderate variability; and CV ≤ 10% indi-
cates weak variability. The total set of samples was between the calibration and validation
sets, and the data discretization was not strong. The standard deviation and the mean value
were close to indicating that the calibration set and the validation set had similar statistical
distributions compared with the total set; therefore, the sample division was reasonable.

Table 1. Descriptive statistics of soil organic carbon content in the study area. Max: Maximum SOC
content; Min: Minimum SOC content; SD: Standard deviation; CV: Coefficient of variation.

Sample Type
Samples
Number

Statistical Index

Max
(g/kg)

Min
(g/kg)

Mean
(g/kg)

SD
(g/kg)

CV
(%)

Total sample 70 40.92 0.91 12.76 7.50 58.80
Calibration set 53 40.92 1.40 13.02 7.59 58.33
Validation set 17 23.29 0.91 11.93 7.35 61.67

3.2. Feature Variable Selected Using SPA, PSO, SA, ACO, Boruta and Random Frog Algorithms

The typical feature bands could reduce the influence of irrelevant variables and thus
improve the accuracy and robustness of the estimation model. We used Vis-NIR in situ
spectra from 400 to 2450 nm as the full bands and selected the feature bands from the full
bands using the SPA, PSO, SA, ACO, Boruta, and random frog algorithms. However, the six
feature variable selection algorithms selected different number of feature bands: 1–21, 8–38,
13–28, 11–32, 4–21, and 10 for SPA, PSO, SA, ACO, Boruta, and random frog, respectively.
Among them, the lowest number of bands was selected by the Boruta algorithm, followed
by SPA, random frog, PSO, ACO, and SA. The feature bands selected by the algorithms
were distributed in the visible and near-infrared bands, as follows: Boruta Vis (404 nm,
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459–599 nm, and 724–760 nm) and NIR (1686 nm, 1714 nm, and 1963–2420 nm); SPA Vis
(400–469 nm and 607 nm) and NIR (2041 nm, 2143 nm, 2358 nm, and 2392 nm); PSO
Vis (400–469 nm and 607 nm) and NIR (2041 nm, 2143 nm, 2358 nm, and 2392 nm); SA
Vis (402–756 nm) and NIR (768–1359 nm, 1581–1821 nm, and 1945–2414 nm); ACO Vis
(421–745 nm) and NIR (761–1358 nm, 1572–1830 nm, and 1931–2448 nm); and random frog
Vis (425 nm, 460 nm, and 618–755 nm) and NIR (788–1195 nm, 1317 nm, 1573–1827 nm,
1934 to 2169 nm, and 2346 nm). The distributions of feature band positions selected by the
six feature variable algorithms are shown in Figure 4. Feature bands at the water vapor
of 1360–1570 nm and 1831–1930 nm were excluded because they were affected by water
vapor. Specifically, more than 97% of the bands were rejected, indicating that the feature
variable algorithms could reduce the redundancy of the spectral data.
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3.3. Model Validation

To improve the estimation model accuracy, we used the full bands and the feature
bands selected by the algorithms as independent variables and the measured SOC content as
dependent variables to construct the PLSR, RF, BPNN, and XGBoost estimation models for
SOC content. Table 2 shows the comparison results of the SOC content estimation models
constructed separately for the full-band spectral data and the feature bands. Among the
full-band estimation models, the pre-processing of MSC, SNV, and CWT could improve
the estimation accuracy of the SOC content. In particular, CWT–random frog–XGBoost
presented the most prominent improvement, with estimation accuracies of R2 = 0.86,
RMSE = 2.44, and RPD = 2.78; its feature bands accounted for only 0.57% of the Vis-NIR
bands. From the viewpoint of using feature variable selection, the feature-band models
showed higher estimation than the full-band model. The models based on SPA, PSO, SA,
ACO, Boruta, and random frog showed average improvements of 0.30, 0.48, 0.38, 0.45
0.42, and 0.43, respectively. In terms of improving estimation accuracy, the algorithms
could be ranked as follows: PSO > ACO > random frog > Boruta > SA > SPA. The most
important sensitive bands for the random frog algorithm were distributed at 755–1195 nm,
1602 nm, 1673 nm, and 2213 nm, indicating that the algorithm could effectively eliminate
the redundancy of spectral information and improve the model accuracy.



Remote Sens. 2023, 15, 5294 9 of 17

Table 2. Comparison of PLSR, RF, BPNN, and XGBoost models constructed based on in situ full
spectral bands and feature bands.

Models Spectral Pre-Processing
Calibration Set Validation Set

R2 RMSE R2 RMSE RPD

PLSR

R 0.32 6.84 0.31 6.38 1.07
R-SPA 0.47 5.71 0.40 5.57 1.22

MSC-SPA 0.41 5.88 0.56 4.94 1.17
SNV-SPA 0.46 5.63 0.46 4.91 1.38

CWT-3-SPA 0.57 5.02 0.65 4.60 1.47
R-PSO 0.38 6.06 0.43 5.29 1.28

MSC-PSO 0.32 6.38 0.67 5.02 1.35
SNV-PSO 0.48 5.53 0.67 4.80 1.41

CWT-9-PSO 0.51 5.38 0.64 4.06 1.67
R-SA 0.39 5.98 0.37 5.61 1.21

MSC-SA 0.28 6.50 0.38 5.58 1.21
SNV-SA 0.33 6.27 0.31 5.56 1.22

CWT-7-SA 0.50 5.44 0.66 4.35 1.56
R-ACO 0.31 6.38 0.38 5.53 1.22

MSC-ACO 0.36 6.14 0.44 5.64 1.21
SNV-ACO 0.36 6.14 0.50 5.07 1.34

CWT-7-ACO 0.52 5.31 0.65 4.12 1.65
R-Boruta 0.42 5.83 0.44 5.36 1.26

MSC-Boruta 0.28 6.49 0.33 5.64 1.20
SNV-Boruta 0.27 6.55 0.27 5.64 1.20

CWT-1-Boruta 0.48 5.51 0.55 4.45 1.52
R-Random frog 0.32 6.35 0.30 5.82 1.16

MSC-Random frog 0.44 5.71 0.52 4.75 1.43
SNV-Random frog 0.56 5.07 0.63 4.49 1.51

CWT-6-Random frog 0.61 4.76 0.65 4.05 1.67

RF

R 0.32 6.41 0.27 5.65 1.20
R-SPA 0.47 5.58 0.37 5.47 1.24

MSC-SPA 0.54 5.40 0.53 4.76 1.43
SNV-SPA 0.45 5.79 0.39 5.29 1.28

CWT-3-SPA 0.67 4.54 0.63 4.15 1.63
R-PSO 0.55 5.22 0.39 5.41 1.25

MSC-PSO 0.71 4.39 0.63 4.13 1.64
SNV-PSO 0.77 4.07 0.57 4.80 1.41

CWT-1-PSO 0.83 3.95 0.76 3.91 1.73
R-SA 0.41 5.97 0.41 4.74 1.33

MSC-SA 0.55 5.58 0.54 4.82 1.41
SNV-SA 0.72 4.50 0.54 4.77 1.42

CWT-4-SA 0.76 4.24 0.73 4.16 1.63
R-ACO 0.50 5.46 0.36 5.49 1.23

MSC-ACO 0.51 5.45 0.45 5.05 1.34
SNV-ACO 0.75 4.27 0.64 4.63 1.46

CWT-4-ACO 0.75 4.49 0.77 3.94 1.72
R-Boruta 0.42 5.87 0.41 5.24 1.29

MSC-Boruta 0.65 4.67 0.65 4.09 1.66
SNV-Boruta 0.59 5.12 0.57 4.46 1.52

CWT-1-Boruta 0.76 3.98 0.68 3.92 1.73
R-Random frog 0.43 5.88 0.42 5.27 1.29

MSC-Random frog 0.59 4.89 0.56 4.46 1.52
SNV-Random frog 0.68 4.64 0.67 4.44 1.53

CWT-1-Random frog 0.77 4.20 0.77 3.90 1.74
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Table 2. Cont.

Models Spectral Pre-Processing
Calibration Set Validation Set

R2 RMSE R2 RMSE RPD

BPNN

R 0.46 6.42 0.33 4.91 1.05
R-SPA 0.47 5.87 0.33 5.65 1.22

MSC-SPA 0.46 6.05 0.40 5.36 1.22
SNV-SPA 0.41 5.87 0.38 5.38 1.25

CWT-5-SPA 0.76 3.88 0.72 4.27 1.70
R-PSO 0.54 5.38 0.28 5.81 1.16

MSC-PSO 0.51 5.60 0.57 3.40 1.55
SNV-PSO 0.55 5.37 0.55 4.50 1.48

CWT-5-PSO 0.76 3.17 0.79 5.21 1.85
R-SA 0.39 5.66 0.29 6.67 1.22

MSC-SA 0.60 4.68 0.50 5.46 1.44
SNV-SA 0.54 5.29 0.65 3.91 1.56

CWT-6-SA 0.75 3.92 0.73 3.75 1.86
R-ACO 0.51 4.89 0.50 6.02 1.40

MSC-ACO 0.55 5.12 0.62 4.58 1.57
SNV-ACO 0.63 4.84 0.61 3.17 1.61

CWT-8-ACO 0.66 4.68 0.72 3.46 1.79
R-Boruta 0.44 5.11 0.43 6.89 1.37

MSC-Boruta 0.52 5.32 0.52 4.68 1.47
SNV-Boruta 0.57 5.03 0.49 4.87 1.44

CWT-3-Boruta 0.77 3.64 0.78 3.13 2.18
R-Random frog 0.40 5.69 0.43 5.88 1.37

MSC-Random frog 0.43 5.89 0.50 6.26 1.40
SNV-Random frog 0.55 4.93 0.63 4.81 1.63

CWT-3-Random frog 0.73 3.45 0.66 5.46 1.73

XGBoost

R 0.43 5.98 0.42 4.70 1.29
R-SPA 0.67 4.58 0.66 4.35 1.56

MSC-SPA 0.68 4.02 0.75 3.90 1.74
SNV-SPA 0.69 4.56 0.68 4.19 1.62

CWT-5-SPA 0.81 3.37 0.78 3.06 2.22
R-PSO 0.53 5.37 0.60 4.31 1.57

MSC-PSO 0.77 3.69 0.75 3.30 2.06
SNV-PSO 0.69 4.83 0.78 3.41 1.99

CWT-7-PSO 0.85 3.08 0.86 2.45 2.77
R-SA 0.55 5.29 0.60 4.34 1.56

MSC-SA 0.75 4.10 0.73 3.63 1.87
SNV-SA 0.67 4.64 0.70 3.73 1.82

CWT-5-SA 0.81 3.51 0.81 2.90 2.34
R-ACO 0.68 4.50 0.63 4.02 1.69

MSC-ACO 0.70 4.34 0.73 3.80 1.78
SNV-ACO 0.74 3.86 0.77 3.32 2.04

CWT-5-ACO 0.87 2.84 0.85 2.55 2.66
R-Boruta 0.59 4.95 0.58 4.47 1.52

MSC-Boruta 0.77 3.76 0.89 3.22 2.10
SNV-Boruta 0.77 3.74 0.68 4.28 1.58

CWT-2-Boruta 0.78 3.62 0.81 3.17 2.14
R-Random frog 0.54 5.37 0.52 4.61 1.47

MSC-Random frog 0.56 5.15 0.58 4.41 1.54
SNV-Random frog 0.50 5.41 0.52 4.25 1.59

CWT-2-Random frog 0.86 3.29 0.86 2.44 2.78

In terms of their estimation ability, the four estimation models could be ranked as
follows: XGBoost > BPNN > RF > PLSR. In particular CWT–XGBoost, combined with the
six feature variable algorithms provided excellent results, with its RPD ranging from 2.14
to 2.78.
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In order to further validate the accuracy of the estimation model, scatter plots were
generated for the measured and predicted values of the optimal estimation results of
PLSR, RF, BPNN, and XGBoost (Figure 5). The measured and predicted values of the
CWT–random frog–XGBoost model appeared to be close to the 1:1 line.

Figure 5. Scatterplot of the optimal estimation results based on PLSR, RF, BPNN, and XGBoost.

4. Discussion
4.1. Effects of Different Spectral Pre−Processing and Feature Variable Algorithms on Estimation
Accuracy

The accuracy of estimation models can be improved by combining effective spectral
pre-processing methods with spectral data [41]. However, not all combinations of pre-
processing methods are effective for datasets from different regions. Therefore, the selection
of a reasonable spectral pre-processing method for the analysis of soil characteristics using
Vis-NIR bands is extremely important. In this study, the models using CWT pre-processing
were found to have the highest accuracy. Compared with the full-band models, the feature-
band models showed an accuracy improvement of 0.75. This is consistent with the results
of previous studies on the hyperspectral estimation of SOC contents [42]. This may be
attributable to CWT effectively capturing the weak signals of spectral information and
improving the response between spectral information and the SOC content. SNV and
MSC, as common methods for pre-processing spectral data, can effectively eliminate the
spectral differences caused by different scattering levels, thus enhancing the correlation
between spectra and data [43,44]. However, most of the estimation results from the PLSR
model constructed after MSC and SNV pre-processing were not meaningful, which is
inconsistent with the findings of previous studies [8]. This may be due to the decrease in
spectral reflectance caused by environmental factors (mainly soil moisture) during spectral
measurements in the field, thus affecting the estimation results. The effect of soil moisture
on estimation accuracy will be further researched in future work. Previous studies on the
SOC content showed that different pre–processing methods affected the accuracy of their
estimation [9].

Feature bands are key to improving the accuracy of the model. However, the differ-
ences in feature bands may affect the accuracy of SOC content estimation. Such differences
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may be caused by the electron leap of metal ions in the visible bands, the electron leap
of organic matter and clay minerals in the near-infrared bands, and soil stretching and
bending vibrations [45]. Bai et al. argued that the use of feature variable algorithms re-
duced irrelevant variables by more than 90% and significantly reduced the amount of
model inputs [46]. In this study, the feature variable algorithm rejected more than 97% of
irrelevant variables. The comparison of the accuracies of the full-band and feature-band
models showed that the feature-band models achieved higher accuracy, indicating that the
feature variable algorithm could effectively reduce the redundancy of the spectral data and
improve the estimation accuracy of the model. In this study, the algorithms for improving
model estimation could be ranked as follows: PSO > ACO > random frog > Boruta > SA >
SPA (Figure 6). Yang et al. showed that a model constructed based on the PSO algorithm
improved the accuracy better than the ACO and SA algorithms [16]. Although the ACO
algorithm had the highest number of feature bands, the average improvement capability
(an improvement of 0.45) was lower than that of the PSO algorithm (an improvement
of 0.48), which may be due to the interference of redundant information in the feature
bands selected by the ACO algorithm. In contrast, Wang et al. concluded that the accuracy
improvement of SA was superior to that of PSO, which may be attributable to the fact
that the initial temperature level affected the rate of convergence; therefore a reasonable
selection of initial parameters is needed [47]. The feature bands based on the SPA algorithm
were mainly distributed in the 400 to 607 nm range. This region proved to be an important
band for the spectral response [48]. Compared with other algorithms, the Boruta and SPA
algorithms effectively reduced spectral redundancy, but their ability to improve model
accuracy was not prominent [49]. The reason may be because the excessive exclusion of
feature variables was correlated with SOC. In this study, although the CWT-2-random
frog-XGBoost presented the highest accuracy, with R2 = 0.86, RMSE = 2.44, and RPD = 2.78,
the average improvement ability (improvement of 0.43) was not as high as those of the PSO
and ACO algorithms (improvements of 0.48 and 0.45).
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4.2. Effects of Modeling Strategies on Estimation Accuracy

From the viewpoint of modeling strategies, nonlinear models showed better results
than the linear model. As a conventional linear model, PLSR could effectively estimate
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the SOC content, but it could not explain the nonlinearity problem between SOC and
the spectral response variables [50]. Therefore, the PLSR model provided the poorest
results in this study. Among the three nonlinear machine learning models, XGBoost had
a better anti-fitting function considering the complexity of the model, which improved
the generalizability of the model. BPNN has a strong nonlinear mapping ability, which is
attributable to its self-learning, self-organization, and self-adaptation ability, which could
effectively make up for the deficiency of the linear model [47]. Compared with the first
two models, RF is only a tree model. In this study, the CWT-2–random frog–XGBoost
model showed the highest estimation capability, with R2 = 0.86, RMSE = 2.44, and RPD =
2.78. This may be attributable to CWT-2 being capable of decomposing feature information
more effectively. Xie et al. further confirmed that the XGBoost model presented the best
results in estimating the SOC content [51]. Nevertheless, the BPNN and RF methods
can be combined with other methods to construct the SOC content. In this study, we
found that the combination of CWT–Boruta–BPNN showed R2 = 0.78, RMSE = 3.13, and
RPD = 2.18, and the combination of CWT–random frog–RF had R2 = 0.77, RMSE = 3.90,
and RPD = 1.74. These methods proved to be effective in estimating the SOC content using
hyperspectral data [14,52]. However, due to the spatial heterogeneity in the SOC content
during in situ spectroscopy, regional differences may occur in high-precision models [53].
The applicability of CWT–random frog–XGBoost as a prerequisite for improving the SOC
content to other lakeside oases needs to be further explored. The combination of the CWT–
random frog–XGBoost methods is effective for high-precision estimation of the SOC content
in lakeside oases. In future studies, attempts will be made to explore the combination of
machine learning models with other methods based on the current study. Furthermore, the
resulting models will be applied to the estimation of the SOC content of lakeside oases in
arid zones using in situ spectral data in order to achieve higher accuracy.

4.3. Uncertainty Analysis and Perspectives

The estimation of the SOC content using in situ spectral data is affected by numerous
factors, such as soil moisture, vegetation cover, soil surface roughness, and atmospheric
water vapor [54]. In particular, soil moisture is a key factor affecting the accuracy of model
estimation, and many scholars have conducted relevant studies on this problem [55,56].
With increasing soil water content, in situ spectral reflectance shows a nonlinear decrease.
Studies have shown that Vis-NIR techniques achieve higher accuracy in predicting the SOC
content when dry soil is involved [57]. The study area is located in Xinjiang, northwestern
China, which receives little rainfall, long sunshine hours, and has relatively dry soils. To
avoid the influence of soil moisture on in situ spectral data and ensure prediction accuracy,
the relatively dry springtime was selected as the sampling time. Vegetation cover also
affects the prediction accuracy of in situ spectra, and to avoid its influence, an area without
vegetation cover was selected in this study. Moreover, the roughness of the soil surface
leads to a decrease in spectral reflectance, which affects the estimation accuracy [58,59].
Therefore, a relatively flat area of the soil surface was selected. In addition, in situ spectral
reflectance and model accuracy are influenced by atmospheric water vapor. Previous
studies have showed that there are significant water vapor absorption bands near 1400 nm
and 1900 nm [60–62]. In this study, in situ spectral measurements revealed significant
absorption bands in the 1360–1570 nm and 1831–1930 nm regions, and spectral reflectance
in these band ranges was more than 1. The bands affected by water vapor were not selected
as sensitive bands. Therefore, the SPA, PSO, SA, ACO, Boruta, and random frog algorithms
could effectively reject irrelevant variables, reduce spectral redundancy, and thus improve
estimation accuracy.

As soil characteristics are highly variable and complex, multiple factors are involved
in SOC content estimation [63]. Therefore, research on different land-use types needs to be
further explored.
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5. Conclusions

In this study, the effects of spectral pre–processing and feature variable selection
algorithms combined with in situ hyperspectral data on the accuracy of SOC content
estimation in a lakeside oasis in an arid zone were analyzed. The results show that
CWT is one of the most effective spectral pre–processing methods. The application of
feature variable algorithms clearly improved the estimation accuracy of the SOC content.
Specifically, the SPA, PSO, SA, ACO, Boruta, and random frog algorithms could eliminate
more than 97% of irrelevant variables. Compared with the in situ full-band models, the six
feature variable algorithms all reduced the redundancy of in situ spectral data and thus
improved the estimation accuracy of the model. The average improvements afforded by
SPA, PSO, SA, ACO, Boruta, and random frog were 0.30, 0.48, 0.38, 0.45, 0.42, and 0.43,
respectively. On average, the algorithms for improving model estimation could be ranked
as follows: PSO > ACO > random frog > Boruta > SA > SPA. Overall, the random frog-based
estimation model (CWT–random frog–XGBoost) showed the highest performance, with
R2 = 0.86, RMSE = 2.44, and RPD = 2.78. The feature bands of this model accounted for
only 0.57% of the Vis-NIR bands. This study provides technical support for the estimation
of SOC content in lakeside oases using in situ spectral methods.
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