Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (54)

Search Parameters:
Keywords = anoxygenic phototrophs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2370 KB  
Article
Kinetic and Potentiometric Characteristics of Ferredoxin: NADP+ Oxidoreductase from Chlorobaculum tepidum
by Dominykas Laibakojis, Daisuke Seo, Narimantas Čėnas and Mindaugas Lesanavičius
Int. J. Mol. Sci. 2026, 27(1), 481; https://doi.org/10.3390/ijms27010481 - 2 Jan 2026
Viewed by 238
Abstract
Chlorobaculum tepidum ferredoxin: NADP+ oxidoreductase (CtFNR) is a dimeric thioredoxin reductase (TrxR)-type FNR, whose mechanism and redox properties are poorly characterized. In this work, we focused on the reoxidation mechanisms of its flavin adenine dinucleotide (FAD) cofactor using quinones (Q), [...] Read more.
Chlorobaculum tepidum ferredoxin: NADP+ oxidoreductase (CtFNR) is a dimeric thioredoxin reductase (TrxR)-type FNR, whose mechanism and redox properties are poorly characterized. In this work, we focused on the reoxidation mechanisms of its flavin adenine dinucleotide (FAD) cofactor using quinones (Q), nitroaromatics (ArNO2), and other nonphysiological oxidants with different single-electron reduction midpoint potentials (E71) and electrostatic charge. Like in other FNRs, the rate-limiting step of the reaction is the reoxidation of FAD semiquinone (FADH). However, only one FAD per dimer functions in CtFNR due to some nonequivalence of the NADP(H) binding domains in separate subunits. The reactivity of Q increases with increasing E71, while ArNO2 form another analogous series of lower reactivity. The compounds are reduced in a dominant single-electron way. These data are consistent with an “outer sphere” electron transfer mechanism. On the basis of reactions with 3-acetylpyridine adenine dinucleotide phosphate, the two-electron reduction midpoint potential of FAD at pH 7.0 is −0.282 V. In CtFNR, 11% FADH was stabilized at equilibrium. Calculated electron transfer distances in reactions with Q and ArNO2 were in the range of 2.6–3.4 Å. Taken together with previous studies of Rhodopseudomonas palustris and Bacillus subtilis FNRs, this work allows us to generalize the information on the catalytic ant thermodynamic properties of TrxR-type FNRs. In addition, our data may be valuable from an applied perspective, e.g., the use of redox mediators in photobioelectrochemical systems or microbial cells based on anoxygenic phototrophic bacteria. Full article
(This article belongs to the Collection Feature Papers Collection in Biochemistry)
Show Figures

Figure 1

2 pages, 234 KB  
Correction
Correction: Maltman et al. Brevundimonas aurifodinae, sp. nov., an Aerobic Anoxygenic Phototroph Resistant to Metalloid Oxyanions Isolated from Gold Mine Tailings. Microorganisms 2024, 12, 2167
by Chris Maltman, Katia Messner, John A. Kyndt and Vladimir Yurkov
Microorganisms 2026, 14(1), 86; https://doi.org/10.3390/microorganisms14010086 - 31 Dec 2025
Viewed by 155
Abstract
In the original publication [...] Full article
(This article belongs to the Section Environmental Microbiology)
29 pages, 4047 KB  
Review
Phenomenal Diversity of the Photosynthetic Apparatus Evolved in Aerobic Anoxygenic Phototrophs
by Vladimir Yurkov and Katia Messner
Microorganisms 2025, 13(11), 2446; https://doi.org/10.3390/microorganisms13112446 - 25 Oct 2025
Cited by 1 | Viewed by 920
Abstract
Aerobic anoxygenic phototrophs (AAPs) are intrinsically paradoxical; these species use a pathway commonly found in oxygen-deprived environments called anoxygenic photosynthesis, as a supplementary energy source to their obligately aerobic respiration. At the surface, such a combination seems odd, but AAPs thrive in a [...] Read more.
Aerobic anoxygenic phototrophs (AAPs) are intrinsically paradoxical; these species use a pathway commonly found in oxygen-deprived environments called anoxygenic photosynthesis, as a supplementary energy source to their obligately aerobic respiration. At the surface, such a combination seems odd, but AAPs thrive in a plethora of environments and are phylogenetically broad, suggesting that this feature is advantageous and ecologically valuable. The range of habitats and taxonomy have been reviewed, yet the main element which unites the group, their anoxygenic photosynthesis, which is diverse in its components, has not received the deserved attention. The intricate light-capturing photosynthetic complex forms the site of photon-induced energy transfer and therefore, the core basis of the process. It has two parts: the reaction center and light harvesting complex(es). The variability in composition and overall usage of the apparatus is also reflected in the genome, specifically the photosynthetic gene cluster. In this review, what is known about the differences in structure, light wavelength absorption range, activity, and related genomic content and the insights into potential AAP evolution from anaerobic anoxygenic phototrophs will be discussed. The work provides an elegant summation of knowledge accumulated about the photosynthetic apparatus and prospects that can fill yet remaining gaps. Full article
(This article belongs to the Collection Feature Papers in Environmental Microbiology)
Show Figures

Figure 1

24 pages, 1738 KB  
Review
Biomineralization Mediated by Iron-Oxidizing Microorganisms: Implication for the Immobilization and Transformation of Heavy Metals in AMD
by Siyu Li, Chengcheng Li, Xubo Gao, Mengyun Zhu, Huihui Li and Xue Wang
Minerals 2025, 15(8), 868; https://doi.org/10.3390/min15080868 - 17 Aug 2025
Cited by 1 | Viewed by 2053
Abstract
Iron, an essential element for virtually all known organisms, serves not only as a micronutrient but also as an energy source for bacteria. Iron-oxidizing microorganisms mediate Fe(II) oxidation under diverse redox conditions, yielding amorphous iron (hydr)oxides or crystalline iron minerals. This globally significant [...] Read more.
Iron, an essential element for virtually all known organisms, serves not only as a micronutrient but also as an energy source for bacteria. Iron-oxidizing microorganisms mediate Fe(II) oxidation under diverse redox conditions, yielding amorphous iron (hydr)oxides or crystalline iron minerals. This globally significant biogeochemical process drives modern iron cycling across terrestrial and aquatic ecosystems. The resulting biomineralization not only produces secondary minerals but also effectively immobilizes heavy metals, offering a sustainable strategy for environmental remediation. This review systematically examines (1) the biogeochemical mechanisms and mineralogical signatures of Fe(II) oxidation by four distinct iron oxidizers: acidophilic aerobes (e.g., Acidithiobacillus), neutrophilic microaerophiles (e.g., Gallionella), nitrate-reducing anaerobes (e.g., Acidovorax), and anoxygenic phototrophs (e.g., Rhodobacter); (2) research advances in heavy metal immobilization by biogenic iron minerals: adsorption, coprecipitation, and structural incorporation; and (3) the impact of pH, temperature, organic matter, and coexisting ions on Fe(II) oxidation efficiency and iron mineral formation by iron-oxidizing bacteria. By characterizing iron-oxidizing bacterial species and their functional processes under varying pH and redox conditions, this study provides critical insights into microbial behaviors driving the evolution of acid mine drainage (AMD). Full article
Show Figures

Figure 1

17 pages, 1974 KB  
Article
The Community Structure of Aerobic Anoxygenic Photosynthetic Bacteria in Biocrusts on Tropical Coral Islands and Their Application in Ecological Restoration, South China Sea
by Jing Wen, Zhimao Mai, Jie Li, Lin Wang and Si Zhang
Microorganisms 2025, 13(6), 1265; https://doi.org/10.3390/microorganisms13061265 - 29 May 2025
Viewed by 726
Abstract
Biological soil crusts (referred to as biocrusts) constitute prominent components within the ecosystem of tropical coral islands in the South China Sea, covering approximately 6.25% of the island’s terrestrial surface. Biocrusts are the key to the restoration of the island ecosystem. It is [...] Read more.
Biological soil crusts (referred to as biocrusts) constitute prominent components within the ecosystem of tropical coral islands in the South China Sea, covering approximately 6.25% of the island’s terrestrial surface. Biocrusts are the key to the restoration of the island ecosystem. It is widely acknowledged that phototrophic microorganisms profoundly contribute to biocrust formation and development. They provide fixed carbon and nitrogen and produce exopolysaccharides for the BSC ecosystems. Although aerobic anoxygenic phototrophic bacteria (AAPB) are an important functional group of phototrophic microorganisms, the community characteristics of AAPB in coral island biocrusts and their role in the formation of biocrusts have rarely been reported. In this study, we employed amplifications of the pufM gene to characterize the AAPB communities of biocrusts on a tropical coral island. The outcomes revealed a discernible augmentation in both the abundance and richness of AAPB concurrent with the formation of biocrusts, concomitantly with a decrement in diversity. Within the AAPB communities, the Pseudomonadota (Proteobacteria) phylum emerges as the prevailing dominion, indicating marked differentiations in terms of family and genus compositions between the biocrust and bare soil. Canonical correlation analysis has unveiled a robust and meaningful correlation between the AAPB composition and the attributes of the soil, including total nitrogen, total organic carbon, total phosphorus, pH, and calcium content. Furthermore, co-occurrence network patterns shift with biocrust formation, enhancing stability. Meanwhile, keystone taxa analysis revealed specific OTUs associated with each soil type, with genus Brevundimonas as the main group. Furthermore, pure-culture AAPB strains isolated from biocrusts exhibited a panorama of diversity, predominantly belonging to Pseudomonadota. Particularly, the Skermanella and Erythrobacter genera demonstrated strong exopolysaccharide secretion and sand-binding capabilities. This study sheds light on the significant functional role of AAPB in tropical coral island biocrusts, expanding our understanding of their contribution to ecosystem services, and providing valuable insights for ecological restoration efforts on coral islands. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

18 pages, 3263 KB  
Article
Description and Comparative Genomics of Algirhabdus cladophorae gen. nov., sp. nov., a Novel Aerobic Anoxygenic Phototrophic Bacterial Epibiont Associated with the Green Alga Cladophora stimpsonii
by Olga Nedashkovskaya, Sergey Baldaev, Alexander Ivaschenko, Evgenia Bystritskaya, Natalia Zhukova, Viacheslav Eremeev, Andrey Kukhlevskiy, Valeria Kurilenko and Marina Isaeva
Life 2025, 15(3), 331; https://doi.org/10.3390/life15030331 - 21 Feb 2025
Cited by 2 | Viewed by 1624
Abstract
A novel, strictly aerobic, non-motile, and pink-pigmented bacterium, designated 7Alg 153T, was isolated from the Pacific green alga Cladophora stimpsonii. Strain 7Alg 153T was able to grow at 4–32 °C in the presence of 1.5–4% NaCl and hydrolyze L-tyrosine, gelatin, [...] Read more.
A novel, strictly aerobic, non-motile, and pink-pigmented bacterium, designated 7Alg 153T, was isolated from the Pacific green alga Cladophora stimpsonii. Strain 7Alg 153T was able to grow at 4–32 °C in the presence of 1.5–4% NaCl and hydrolyze L-tyrosine, gelatin, aesculin, Tweens 20, 40, and 80 and urea, as well as produce catalase, oxidase, and nitrate reductase. The novel strain 7Alg 153T showed the highest similarity of 96.75% with Pseudaestuariivita rosea H15T, followed by Thalassobius litorarius MME-075T (96.60%), Thalassobius mangrovi GS-10T (96.53%), Tritonibacter litoralis SM1979T (96.45%), and Marivita cryptomonadis CL-SK44T (96.38%), indicating that it belongs to the family Roseobacteraceae, the order Rhodobacteales, the class Alphaproteobacteria, and the phylum Pseudomonadota. The respiratory ubiquinone was Q-10. The main polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylcholine, two unidentified aminolipids, and one unidentified lipid. The predominant cellular fatty acids (>5%) were C18:1 ω7c, C16:0, C18:0, and 11-methyl C18:1 ω7c. The 7Alg 153T genome is composed of a single circular chromosome of 3,786,800 bp and two circular plasmids of 53,157 bp and 37,459 bp, respectively. Pan-genome analysis showed that the 7Alg 153T genome contains 33 genus-specific clusters spanning 92 genes. The COG20-annotated singletons were more often related to signal transduction mechanisms, cell membrane biogenesis, transcription, and transport, and the metabolism of amino acids. The complete photosynthetic gene cluster (PGC) for aerobic anoxygenic photosynthesis (AAP) was found on a 53 kb plasmid. Based on the phylogenetic evidence and phenotypic and chemotaxonomic characteristics, the novel isolate represents a novel genus and species within the family Roseobacteraceae, for which the name Algirhabdus cladophorae gen. nov., sp. nov. is proposed. The type strain is 7Alg 153T (=KCTC 72606T = KMM 6494T). Full article
Show Figures

Figure 1

12 pages, 1382 KB  
Article
Salinarimonas chemoclinalis, an Aerobic Anoxygenic Phototroph Isolated from a Saline, Sulfate-Rich Meromictic Lake
by Katia Messner, John A. Kyndt and Vladimir Yurkov
Microorganisms 2024, 12(11), 2359; https://doi.org/10.3390/microorganisms12112359 - 19 Nov 2024
Cited by 3 | Viewed by 1307
Abstract
A pink-pigmented, ovoid-rod-shaped, Gram-negative bacterial strain ML10T was previously isolated in a study of a meromictic lake in British Columbia, Canada. It produces bacteriochlorophyll a, which is incorporated into the reaction center and light harvesting I complexes. This alongside no anaerobic [...] Read more.
A pink-pigmented, ovoid-rod-shaped, Gram-negative bacterial strain ML10T was previously isolated in a study of a meromictic lake in British Columbia, Canada. It produces bacteriochlorophyll a, which is incorporated into the reaction center and light harvesting I complexes. This alongside no anaerobic or photoautotrophic growth supports the designation of the strain as an aerobic anoxygenic phototroph. The cells produce wavy polar flagellum and accumulate clear, refractive granules, presumed to be polyhydroxyalkanoate. Sequence of the 16S rRNA gene identified close relatedness to Salinarimonas rosea (97.85%), Salinarimonas ramus (97.92%) and Saliniramus fredricksonii (94.61%). The DNA G + C content was 72.06 mol %. Differences in cellular fatty acids and some physiological tests compared to Salinarimonadaceae members, as well as average nucleotide identity and digital DNA-DNA hybridization, define the strain as a new species in Salinarimonas. Therefore, we propose that ML10T (=NCIMB 15586T = DSM 118510T) be classified as the type strain of a new species in the genus with the name Salinarimonas chemoclinalis sp. nov. Full article
Show Figures

Figure 1

10 pages, 3824 KB  
Article
Brevundimonas aurifodinae, sp. nov., an Aerobic Anoxygenic Phototroph Resistant to Metalloid Oxyanions Isolated from Gold Mine Tailings
by Chris Maltman, Katia Messner, John A. Kyndt and Vladimir Yurkov
Microorganisms 2024, 12(11), 2167; https://doi.org/10.3390/microorganisms12112167 - 27 Oct 2024
Cited by 2 | Viewed by 1931 | Correction
Abstract
A polyphasic taxonomic study was carried out on the rod-shaped, orange-pigmented strain C11T, isolated from gold mine tailings. Sequencing of the 16S rRNA gene showed a relatedness to Brevundimonas, with a 98.4% and 98.2% similarity to Brevundimonas bacteroides and Brevundimonas [...] Read more.
A polyphasic taxonomic study was carried out on the rod-shaped, orange-pigmented strain C11T, isolated from gold mine tailings. Sequencing of the 16S rRNA gene showed a relatedness to Brevundimonas, with a 98.4% and 98.2% similarity to Brevundimonas bacteroides and Brevundimonas variabilis, respectively. The average nucleotide identity and a digital DNA–DNA hybridization with the closest phylogenetic neighbor of strain C11T indicate distinction at the species level, further confirmed by the differences in physiology. C18:1 ω7c is the dominant cellular fatty acid. Its DNA G + C content is 68.3 mol %. Its predominant ubiquinone is Q-10; 1,2-Di-O-acyl-3-O-α-D-glucopyranuronosyl glycerol, phosphatidylglycerol, 1,2-di-O-acyl-3-O-α-D-glucopyranosyl glycerol, and 1,2-di-O-acyl-3-O-[D-glucopyranosyl-(1→4)-α-D-glucopyranuronosyl] glycerol are its major polar lipid constituents. This bacterium produces bacteriochlorophyll a and tolerates high concentrations of (μg/mL) the following: tellurium (>1500), selenium (1000 to >5000), and vanadium (>5000) oxyanions. The data support the inclusion of the strain C11T into the genus Brevundimonas as a new species with the proposed name Brevundimonas aurifodinae sp. nov. (C11T = NRRL B-65718T; =DSM 118059T). Full article
Show Figures

Figure 1

23 pages, 2639 KB  
Article
The Impact of the Major Endoribonucleases RNase E and RNase III and of the sRNA StsR on Photosynthesis Gene Expression in Rhodobacter sphaeroides Is Growth-Phase-Dependent
by Janek Börner, Julian Grützner, Florian Gerken and Gabriele Klug
Int. J. Mol. Sci. 2024, 25(16), 9123; https://doi.org/10.3390/ijms25169123 - 22 Aug 2024
Viewed by 1370
Abstract
Rhodobacter sphaeroides is a facultative phototrophic bacterium that performs aerobic respiration when oxygen is available. Only when oxygen is present at low concentrations or absent are pigment–protein complexes formed, and anoxygenic photosynthesis generates ATP. The regulation of photosynthesis genes in response to oxygen [...] Read more.
Rhodobacter sphaeroides is a facultative phototrophic bacterium that performs aerobic respiration when oxygen is available. Only when oxygen is present at low concentrations or absent are pigment–protein complexes formed, and anoxygenic photosynthesis generates ATP. The regulation of photosynthesis genes in response to oxygen and light has been investigated for decades, with a focus on the regulation of transcription. However, many studies have also revealed the importance of regulated mRNA processing. This study analyzes the phenotypes of wild type and mutant strains and compares global RNA-seq datasets to elucidate the impact of ribonucleases and the small non-coding RNA StsR on photosynthesis gene expression in Rhodobacter. Most importantly, the results demonstrate that, in particular, the role of ribonuclease E in photosynthesis gene expression is strongly dependent on growth phase. Full article
(This article belongs to the Collection Feature Papers in Molecular Microbiology)
Show Figures

Figure 1

17 pages, 2333 KB  
Article
Abundance, Characterization and Diversity of Culturable Anoxygenic Phototrophic Bacteria in Manitoban Marshlands
by Katia Messner and Vladimir Yurkov
Microorganisms 2024, 12(5), 1007; https://doi.org/10.3390/microorganisms12051007 - 17 May 2024
Cited by 2 | Viewed by 2190
Abstract
Marshes are an important ecosystem, acting as a biodiversity hotspot, a carbon sink and a bioremediation site, breaking down anthropogenic waste such as antibiotics, metals and fertilizers. Due to their participation in these metabolic activities and their capability to contribute to primary productivity, [...] Read more.
Marshes are an important ecosystem, acting as a biodiversity hotspot, a carbon sink and a bioremediation site, breaking down anthropogenic waste such as antibiotics, metals and fertilizers. Due to their participation in these metabolic activities and their capability to contribute to primary productivity, the microorganisms in such habitats have become of interest to investigate. Since Proteobacteria were previously found to be abundant and the waters are well aerated and organic-rich, this study on the presence of anoxygenic phototrophic bacteria, purple non-sulfur bacteria and aerobic anoxygenic phototrophs in marshes was initiated. One sample was collected at each of the seven Manitoban sites, and anoxygenic phototrophs were cultivated and enumerated. A group of 14 strains, which represented the phylogenetic diversity of the isolates, was physiologically investigated further. Aerobic anoxygenic phototrophs and purple non-sulfur bacteria were present at each location, and they belonged to the α- and β-Proteobacteria subphyla. Some were closely related to known heavy metal reducers (Brevundimonas) and xenobiotic decomposers (Novosphingobium and Sphingomonas). All were able to synthesize the photosynthetic complexes aerobically. This research highlights the diversity of and the potential contributions that anoxygenic phototrophs make to the essential functions taking place in wetlands. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

24 pages, 16539 KB  
Review
What We Are Learning from the Diverse Structures of the Homodimeric Type I Reaction Center-Photosystems of Anoxygenic Phototropic Bacteria
by Robert A. Niederman
Biomolecules 2024, 14(3), 311; https://doi.org/10.3390/biom14030311 - 6 Mar 2024
Cited by 4 | Viewed by 2916
Abstract
A Type I reaction center (RC) (Fe-S type, ferredoxin reducing) is found in several phyla containing anoxygenic phototrophic bacteria. These include the heliobacteria (HB), the green sulfur bacteria (GSB), and the chloracidobacteria (CB), for which high-resolution homodimeric RC-photosystem (PS) structures have recently appeared. [...] Read more.
A Type I reaction center (RC) (Fe-S type, ferredoxin reducing) is found in several phyla containing anoxygenic phototrophic bacteria. These include the heliobacteria (HB), the green sulfur bacteria (GSB), and the chloracidobacteria (CB), for which high-resolution homodimeric RC-photosystem (PS) structures have recently appeared. The 2.2-Å X-ray structure of the RC-PS of Heliomicrobium modesticaldum revealed that the core PshA apoprotein (PshA-1 and PshA-2 homodimeric pair) exhibits a structurally conserved PSI arrangement comprising five C-terminal transmembrane α-helices (TMHs) forming the RC domain and six N-terminal TMHs coordinating the light-harvesting (LH) pigments. The Hmi. modesticaldum structure lacked quinone molecules, indicating that electrons were transferred directly from the A0 (81-OH-chlorophyll (Chl) a) acceptor to the FX [4Fe-4S] component, serving as the terminal RC acceptor. A pair of additional TMHs designated as Psh X were also found that function as a low-energy antenna. The 2.5-Å resolution cryo-electron microscopy (cryo-EM) structure for the RC-PS of the green sulfur bacterium Chlorobaculum tepidum included a pair of Fenna–Matthews–Olson protein (FMO) antennae, which transfer excitations from the chlorosomes to the RC-PS (PscA-1 and PscA-2) core. A pair of cytochromes cZ (PscC) molecules was also revealed, acting as electron donors to the RC bacteriochlorophyll (BChl) a’ special pair, as well as PscB, housing the [4Fe-4S] cluster FA and FB, and the associated PscD protein. While the FMO components were missing from the 2.6-Å cryo-EM structure of the Zn- (BChl) a’ special pair containing RC-PS of Chloracidobacterium thermophilum, a unique architecture was revealed that besides the (PscA)2 core, consisted of seven additional subunits including PscZ in place of PscD, the PscX and PscY cytochrome c serial electron donors and four low mol. wt. subunits of unknown function. Overall, these diverse structures have revealed that (i) the HB RC-PS is the simplest light–energy transducing complex yet isolated and represents the closest known homolog to a common homodimeric RC-PS ancestor; (ii) the symmetrically localized Ca2+-binding sites found in each of the Type I homodimeric RC-PS structures likely gave rise to the analogously positioned Mn4CaO5 cluster of the PSII RC and the TyrZ RC donor site; (iii) a close relationship between the GSB RC-PS and the PSII Chl proteins (CP)43 and CP47 was demonstrated by their strongly conserved LH-(B)Chl localizations; (iv) LH-BChls of the GSB-RC-PS are also localized in the conserved RC-associated positions of the PSII ChlZ-D1 and ChlZ-D2 sites; (v) glycosylated carotenoids of the GSB RC-PS are located in the homologous carotenoid-containing positions of PSII, reflecting an O2-tolerance mechanism capable of sustaining early stages in the evolution of oxygenic photosynthesis. In addition to the close relationships found between the homodimeric RC-PS and PSII, duplication of the gene encoding the ancestral Type I RC apoprotein, followed by genetic divergence, may well account for the appearance of the heterodimeric Type I and Type II RCs of the extant oxygenic phototrophs. Accordingly, the long-held view that PSII arose from the anoxygenic Type II RC is now found to be contrary to the new evidence provided by Type I RC-PS homodimer structures, indicating that the evolutionary origins of anoxygenic Type II RCs, along with their distinct antenna rings are likely to have been preceded by the events that gave rise to their oxygenic counterparts. Full article
(This article belongs to the Collection Feature Papers in Molecular Structure and Dynamics)
Show Figures

Figure 1

24 pages, 11278 KB  
Article
A Novel View of the Diversity of Anoxygenic Phototrophic Bacteria Inhabiting the Chemocline of Meromictic Karst Lakes
by Vladimir Gorlenko, Alexander Savvichev, Vitaly Kadnikov, Igor Rusanov, Alexey Beletsky, Elena Zakharova, Nadezhda Kostrikina, Pavel Sigalevich, Elena Veslopolova and Nikolay Pimenov
Microorganisms 2024, 12(1), 13; https://doi.org/10.3390/microorganisms12010013 - 20 Dec 2023
Cited by 3 | Viewed by 2527
Abstract
The rates of oxygenic and anoxygenic photosynthesis, the microorganisms responsible for these processes, and the hydrochemical characteristics of the sulfide-containing karst lakes, Black Kichier and Big Kichier (Mari El Republic), were investigated. In these lakes, a plate of anoxygenic phototrophic bacteria (APB) is [...] Read more.
The rates of oxygenic and anoxygenic photosynthesis, the microorganisms responsible for these processes, and the hydrochemical characteristics of the sulfide-containing karst lakes, Black Kichier and Big Kichier (Mari El Republic), were investigated. In these lakes, a plate of anoxygenic phototrophic bacteria (APB) is formed at the upper boundary of sulfide occurrence in the water. The phototrophic community of the chemocline zone was analyzed using a combination of high-throughput sequencing of the 16S rRNA gene fragments and light and electron microscopic techniques. Green-colored Chlorobium clathratiforme were absolutely predominant in both lakes. The minor components included green sulfur bacteria (GSB) Chlorobium spp., symbiotic consortia Chlorochromatium magnum and Pelochromatium roseum, purple sulfur bacteria (PSB) Chromatium okenii, and unidentified phylotypes of the family Chromatiaceae, as well as members of the Chloroflexota: Chloronema sp. and Oscillochloris sp. Based on the results of the molecular analysis, the taxonomic status of Ancalochloris perfilievii and other prosthecate GSB, as well as of the PSB Thiopedia rosea, which were visually revealed in the studied freshwater lakes, is discussed. Full article
(This article belongs to the Special Issue Microbial Communities in Aquatic Systems: Diversity and Function)
Show Figures

Figure 1

20 pages, 2265 KB  
Article
Thiorhodovibrio frisius and Trv. litoralis spp. nov., Two Novel Members from a Clade of Fastidious Purple Sulfur Bacteria That Exhibit Unique Red-Shifted Light-Harvesting Capabilities
by Anika Methner, Steven B. Kuzyk, Jörn Petersen, Sabine Bauer, Henner Brinkmann, Katja Sichau, Gerhard Wanner, Jacqueline Wolf, Meina Neumann-Schaal, Petra Henke, Marcus Tank, Cathrin Spröer, Boyke Bunk and Jörg Overmann
Microorganisms 2023, 11(10), 2394; https://doi.org/10.3390/microorganisms11102394 - 25 Sep 2023
Cited by 7 | Viewed by 2725
Abstract
In the pursuit of cultivating anaerobic anoxygenic phototrophs with unusual absorbance spectra, a purple sulfur bacterium was isolated from the shoreline of Baltrum, a North Sea island of Germany. It was designated strain 970, due to a predominant light harvesting complex (LH) absorption [...] Read more.
In the pursuit of cultivating anaerobic anoxygenic phototrophs with unusual absorbance spectra, a purple sulfur bacterium was isolated from the shoreline of Baltrum, a North Sea island of Germany. It was designated strain 970, due to a predominant light harvesting complex (LH) absorption maximum at 963–966 nm, which represents the furthest infrared-shift documented for such complexes containing bacteriochlorophyll a. A polyphasic approach to bacterial systematics was performed, comparing genomic, biochemical, and physiological properties. Strain 970 is related to Thiorhodovibrio winogradskyi DSM 6702T by 26.5, 81.9, and 98.0% similarity via dDDH, ANI, and 16S rRNA gene comparisons, respectively. The photosynthetic properties of strain 970 were unlike other Thiorhodovibrio spp., which contained typical LH absorbing characteristics of 800–870 nm, as well as a newly discovered absorption band at 908 nm. Strain 970 also had a different photosynthetic operon composition. Upon genomic comparisons with the original Thiorhodovibrio strains DSM 6702T and strain 06511, the latter was found to be divergent, with 25.3, 79.1, and 97.5% similarity via dDDH, ANI, and 16S rRNA gene homology to Trv. winogradskyi, respectively. Strain 06511 (=DSM 116345T) is thereby described as Thiorhodovibrio litoralis sp. nov., and the unique strain 970 (=DSM 111777T) as Thiorhodovibrio frisius sp. nov. Full article
(This article belongs to the Special Issue Phototrophic Bacteria 2.0)
Show Figures

Figure 1

34 pages, 2508 KB  
Review
Photobioreactor Design for Polyhydroxyalkanoate Production Using Anoxygenic Photoheterotrophs: A Review
by Sultan Shaikh, Naim Rashid, Gordon McKay and Hamish Robert Mackey
Fermentation 2023, 9(8), 778; https://doi.org/10.3390/fermentation9080778 - 21 Aug 2023
Cited by 16 | Viewed by 5044
Abstract
This review paper provides an overview of various types of photobioreactors (PBRs) that could be used for the production of polyhydroxyalkanoates (PHAs) using anoxygenic photoheterotrophs, with a focus on the design and operation of these systems. The paper highlights the potential of different [...] Read more.
This review paper provides an overview of various types of photobioreactors (PBRs) that could be used for the production of polyhydroxyalkanoates (PHAs) using anoxygenic photoheterotrophs, with a focus on the design and operation of these systems. The paper highlights the potential of different PBRs based on reactor geometry and growth mode, and also examines the advantages and disadvantages of each PBR type and summarizes their suitability for PNSB-PHA production. The optimization of reactor design and operation is crucial for maximizing PNSB growth and PHA productivity. The self-immobilization of bacteria in granular sludge is a promising technology for wastewater treatment and the production of PHAs, while grooved-surface PBRs and porous-substrate PBRs have limitations due to difficult biomass harvesting in the former and the presence of aerobic conditions incongruent with PNSB culturing in the latter. Limitations exist with all solutions for maximizing rapid growth and maintaining high biomass concentrations due to the requirements of phototrophic growth. Full article
(This article belongs to the Special Issue Purple Bacteria Biotechnology: Fundamentals and Applications)
Show Figures

Figure 1

25 pages, 2382 KB  
Article
The Community Structure of eDNA in the Los Angeles River Reveals an Altered Nitrogen Cycle at Impervious Sites
by Savanah Senn, Sharmodeep Bhattacharyya, Gerald Presley, Anne E. Taylor, Rayne Stanis, Kelly Pangell, Daila Melendez and Jillian Ford
Diversity 2023, 15(7), 823; https://doi.org/10.3390/d15070823 - 29 Jun 2023
Cited by 2 | Viewed by 3081 | Correction
Abstract
In this study, we sought to investigate the impact of urbanization, the presence of concrete river bottoms, and nutrient pollution on microbial communities along the L.A. River. Six molecular markers were evaluated for the identification of bacteria, plants, fungi, fish, and invertebrates in [...] Read more.
In this study, we sought to investigate the impact of urbanization, the presence of concrete river bottoms, and nutrient pollution on microbial communities along the L.A. River. Six molecular markers were evaluated for the identification of bacteria, plants, fungi, fish, and invertebrates in 90 samples. PCA (principal components analysis) was used along with PAM (partitioning around medoids) clustering to reveal community structure, and an NB (negative binomial) model in DESeq2 was used for differential abundance analysis. PCA and factor analysis exposed the main axes of variation but were sensitive to outliers. The differential abundance of Proteobacteria was associated with soft-bottom sites, and there was an apparent balance in the abundance of bacteria responsible for nitrogen cycling. Nitrogen cycling was explained via ammonia-oxidizing archaea; the complete ammonia oxidizers, Nitrospira sp.; nitrate-reducing bacteria, Marmoricola sp.; and nitrogen-fixing bacteria Devosia sp., which were differentially abundant at soft-bottom sites (p adj < 0.002). In contrast, the differential abundance of several cyanobacteria and other anoxygenic phototrophs was associated with the impervious sites, which suggested the accumulation of excess nitrogen. The soft-bottom sites tended to be represented by a differential abundance of aerobes, whereas the concrete-associated species tended to be alkaliphilic, saliniphilic, calciphilic, sulfate dependent, and anaerobic. In the Glendale Narrows, downstream from multiple water reclamation plants, there was a differential abundance of cyanobacteria and algae; however, indicator species for low nutrient environments and ammonia-abundance were also present. There was a differential abundance of ascomycetes associated with Arroyo Seco and a differential abundance of Scenedesmaceae green algae and cyanobacteria in Maywood, as seen in the analysis that compared suburban with urban river communities. The proportion of Ascomycota to Basidiomycota within the L.A. River differed from the expected proportion based on published worldwide freshwater and river 18S data; the shift in community structure was most likely associated with the extremes of urbanization. This study indicates that extreme urbanization can result in the overrepresentation of cyanobacterial species that could cause reductions in water quality and safety. Full article
(This article belongs to the Special Issue Biodiversity Conservation in Metacommunities)
Show Figures

Figure 1

Back to TopTop