Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = anisotropic superhydrophobic surface

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7066 KiB  
Article
Direct Ink Writing 3D Printing Polytetrafluoroethylene/Polydimethylsiloxane Membrane with Anisotropic Surface Wettability and Its Application in Oil–Water Separation
by Peng Geng and Chengjian Jiang
Polymers 2025, 17(2), 174; https://doi.org/10.3390/polym17020174 - 13 Jan 2025
Cited by 1 | Viewed by 1159
Abstract
Biological surfaces with physical discontinuity or chemical heterogeneity possess special wettability in the form of anisotropic wetting behavior. However, there are several challenges in designing and manufacturing samples with anisotropic wettability. This study investigates the fabrication of PTFE/PDMS grid membranes using Direct Ink [...] Read more.
Biological surfaces with physical discontinuity or chemical heterogeneity possess special wettability in the form of anisotropic wetting behavior. However, there are several challenges in designing and manufacturing samples with anisotropic wettability. This study investigates the fabrication of PTFE/PDMS grid membranes using Direct Ink Writing (DIW) 3D printing for oil–water separation applications. The ink’s rheological properties were optimized, revealing that a 60% PTFE/PDMS composite exhibited the ideal shear-thinning behavior for 3D printing. Our research investigated the interplay between various printing parameters like the extrusion air pressure, layer thickness, feed rate, and printing speed, which were found to influence the filament dimensions, pore sizes, and hydrophobic properties of the grid membrane. Two distinct grid structures were analyzed for their wettability and anisotropic hydrophobic characteristics. The grid membranes achieved up to 100% oil–water separation efficiency in specific configurations. Separation efficiency was shown to be dependent on factors like intrusion pressure, grid architecture, and the number of layers. This study underscores the potential of DIW 3D printing in creating specialized surfaces with controlled wettability, particularly superhydrophobicity and anisotropy, paving the way for advanced environmental applications such as efficient oil–water separation. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

12 pages, 4079 KiB  
Article
Engineering Wettability Transitions on Laser-Textured Shark Skin-Inspired Surfaces via Chemical Post-Processing Techniques
by Elham Lori Zoudani, Nam-Trung Nguyen and Navid Kashaninejad
Micromachines 2024, 15(12), 1442; https://doi.org/10.3390/mi15121442 - 28 Nov 2024
Viewed by 1112
Abstract
Surface wettability, the interaction between a liquid droplet and the surface it contacts, plays a key role in influencing droplet behavior and flow dynamics. There is a growing interest in designing surfaces with tailored wetting properties across diverse applications. Advanced fabrication techniques that [...] Read more.
Surface wettability, the interaction between a liquid droplet and the surface it contacts, plays a key role in influencing droplet behavior and flow dynamics. There is a growing interest in designing surfaces with tailored wetting properties across diverse applications. Advanced fabrication techniques that create surfaces with unique wettability offer significant innovation potential. This study investigates the wettability transition of laser-textured anisotropic surfaces featuring shark skin-inspired microstructures using four post-processing methods: spray coating, isopropyl alcohol (IPA) treatment, silicone oil treatment, and silanization. The impact of each method on surface wettability was assessed through water contact angle measurements, scanning electron microscopy (SEM), and laser scanning microscopy. The results show a transition from superhydrophilic behavior on untreated laser-textured surfaces to various (super)hydrophobic states following surface treatment. Chemical treatments produced different levels of hydrophobicity and anisotropy, with silanization achieving the highest hydrophobicity and long-term stability, persisting for one year post-treatment. This enhancement is attributed to the low surface energy and chemical properties of silane compounds, which reduce surface tension and increase water repellence. In conclusion, this study demonstrates that post-processing techniques can effectively tailor surface wettability, enabling a wide range of wetting properties with significant implications for practical applications. Full article
(This article belongs to the Special Issue Flows in Micro- and Nano-Systems)
Show Figures

Figure 1

16 pages, 6110 KiB  
Article
Hydrophobic Antiwetting of Aquatic UAVs: Static and Dynamic Experiment and Simulation
by Yihua Zheng, Zhimin Huang, Chengchun Zhang and Zhengyang Wu
Appl. Sci. 2022, 12(15), 7626; https://doi.org/10.3390/app12157626 - 28 Jul 2022
Cited by 4 | Viewed by 2451
Abstract
The adhesion of water to the surfaces of unmanned aerial vehicles (UAVs) adversely affects the function. The proposed UAVs will have underwater as well as flight capability, and these aquatic UAVs must shed water to resume flight. The efficient separation of the adhering [...] Read more.
The adhesion of water to the surfaces of unmanned aerial vehicles (UAVs) adversely affects the function. The proposed UAVs will have underwater as well as flight capability, and these aquatic UAVs must shed water to resume flight. The efficient separation of the adhering water from aquatic-UAV surfaces is a challenging problem; we investigated the application of hydrophobic surfaces as a potential solution. Using aquatic-UAV models, one with hydrophilic surfaces and the other with superhydrophobic anisotropic textured surfaces, the antiwetting mechanism of the hydrophobic surfaces was investigated using a simulated-precipitation system and instrumentation to measure the load of the water adhering to the aquatic UAV, and to measure the impact energies. When the model was stationary (passive antiwetting), no adhesion occurred on the superhydrophobic surfaces, while continuous asymmetric thick liquid films were observed on the hydrophilic surfaces. The superhydrophobic surfaces reduced the rain loading by 87.5%. The vibration and movement of the model (dynamic antiwetting, simulating flight motions) accelerated the separation process and reduced the contact time. The observed results were augmented by the use of computational fluid dynamics with lattice Boltzmann methods (LBM) to analyze the particle traces inside the droplets, the liquid phase velocity-field and pressure-field strengths, and the backward bouncing behavior of the derived droplet group induced by the moving surface. The synergy between the superhydrophobic surfaces and the kinetic energy of the droplets promotes the breakup of drops, which avoids the significant lateral unbalance observed with hydrophilic surfaces during simulated flight. Full article
(This article belongs to the Special Issue Bionic Design and Manufacturing of Innovative Aircraft)
Show Figures

Figure 1

34 pages, 9053 KiB  
Article
Three-Dimensional Simulations of Anisotropic Slip Microflows Using the Discrete Unified Gas Kinetic Scheme
by Wenqiang Guo and Guoxiang Hou
Entropy 2022, 24(7), 907; https://doi.org/10.3390/e24070907 - 30 Jun 2022
Cited by 4 | Viewed by 1967
Abstract
The specific objective of the present work study is to propose an anisotropic slip boundary condition for three-dimensional (3D) simulations with adjustable streamwise and spanwise slip length by the discrete unified gas kinetic scheme (DUGKS). The present boundary condition is proposed based on [...] Read more.
The specific objective of the present work study is to propose an anisotropic slip boundary condition for three-dimensional (3D) simulations with adjustable streamwise and spanwise slip length by the discrete unified gas kinetic scheme (DUGKS). The present boundary condition is proposed based on the assumption of nonlinear velocity profiles near the wall instead of linear velocity profiles in a unidirectional steady flow. Moreover, a 3D corner boundary condition is introduced to the DUGKS to reduce the singularities. Numerical tests validate the effectiveness of the present method, which is more accurate than the bounce-back and specular reflection slip boundary condition in the lattice Boltzmann method. It is of significance to study the lid-driven cavity flow due to its applications and its capability in exhibiting important phenomena. Then, the present work explores, for the first time, the effects of anisotropic slip on the two-sided orthogonal oscillating micro-lid-driven cavity flow by adopting the present method. This work will generate fresh insight into the effects of anisotropic slip on the 3D flow in a two-sided orthogonal oscillating micro-lid-driven cavity. Some findings are obtained: The oscillating velocity of the wall has a weaker influence on the normal velocity component than on the tangential velocity component. In most cases, large slip length has a more significant influence on velocity profiles than small slip length. Compared with pure slip in both top and bottom walls, anisotropic slip on the top wall has a greater influence on flow, increasing the 3D mixing of flow. In short, the influence of slip on the flow field depends not only on slip length but also on the relative direction of the wall motion and the slip velocity. The findings can help in better understanding the anisotropic slip effect on the unsteady microflow and the design of microdevices. Full article
(This article belongs to the Special Issue Kinetic Theory-Based Methods in Fluid Dynamics)
Show Figures

Figure 1

18 pages, 4339 KiB  
Article
Effect of Chemical Surface Texturing on the Superhydrophobic Behavior of Micro–Nano-Roughened AA6082 Surfaces
by Amani Khaskhoussi, Luigi Calabrese, Salvatore Patané and Edoardo Proverbio
Materials 2021, 14(23), 7161; https://doi.org/10.3390/ma14237161 - 24 Nov 2021
Cited by 20 | Viewed by 2893
Abstract
Superhydrophobic surfaces on 6082 aluminum alloy substrates are tailored by low-cost chemical surface treatments coupled to a fluorine-free alkyl-silane coating deposition. In particular, three different surface treatments are investigated: boiling water, HF/HCl, and HNO3/HCl etching. The results show that the micro-nano [...] Read more.
Superhydrophobic surfaces on 6082 aluminum alloy substrates are tailored by low-cost chemical surface treatments coupled to a fluorine-free alkyl-silane coating deposition. In particular, three different surface treatments are investigated: boiling water, HF/HCl, and HNO3/HCl etching. The results show that the micro-nano structure and the wetting behavior are greatly influenced by the applied surface texturing treatment. After silanization, all the textured surfaces exhibit a superhydrophobic behavior. The highest water contact angle (WCA, ≈180°) is obtained by HF/HCl etching. Interestingly, the water sliding angle (WSA) is affected by the anisotropic surface characteristics. Indeed, for the HF/HCl and the HNO3/HCl samples, the WSA in the longitudinal direction is lower than the transversal one, which slightly affects the self-cleaning capacity. The results point out that the superhydrophobic behavior of the aluminum alloys surface can be easily tailored by performing a two-step procedure: (i) roughening treatment and (ii) surface chemical silanization. Considering these promising results, the aim of further studies will be to improve the knowledge and optimize the process parameters in order to tailor a superhydrophobic surface with an effective performance in terms of stability and durability. Full article
(This article belongs to the Special Issue Advances in the Fabrication of Superhydrophobic Polymeric Surfaces)
Show Figures

Figure 1

12 pages, 3423 KiB  
Article
Symmetry-Breaking Drop Bouncing on Superhydrophobic Surfaces with Continuously Changing Curvatures
by WooSeok Choi and Sungchan Yun
Polymers 2021, 13(17), 2940; https://doi.org/10.3390/polym13172940 - 31 Aug 2021
Cited by 5 | Viewed by 2157
Abstract
Controlling the residence time of drops on the solid surface is related to a wide spectrum of engineering applications, such as self-cleaning and anti-icing. The symmetry-breaking dynamics induced by the initial drop shape can promote drop bouncing. Here, we study the bouncing features [...] Read more.
Controlling the residence time of drops on the solid surface is related to a wide spectrum of engineering applications, such as self-cleaning and anti-icing. The symmetry-breaking dynamics induced by the initial drop shape can promote drop bouncing. Here, we study the bouncing features of spherical and ellipsoidal drops on elliptical surfaces that continuously change curvatures inspired by natural succulent leaves. The bounce characteristics highly depend on the geometric relations between the ellipsoidal drops and curved surfaces. Numerical results show that ellipsoidal shapes of the drops amplify asymmetries of the mass and momentum in synergy with an influence of the surface curvature during the impact, which is verified by experiments. Effects of the surface anisotropy and drops’ ellipticity on the residence time are investigated under various surface morphologies and Weber numbers. The residence time is closely associated with an initial surface curvature at the apex. The underlying principle of modifying the residence time via the drops’ ellipticity and initial surface curvature is elucidated based on momentum asymmetry. The understanding of the bouncing features on curved surfaces will offer practical implications for enhanced heat transfer performances and controlled water repellency, etc. Full article
(This article belongs to the Special Issue Wettabilities and Surface Properties of Polymer Materials II)
Show Figures

Graphical abstract

17 pages, 19044 KiB  
Article
Bio-Inspired Design of Bi/Tridirectionally Anisotropic Sliding Superhydrophobic Titanium Alloy Surfaces
by Jinkai Xu, Yonggang Hou, Zhongxu Lian, Zhanjiang Yu, Zuobin Wang and Huadong Yu
Nanomaterials 2020, 10(11), 2140; https://doi.org/10.3390/nano10112140 - 27 Oct 2020
Cited by 26 | Viewed by 3015
Abstract
Many biological surfaces with the multi-scale microstructure show obvious anisotropic wetting characteristics, which have many potential applications in microfluidic systems, biomedicine, and biological excitation systems. However, it is still a challenge to accurately prepare a metal microstructured surface with multidirectional anisotropy using a [...] Read more.
Many biological surfaces with the multi-scale microstructure show obvious anisotropic wetting characteristics, which have many potential applications in microfluidic systems, biomedicine, and biological excitation systems. However, it is still a challenge to accurately prepare a metal microstructured surface with multidirectional anisotropy using a simple but effective method. In this paper, inspired by the microstructures of rice leaves and butterfly wings, wire electrical discharge machining was used to build dual-level (submillimeter/micrometer) periodic groove structures on the surface of titanium alloy, and then a nanometer structure was obtained after alkali-hydrothermal reaction, forming a three-level (submillimeter/micrometer/nanometer) structure. The surface shows the obvious difference of bidirectional superhydrophobic and tridirectional anisotropic sliding after modification, and the special wettability is easily adjusted by changing the spacing and angle of the inclined groove. In addition, the results indicate that the ability of water droplets to spread along parallel and perpendicular directions on the submillimeter groove structure and the different resistances generated by the inclined groove surface are the main reasons for the multi-anisotropic wettability. The research gives insights into the potential applications of metal materials with multidirectional anisotropic wetting properties. Full article
(This article belongs to the Special Issue Biomimetic Nanomaterials)
Show Figures

Figure 1

18 pages, 11640 KiB  
Article
Fabrication of Superhydrophobic Ti–6Al–4V Surfaces with Single-Scale Micotextures by using Two-Step Laser Irradiation and Silanization
by Haidong He, Risheng Hua, Xuan Li, Chunju Wang, Xuezhong Ning and Lining Sun
Materials 2020, 13(17), 3816; https://doi.org/10.3390/ma13173816 - 29 Aug 2020
Cited by 14 | Viewed by 2393
Abstract
Laser irradiation is a popular method to produce microtextures on metal surfaces. However, the common laser-produced microtextures were hierarchical (multiscale), which may limit their applicability. In this paper, a method of two-step laser irradiation, combining first-step strong ablation and sequentially second-step gentle ablation, [...] Read more.
Laser irradiation is a popular method to produce microtextures on metal surfaces. However, the common laser-produced microtextures were hierarchical (multiscale), which may limit their applicability. In this paper, a method of two-step laser irradiation, combining first-step strong ablation and sequentially second-step gentle ablation, was presented to produce micron-rough surface with single-scale microtextures. The effect of laser fluence on the Ti–6Al–4V surface morphology and wettability were investigated in detail. The morphology results revealed that the microtextures produced using this method gradually evolved from multiscale to single-scale meanwhile from microprotrusions to microholes with increasing the second-step laser fluence from 0.0 to 2.4 J/cm2. The wettability and EDS/XPS results indicated that attributing to the rich TiO2 content and micron roughness produced by laser irradiation, all the two-step laser-irradiated surfaces exhibited superhydrophilicity. In addition, after silanization, all these superhydrophilic surfaces immediately turned to be superhydrophobic with close water contact angles of 155–162°. However, due to the absence of nanotextures, the water-rolling angle on the superhydrophobic surfaces with single-scale microtextures distinctly larger than those with multiscale ones. Finally, using the two-step laser-irradiation method and assisted with silanization, multifunctional superhydrophobic Ti–6Al–4V surfaces were achieved, including self-cleaning, guiding of the water-rolling direction and anisotropic water-rolling angles (like the rice-leaf), etc. Full article
Show Figures

Figure 1

11 pages, 3221 KiB  
Article
Phragmites Communis Leaves with Anisotropy, Superhydrophobicity and Self-Cleaning Effect and Biomimetic Polydimethylsiloxane (PDMS) Replicas
by Huiying Guan, Xiaoming Feng, Junqiu Zhang, Shichao Niu and Zhiwu Han
Coatings 2019, 9(9), 541; https://doi.org/10.3390/coatings9090541 - 24 Aug 2019
Cited by 9 | Viewed by 3032
Abstract
Phragmites communis leaf (PCL) is anisotropic, superhydrophobic and shows a self-cleaning effect. The water contact angle (WCA) values along the vertical and parallel vein directions on PCL are 153° ± 2° and 148° ± 2°, respectively. In contrast, the water sliding angle (WSA) [...] Read more.
Phragmites communis leaf (PCL) is anisotropic, superhydrophobic and shows a self-cleaning effect. The water contact angle (WCA) values along the vertical and parallel vein directions on PCL are 153° ± 2° and 148° ± 2°, respectively. In contrast, the water sliding angle (WSA) values along the vertical and parallel vein directions for PCL are 12° ± 2° and 7° ± 2°, respectively. The epidermal wax makes the leaves intrinsically hydrophobic. The microstructure of the PCL surface shows sub-millimetre-, micron- and nanometre-scale structures. The sub-millimetre ridge structure is the main reason for the anisotropy of the leaves. The micron-scale papillae structure has a strong hydrophobic enhancement effect, and the nanoscale sheet structure is the key factor in achieving a stable Cassie state, as well as superhydrophobicity and self-cleaning activities. PCL-like polydimethylsiloxane (PDMS) samples fabricated by template transfer technology exhibited the sub-millimetre ridge structure and micron-scale papillae from the natural PCL; they also show obvious anisotropy and strong hydrophobicity and have a certain self-cleaning effect. The WCA and WSA values along the vertical and parallel vein directions on PCL are 146° ± 2°, 23° ± 2°, 142° ± 2° and 19° ± 2°, respectively. The preparation of a biomimetic PCL surface has broad application prospects in micro-fluidic control and the non-destructive transmission of liquids. Full article
Show Figures

Figure 1

12 pages, 8226 KiB  
Article
Controlling the Wetting Properties of Superhydrophobic Titanium Surface Fabricated by UV Nanosecond-Pulsed Laser and Heat Treatment
by The-Hung Dinh, Chi-Vinh Ngo and Doo-Man Chun
Nanomaterials 2018, 8(10), 766; https://doi.org/10.3390/nano8100766 - 27 Sep 2018
Cited by 46 | Viewed by 4175
Abstract
In this study, the effects of nanosecond-pulsed laser and pattern design were researched on the wettability of titanium material. Nanosecond-pulsed laser and heat treatment are used to fabricate superhydrophobic titanium surfaces. The effects of laser power (1–3 W) and step size (50–300 µm) [...] Read more.
In this study, the effects of nanosecond-pulsed laser and pattern design were researched on the wettability of titanium material. Nanosecond-pulsed laser and heat treatment are used to fabricate superhydrophobic titanium surfaces. The effects of laser power (1–3 W) and step size (50–300 µm) on a microscale patterned titanium surface (line pattern and grid pattern) were investigated to explain the relation between microstructure and superhydrophobicity. The surface morphologies and wettability of the surfaces were analyzed by three-dimensional confocal microscopy and a contact angle meter. The results show that the laser power and pattern design affected the apparent contact angle (CA) and sliding angle (SA). The maximum step size, which could show superhydrophobicity with apparent CA > 150° and SA < 10°, was increased when the laser power increased from 1 to 3 W. Grid pattern showed isotropic wetting behavior, but line pattern showed both isotropic and anisotropic wetting behavior according to step size and laser power. Furthermore, when choosing the proper laser power and step size, the wetting properties of superhydrophobic surface such as lotus effect (apparent CA > 150° and SA < 10°) and petal effect (apparent CA > 150° and no SA) and isotropic/anisotropic behavior can be controlled for applications of water droplet control. Full article
(This article belongs to the Special Issue Wetting of Nanostructured Materials)
Show Figures

Graphical abstract

12 pages, 7451 KiB  
Article
Fabrication of an Anisotropic Superhydrophobic Polymer Surface Using Compression Molding and Dip Coating
by Kyong-Min Lee, Chi-Vinh Ngo, Ji-Young Jeong, Eun-chae Jeon, Tae-Jin Je and Doo-Man Chun
Coatings 2017, 7(11), 194; https://doi.org/10.3390/coatings7110194 - 10 Nov 2017
Cited by 20 | Viewed by 6605
Abstract
Many studies of anisotropic wetting surfaces with directional structures inspired from rice leaves, bamboo leaves, and butterfly wings have been carried out because of their unique liquid shape control and transportation. In this study, a precision mechanical cutting process, ultra-precision machining using a [...] Read more.
Many studies of anisotropic wetting surfaces with directional structures inspired from rice leaves, bamboo leaves, and butterfly wings have been carried out because of their unique liquid shape control and transportation. In this study, a precision mechanical cutting process, ultra-precision machining using a single crystal diamond tool, was used to fabricate a mold with microscale directional patterns of triangular cross-sectional shape for good moldability, and the patterns were duplicated on a flat thermoplastic polymer plate by compression molding for the mass production of an anisotropic wetting polymer surface. Anisotropic wetting was observed only with microscale patterns, but the sliding of water could not be achieved because of the pinning effect of the micro-structure. Therefore, an additional dip coating process with 1H, 1H, 2H, 2H-perfluorodecythricholosilanes, and TiO2 nanoparticles was applied for a small sliding angle with nanoscale patterns and a low surface energy. The anisotropic superhydrophobic surface was fabricated and the surface morphology and anisotropic wetting behaviors were investigated. The suggested fabrication method can be used to mass produce an anisotropic superhydrophobic polymer surface, demonstrating the feasibility of liquid shape control and transportation. Full article
(This article belongs to the Special Issue Superhydrophobic Coatings)
Show Figures

Figure 1

Back to TopTop