A Novel View of the Diversity of Anoxygenic Phototrophic Bacteria Inhabiting the Chemocline of Meromictic Karst Lakes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Microscopy and Pigment Composition
2.3. Radiotracer Experiments
2.4. Isolation of Metagenomic DNA, PCR Amplification, and High-Throughput Sequencing of the 16S rRNA Gene Fragments
3. Results
3.1. Physicochemical Conditions in the Black and Big Kichier Lakes
3.2. Chlorophylls
3.3. Total Microbial Abundance (MA)
3.4. Cyanobacteria
3.5. Anoxygenic Phototrophic Bacteria
3.6. Production Processes
3.7. Biodiversity of Bacteria in the Chemocline of Black Kichier and Big Kichier
3.7.1. Cyanobacterota
3.7.2. Chlorobia
3.7.3. Symbiotic Forms of GSB
3.7.4. Purple Sulfur Bacteria
3.7.5. Planktonic Choroflexaceae Species
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boehrer, B.; Schultze, M. Stratification of lakes. Rev. Geophys. 2008, 46, 7. [Google Scholar] [CrossRef]
- Zadereev, E.S.; Gulati, R.D.; Camacho, A. Biological and Ecological Features, Trophic Structure and Energy Flow in Meromictic Lakes. In Mediterranean-Type Ecosystems; Springer: Berlin/Heidelberg, Germany, 2017; pp. 61–86. [Google Scholar]
- Mori, Y.; Kataoka, T.; Okamura, T.; Kondo, R. Dominance of green sulfur bacteria in the chemocline of the meromictic Lake Suigetsu, Japan, as revealed by dissimilatory sulfite reductase gene analysis. Arch. Microbiol. 2013, 195, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Van Gemerden, H.; Mass, J. Ecology of phototrophic sulfur bacteria. In Anoxygenic Photosynthetic Bacteria; Blankenship, R.E., Madigan, M.T., Bauer, C.E., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1995; pp. 49–85. [Google Scholar]
- Bolhuis, H.; Cretoiu, M.S.; Stal, L.J. Molecular ecology of microbial mats. FEMS Microbiol. Ecol. 2014, 90, 335–350. [Google Scholar] [CrossRef] [PubMed]
- Crowe, S.A.; Jones, C.A.; Katsev, S.; Magen, C.; O’Neill, A.H.; Sturm, A.; Canfield, D.E.; Haffner, G.D.; Mucci, A.; Sundby, B.; et al. Photoferrotrophs thrive in an Archean Ocean analogue. Proc. Natl. Acad. Sci. USA 2008, 105, 15938–15943. [Google Scholar] [CrossRef]
- Poulton, S.; Canfield, D. Ferruginous Conditions: A Dominant Feature of the Ocean through Earth’s History. Elements 2011, 7, 107–112. [Google Scholar] [CrossRef]
- Saini, J.; Hassler, C.; Cable, R.; Fourquez, M.; Danza, F.; Roman, S.; Tonolla, M.; Storelli, N.; Jacquet, S.; Zdobnov, E.; et al. Bacterial, phytoplankton, and viral distributions and their biogeochemical contexts in meromictic Lake Cadagno offer insights into the Proterozoic Ocean microbial loop. MBio 2022, 13, e00052-22. [Google Scholar] [CrossRef]
- Thiel, V.; Tank, M.; Bryant, D. Diversity of chlorophototrophic bacteria revealed in the omics era. Annu. Rev. Plant Biol. 2018, 69, 21–49. [Google Scholar] [CrossRef]
- Imhoff, J.F. Anoxygenic phototrophic bacteria from extreme environments. In Modern Topics in the Phototrophic Prokaryotes: Environmental and Applied Aspects; Hallenbeck, P.C., Ed.; Springer: Cham, Switzerland, 2017; pp. 427–480. [Google Scholar]
- Danza, F.; Ravasi, D.; Storelli, N.; Roman, S.; Lüdin, S.; Bueche, M.; Tonolla, M. Bacterial diversity in the water column of meromictic Lake Cadagno and evidence for seasonal dynamics. PLoS ONE 2018, 13, e0209743. [Google Scholar] [CrossRef]
- Di Nezio, F.; Beney, C.; Roman, S.; Danza, F.; Buetti-Dinh, A.; Tonolla, M.; Storelli, N. Anoxygenic photo- and chemo-synthesis of phototrophic sulfur bacteria from an alpine meromictic lake. FEMS Microbiol. Ecol. 2021, 97, fiab010. [Google Scholar] [CrossRef]
- Linz, A.M.; He, S.; Stevens, L.R.; Anantharaman, K.; Rohwer, R.R.; Malmstrom, R.R.; Bertilsson, S.; McMahon, K.D. Freshwater carbon and nutrient cycles revealed through reconstructed population genomes. PeerJ 2018, 6, e6075. [Google Scholar] [CrossRef]
- Mehrshad, M.; Salcher, M.M.; Okazaki, Y.; Nakano, S.I.; Šimek, K.; Andrei, A.S.; Ghai, R. Hidden in plain sight—Highly abundant and diverse planktonic freshwater Chloroflexi. Microbiome 2018, 6, 176. [Google Scholar] [CrossRef] [PubMed]
- Buck, M.; Garcia, S.L.; Fernandez, L.; Martin, G.; Martinez-Rodriguez, G.A.; Saarenheimo, J.; Zopfi, J.; Bertilsson, S.; Peura, S. Comprehensive dataset of shotgun metagenomes from oxygen stratified freshwater lakes and ponds. Sci. Data 2021, 8, 131. [Google Scholar] [CrossRef] [PubMed]
- Cabello-Yeves, P.J.; Picazo, A.; Roda-Garcia, J.J.; Rodriguez-Valera, F.; Camacho, A. Vertical niche occupation and potential metabolic interplay of microbial consortia in a deeply stratified meromictic model lake. Limnol. Oceanogr. 2023, 68, 2492–2511. [Google Scholar] [CrossRef]
- Gorbunov, M.Y.; Umanskaya, M.V. Karst Lakes of Mari Chodra National Park: Stratification and vertical distribution of phototrophic plankton. IOP Conf. Ser. Earth Environ. Sci. 2020, 607, 012019. [Google Scholar] [CrossRef]
- Ruzsky, M. Limnological studies in the middle Volga region. In Lakes of the Northwestern Part of the Kazan Province; Proceedings of the Zoological Cabinet of the Imperial Tomsk University; Tomsk State University: Tomsk, Russia, 1916; Volume LXV, pp. 1–48. [Google Scholar]
- Kuznetsov, S.I. The Role of Microorganisms in the Cycling of Substances in Lakes; USSR Academy of Sciences Publishing House: Moscow, Russia, 1952; 300p. [Google Scholar]
- Kuznezow, S.I.; Gorlenko, V.M. Limnologische und Mikrobiologische Eigenschaften von Karstseen der ASR Mari. Arch. Hydrobiol. 1973, 71, 475–486. [Google Scholar]
- Gorlenko, V.M.; Dubinina, G.A.; Kuznetsov, S.I. The Ecology of Aquatic Microorganisms; E. Schweizerbartsche Verlagsbuchhandlung: Stuttgart, Germany, 1983; p. 252. [Google Scholar]
- Kellenberger, E.; Ryter, A.; Séchaud, J. Electron microscope study of DNA-containing plasms. II. Vegetative and mature phage DNA as compared with normal bacterial nucleoids in different physiological states. J. Cell Biol. 1958, 4, 671–678. [Google Scholar] [CrossRef]
- Reynolds, E.S. The use of lead citrate stain at high pH in electron microscopy. J. Cell Biol. 1963, 17, 208. [Google Scholar] [CrossRef]
- Overmann, J.; Tilzer, M.M. Control of primary productivity and the significance of photosynthetic bacteria in a meromictic kettle lake Mittlerer Buchensee, West-Germany. Aquat. Sci. 1989, 51, 261–278. [Google Scholar] [CrossRef]
- Sorokin, Y.I.; Kadota, H. Techniques for the assessment of microbial production and decomposition in fresh waters. In IBP Handbook No 23; Blackwell Scientific Publisher: Oxford, UK; London, UK, 1972. [Google Scholar]
- Savvichev, A.S.; Kokryatskaya, N.M.; Zabelina, S.A.; Rusanov, I.I.; Zakharova, E.E.; Veslopolova, E.F.; Lunina, O.N.; Patutina, E.O.; Bumazhkin, B.K.; Gruzdev, D.S.; et al. Microbial Processes of the carbon and sulfur cycles in an ice-covered, iron-rich neromictic Lake Svetloe (Arkhangelsk Region, Russia). Environ. Microbiol. 2017, 19, 659–672. [Google Scholar] [CrossRef]
- Magoć, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [PubMed]
- Pruesse, E.; Quast, C.; Knittel, K.; Fuchs, B.M.; Ludwig, W.; Peplies, J.; Glöckner, F.O. SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007, 35, 7188–7196. [Google Scholar] [CrossRef] [PubMed]
- Gich, F.; Borrego, C.M.; Martinez-Planells, A.; Garcia-Gil, J. Adaptation of the photosynthetic antenna of BChl d-containing green sulfur bacteria to low light intensities. In Photosynthesis: Mechanisms and Effects; Garab, G., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998; Volume 1, pp. 165–168. [Google Scholar]
- Dubinina, G.A.; Gorlenko, V.M. New filamentous photosynthesizing green bacteria with gas vacuoles. Mikrobiologiia 1975, 44, 511–517. [Google Scholar] [PubMed]
- Komárek, J.; Kopecký, J.; Cepák, V. Generic characters of the simplest cyanoprokaryotes Cyanobium, Cyanobacterium and Synechococcus. Cryptogam. Algol. 1999, 20, 209–222. [Google Scholar] [CrossRef]
- D’alelo, D.; Salmaso, N. Occurrence of an uncommon Planktothrix (Cyanoprokaryota, Oscillatoriales) in a deep lake south of the Alps. Phycologia 2011, 50, 379–383. [Google Scholar] [CrossRef]
- Abella, C.A.; Garcia-Gil, L.J. Dial migration as a mechanism for enrichment of natural populations of branching species of Pelodictyon. In Green Photosynthetic Bacteria; Olson, J.M., Ormerod, J.G., Amesz, J., Stackebrandt, E., Trüper, H.G., Eds.; Plenum: New York, NY, USA, 1988; pp. 269–285. [Google Scholar]
- Overmann, J.; Pfennig, N. Pelodictyon phaeoclathratifovme sp. nov., a new brown-colored member of the Chlorobiaceae forming net-like colonies. Arch. Microbiol. 1989, 152, 401–406. [Google Scholar] [CrossRef]
- Gich, F.B.; Garcia-Gil, L.J.; Overmann, J. Previously unknown and phylogenetically diverse members of the green nonsulfur bacteria are indigenous to freshwater lakes. Arch. Microbiol. 2001, 177, 1–10. [Google Scholar] [CrossRef]
- Gorlenko, V.M.; Lebedeva, E.V. New green bacteria with the out-growths. Mikrobiologiya 1971, 40, 1035–1039. [Google Scholar]
- Anagnostides, K.; Overbeck, J. Methanoxydierer und hypolimnisehe Schwefelbakterien. Ber. Deut. Bodenk. Ges. 1966, 79, 163–174. [Google Scholar]
- Caldwell, D.E.; Tiedje, J.M. A morphological study of anaerobic bacteria from the hypolimnia of two Michigan lakes. Can. J. Microbiol. 1975, 21, 362–376. [Google Scholar] [CrossRef]
- Caldwell, D.E.; Tiedje, J.M. The structure of anaerobic bacterial communities in the hypolimnia of several Michigan lakes. Can. J. Microbiol. 1975, 21, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Skuia, H. Taxonomische und biologische Studien iiber das Phytoplankton schwedischer Binnengewasser. Nova Acta Reg. Soc. Sci. Upsal. 1956, 16, 1–404. [Google Scholar]
- Caldwell, D.E.; Overbeck, J. The Planktonic Microflora of Lakes. CRC Crit. Rev. Microbiol. 2008, 5, 305–370. [Google Scholar] [CrossRef] [PubMed]
- Overmann, J.; Schubert, K. Phototrophic consortia: Model systems of symbiotic relationships between prokaryotes. Arch. Microbiol. 2002, 177, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Glazer, J.; Overmann, J. Biogeography, evolution and diversity of epibionts in phototrophic consortiums. Appl. Environ. Microbiol. 2004, 70, 4821–4830. [Google Scholar] [CrossRef]
- Kanzler, B.E.; Pfannes, K.R.; Vogl, K.; Overmann, J. Molecular characterization of a non-photosynthetic partner bacterium in the “Chlorochromatium aggregatum” consortium. Appl. Environ. Microbiol. 2005, 71, 7434–7441. [Google Scholar] [CrossRef]
- Pfannes, K.R.; Vogl, K.; Overmann, J. Heterotrophic symbionts of phototrophic consortia: Members of a novel diverse cluster of Betaproteobacteria characterized by a tandem rrn operon structure. Environ. Microbiol. 2007, 9, 2782–2794. [Google Scholar] [CrossRef]
- Vogl, K.; Venter, R.; Dressen, M.; Schlickenrieder, M.; Plescher, M.; Eyhaker, L.; Overmann, J. Identification and analysis of four candidate symbiosis genes from “Chlorochromatium aggregatum”, a highly developed bacterial symbiosis. Environ. Microbiol. 2008, 10, 2842–2856. [Google Scholar] [CrossRef]
- Vila, X.; Abella, C.A.; Figueras, J.B.; Hurley, J.P. Vertical models of phototrophic bacterial distribution in the metalimnetic microbial communities of several freshwater North-American kettle lakes. FEMS Microbiol. Ecol. 1998, 25, 287–299. [Google Scholar] [CrossRef]
- Peduzzi, S.; Storelli, N.; Welsh, A.; Peduzzi, R.; Hahn, D.; Perret, X.; Tonolla, M. Candidatus “Thiodictyon syntrophicum”, sp. nov., a new purple sulfur bacterium isolated from the chemocline of Lake Cadagno forming aggregates and specific associations with Desulfocapsa sp. Syst. Appl. Microbiol. 2012, 35, 139–144. [Google Scholar] [CrossRef]
- Luedin, S.M.; Liechti, N.; Cox, R.P.; Danza, F.; Frigaard, N.U.; Posth, N.R.; Pothier, J.F.; Roman, S.; Storelli, N.; Wittwer, M.; et al. Draft genome sequence of Chromatium okenii isolated from the stratified Alpine Lake Cadagno. Sci. Rep. 2019, 9, 1936. [Google Scholar] [CrossRef] [PubMed]
- Eichler, B.; Pfennig, N. Isolation and characteristics of Thiopedia rosea (neotype). Arch. Microbiol. 1991, 155, 210–216. [Google Scholar] [CrossRef]
- Abella, C.A.; Garcia-Gil, L.J. Microbial ecology of planktonic filamentous phototrophic bacteria in holomictic freshwater lakes. In The Dynamics and Use of Lacustrine Ecosystems: Proceedings of the 40-Year Jubilee Symposium of the Finnish Limnological Society, Helsinki, Finland, 6–10 August 1990; Springer: Dordrecht, The Netherlands, 1990; pp. 79–86. [Google Scholar]
- Ha, P.; Lindemann, S.; Shi, L.; Dohnalkova, A.; Fredrickson, J.; Madigan, M.; Beyena, H. Syntrophic anaerobic photosynthesis via direct interspecies electron transfer. Nat. Commun. 2017, 8, 13924. [Google Scholar] [CrossRef] [PubMed]
- Keppen, O.I.; Tourova, T.P.; Kuznetsov, B.B.; Ivanovsky, R.N.; Gorlenko, V.M. Proposal of Oscillochloridaceae fam. nov. on the basis of aphylogenetic analysis of the filamentous anoxygenic phototrophic bacteria, and emended description of Oscillochloris and Oscillochloris trichoides in comparison with further new isolates. Int. J. Syst. Evol. Microbiol. 2000, 50, 1529–1537. [Google Scholar] [CrossRef]
Bk OTU | Bg OTU | Identified Species | % Similarity | Depth of the Highest OTU Abundance |
---|---|---|---|---|
5 | 10 | Chlorobium clathratiforme | 99.25 | Bk-7.47 (3.5 m); Bg-6.86 (4.5 m) |
275 | 268 | Chlorobium sp. | 96.24 similarity to Chlorobium clathratiforme | Bk-0.05 (4 m) Bg-0.65 (4.5 m) |
9526 | Bg-0.01 (5.0 m) | |||
937 | Chlorobaculum thiosulfatophilum | 98.5 | Bg-0.02 (4.5 m) | |
188 | 398 | Chlorobiota | Chlorobium luteolum 95.47(Bk); 97.37 (Bg) | Bk-0.32 (4.0 m) Bg-0.05 (4.0 m) |
8111 | Chlorobiota | Chlorobium limicola 95.86 | Bg-0.02 (4.0 m) | |
121 | 54 | Chlorochromatium magnum | 99.2 | Bk-0.63 (3.5 m) Bg-0.87 (4.5 m) |
798 | 533 | Pelochromatium roseum | 99.2 | Bk-0.05 (4.0 m) Bg-0.35 (4.5 m) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorlenko, V.; Savvichev, A.; Kadnikov, V.; Rusanov, I.; Beletsky, A.; Zakharova, E.; Kostrikina, N.; Sigalevich, P.; Veslopolova, E.; Pimenov, N. A Novel View of the Diversity of Anoxygenic Phototrophic Bacteria Inhabiting the Chemocline of Meromictic Karst Lakes. Microorganisms 2024, 12, 13. https://doi.org/10.3390/microorganisms12010013
Gorlenko V, Savvichev A, Kadnikov V, Rusanov I, Beletsky A, Zakharova E, Kostrikina N, Sigalevich P, Veslopolova E, Pimenov N. A Novel View of the Diversity of Anoxygenic Phototrophic Bacteria Inhabiting the Chemocline of Meromictic Karst Lakes. Microorganisms. 2024; 12(1):13. https://doi.org/10.3390/microorganisms12010013
Chicago/Turabian StyleGorlenko, Vladimir, Alexander Savvichev, Vitaly Kadnikov, Igor Rusanov, Alexey Beletsky, Elena Zakharova, Nadezhda Kostrikina, Pavel Sigalevich, Elena Veslopolova, and Nikolay Pimenov. 2024. "A Novel View of the Diversity of Anoxygenic Phototrophic Bacteria Inhabiting the Chemocline of Meromictic Karst Lakes" Microorganisms 12, no. 1: 13. https://doi.org/10.3390/microorganisms12010013
APA StyleGorlenko, V., Savvichev, A., Kadnikov, V., Rusanov, I., Beletsky, A., Zakharova, E., Kostrikina, N., Sigalevich, P., Veslopolova, E., & Pimenov, N. (2024). A Novel View of the Diversity of Anoxygenic Phototrophic Bacteria Inhabiting the Chemocline of Meromictic Karst Lakes. Microorganisms, 12(1), 13. https://doi.org/10.3390/microorganisms12010013