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Abstract: The specific objective of the present work study is to propose an anisotropic slip boundary
condition for three-dimensional (3D) simulations with adjustable streamwise and spanwise slip length
by the discrete unified gas kinetic scheme (DUGKS). The present boundary condition is proposed
based on the assumption of nonlinear velocity profiles near the wall instead of linear velocity profiles
in a unidirectional steady flow. Moreover, a 3D corner boundary condition is introduced to the
DUGKS to reduce the singularities. Numerical tests validate the effectiveness of the present method,
which is more accurate than the bounce-back and specular reflection slip boundary condition in
the lattice Boltzmann method. It is of significance to study the lid-driven cavity flow due to its
applications and its capability in exhibiting important phenomena. Then, the present work explores,
for the first time, the effects of anisotropic slip on the two-sided orthogonal oscillating micro-lid-
driven cavity flow by adopting the present method. This work will generate fresh insight into the
effects of anisotropic slip on the 3D flow in a two-sided orthogonal oscillating micro-lid-driven cavity.
Some findings are obtained: The oscillating velocity of the wall has a weaker influence on the normal
velocity component than on the tangential velocity component. In most cases, large slip length has a
more significant influence on velocity profiles than small slip length. Compared with pure slip in both
top and bottom walls, anisotropic slip on the top wall has a greater influence on flow, increasing the
3D mixing of flow. In short, the influence of slip on the flow field depends not only on slip length but
also on the relative direction of the wall motion and the slip velocity. The findings can help in better
understanding the anisotropic slip effect on the unsteady microflow and the design of microdevices.

Keywords: anisotropic slip; boundary condition; DUGKS; superhydrophobic surface; oscillating
wall motion

1. Introduction

Surface characteristics play a critical role in designing and fabricating microfluidic
devices. Superhydrophobicity is an important aspect of surface characteristics, which
can significantly control flow and reduce drag [1–10]. Based on the knowledge of fluid
mechanics, the no-slip boundary condition is valid at the solid–liquid interface. However,
the liquid slip velocity is observed on the superhydrophobic surface. Unlike gas slip caused
by Knudsen effects, liquid slip is modelled with two strategies [11]: introducing the force
that repels water in the multiphase system; and modelling the slip boundary condition. For
the former strategy, the forces are not well understood and determined. Existing research
recognizes the critical role played by the latter strategy; therefore, it is emphasized in the
present work.

The appropriate boundary condition is an important area in the simulation of fluid
flows [12,13]. Recently, researchers have shown an increased interest in slip boundary
conditions. For example, Min and Kim [14,15] directly modelled the hydrophobic wall with
Navier’s slip boundary condition by direct numerical simulation (DNS) based on the macro-
scopic Navier–Stokes equations. However, the Navier’s slip boundary condition cannot be
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introduced to the lattice-Boltzmann-based methods, because the lattice-Boltzmann-based
methods track the particle distribution function instead of the macroscopic variables. The
lattice Boltzmann method (LBM) is appropriate for simulating mesoscopic physics that
are hard to describe macroscopically. It has the advantages of simple algorithms, natural
parallelization, and saving computing costs for simulating microflow [16], which proves
to be a promising tool. Slip boundary conditions have been proposed and employed in
the LBM, such as bounce-back and specular reflection (BSR) [11,17], discrete full diffusive
and specular reflection (DSR) [18,19], discrete full diffusive and bounce-back (DBB) [20,21],
and tangential momentum accommodation coefficient (TMAC) scheme [22]. Coupled with
Navier’s slip model [23], liquid slip can be characterized and adjusted by slip length. With
assumption of the 2D unidirectional flow at a lower Reynolds number, the relation between
the slip length and combination parameter of the coupled schemes [24–26] is determined.
However, it is not valid in three-dimensional (3D) flows and turbulent flows. Moreover,
the slip should be considered in streamwise and spanwise directions [1]. Existing studies
about rice leaves have found that the anisotropic groove-like microstructures can lead to
the anisotropic slip behavior of water droplets on the surfaces [27–29]. More recent studies
have considered superhydrophobic surfaces with randomly distributed textures in stream-
wise and spanwise directions [8,30–35], indicating that the slip is anisotropic. For example,
both spanwise and streamwise slip lengths have been measured on a randomly textured
superhydrophobic surface [35]. Therefore, the present study considers the anisotropic slip
in streamwise and spanwise directions for the 3D system based on the nonlinear velocity
profiles near the wall, which is close to the actual situation.

Moreover, Guo et al. proposed a new finite-volume scheme named discrete unified
gas kinetic scheme (DUGKS) based on the lattice Boltzmann equation [36]. The DUGKS
has also been proved to be a promising numerical tool to simulate fluid flow [37–42], such
as 3D turbulent channel flow. It is found that the DUGKS, even with a coarse nonuniform
mesh, is overall better than the LBM [37]. So, the numerical simulation will be performed
by the DUGKS in this work. Up to now, no attention has been paid to the 3D slip boundary
condition in the DUGKS. Therefore, in the present study, the new slip boundary condition
is proposed for the DUGKS instead of the LBM. The DUGKS is performed to simulate 3D
flows with the proposed slip boundary condition. It is hoped that we provide a superior
method to describe and characterize anisotropic slip on superhydrophobic surfaces.

To study the effect of anisotropic slip on flows in benchmark geometries, the present
method is applied to the lid-driven cavity flow. It is an important problem in the field of
fluid mechanics due to its applications, such as cooling of electronic gadgets, oil extraction,
design of heat exchangers, solar ponds, acoustic liner, float glass productions, insulation
materials, multiscreen gadgets for nuclear reactors, coating, food processing, crystal growth,
etc. [43–49]. Moreover, it has capability in exhibiting important phenomena such as eddies,
secondary flows, instabilities, transition, and turbulence [50]. The liquid slip flow in
two-sided, orthogonal, oscillating, micro-lid-driven cavities has largely been oversighted.
Recently, two-sided motion [51–54] and oscillatory flows in the cavity have also caught
the necessary attention, except single-sided steady flows. The purposes of the literature
cornering oscillatory flows in lid-driven cavities include:

1. To test and validate numerical solvers, such as least-squares finite element meth-
ods [55], Taylor-series-expansion- and least-squares-based lattice Boltzmann methods [56]
and conservative level-set methods [57]. 2. To understand industrial applications, such
as surface viscometer [58] and optimization of fluid mixing [59,60]. 3. To understand the
flow characteristics, such as the single-sided oscillatory rarefied gas flows inside two- and
three-dimensional cavities [61–63], and two-sided oscillating flows in two-dimensional
lid-driven cavities [64].

The studies mentioned above have been solely restricted to the no-slip flow; the liquid
slip flow in lid-driven cavities have largely been oversighted. Slip should be carefully
considered in the design of micro-devices with moving parts. This work will generate
fresh insight into the effects of anisotropic slip on the 3D flow in a two-sided oscillating
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micro-lid-driven cavity. In this work, for the first time, there are mainly two types of
slip distribution: (1) pure streamwise slip emerges on both top and bottom wall surfaces;
(2) both streamwise and spanwise slips emerge on the top wall surface. In a 3D global
coordinate system, the unit velocity vector of the moving top and bottom walls is (1,0,0)
and (0,1,0), respectively. The motion direction of the top and bottom walls is orthogonal.
To the best of the authors’ knowledge, no such study has been conducted before.

It is hoped that the present study will provide a superior method and contribute to a
deeper understanding of the anisotropic slip. The paper is organized as follows. In Section 2,
the D3Q19 lattice model and DUGKS are introduced, and the new slip boundary condition
and corner boundary condition for the D3Q19 lattice model are derived theoretically. In
Section 3, numerical validation is performed by simulating the 3D microchannel flow.
Numerical results of 3D flow in a two-sided, oscillating, lid-driven cavity are discussed in
Section 4. Section 5 gives the conclusions.

2. Numerical Methods
2.1. D3Q19 Lattice Model

D3Q19 lattice model [65] is adopted in this work. As shown in Figure 1, there are
19 discrete velocities in the D3Q19 lattice model, including one rest velocity (α = 0) and
18 non-rest velocities (α = 1, ..., 18).
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As shown in Table 1, the velocity set includes the velocities {ξα} and the corresponding
weights {Wα}. The speed of the sound is c =

√
3RT = 1.

Table 1. The velocity set for the D3Q19 lattice model.

Velocities ξα Number Length |ξα| Weight Wα

(0,0,0)c 1 0 1/3
(±1, 0, 0)c, (0, ±1, 0)c, (0, 0, ±1)c 6 1 1/18

(±1, ±1, 0)c, (±1, 0, ±1)c, (0, ±1, ±1)c 12
√

2 1/36

2.2. Discrete Unified gas Kinetic Scheme

The discrete Boltzmann equation with the Bhatnagar–Gross–Krook (BGK) collision
model [66] is the governing equation of the DUGKS:

∂ fα

∂t
+ ξα · ∇ fα = Ω ≡ fα

eq − fα

τ
(1)
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It is assumed that fluid particles move with the velocity ξα at position x and time t, so
the velocity distribution function is fα = fα(x, ξα, t). Ω and τ represent the collision term
and relaxation time, respectively.

fα
eq represents the Maxwellian equilibrium distribution function, which is approxi-

mated by Taylor expansion around zero particle velocity at low Mach number:

fα
eq = Wαρ

[
1 +

ξα · u
c2

s
+

(ξα · u)2

2c4
s
− |u|

2

2c2
s

]
, c2

s = RT (2)

The velocities {ξα} and the corresponding weights {Wα} are presented in Table 1.
The computational domain is divided into cuboid cells Vi,j,k = ∆xi∆yj∆zk centered at

xi,j,k = (xi, yj, zk) in the DUGKS. As a new finite volume scheme, the volumes-averaged
values of the distribution function and collision term need to be computed. For example,
the volumes-averaged value of the distribution function f n

α (xi,j,k) is computed as,

f n
α (xi,j,k) =

1
|Vi,j,k|

∫
Vi,j,k

fα(x, tn)dV (3)

In the DUGKS, the governing equation needs to be integrated on each cell, and the
time step ∆t is assumed to be constant. Equation (1) is integrated on a cell Vi,j,k centered at
xi,j,k from time tn = n∆t to time tn+1 = (n + 1)∆t, and the evolution of the distribution is
advanced from tn to tn+1 as,

f n+1
α − f n

α = − ∆t
|Vi,j,k|

Fn+1/2
α +

∆t
2

[
Ωn

α + Ωn+1
α

]
(4)

The scalar variable Fn+1/2
α represents the flux across the cell interface,

Fn+1/2
α

(
xi,j,k

)
=
∫

∂Vi,j,k
(ξα · n) f n+1/2

α (xb)dS =

= [ f n+1/2
α (xi,j,k + 0.5∆xiex)− f n+1/2

α (xi,j,k − 0.5∆xiex)]ξα,x∆yj∆zk

+[ f n+1/2
α (xi,j,k + 0.5∆yjey)− f n+1/2

α (xi,j,k − 0.5∆yjey)]ξα,y∆xi∆zk

+[ f n+1/2
α (xi,j,k + 0.5∆zkez)− f n+1/2

α (xi,j,k − 0.5∆zkez)]ξα,z∆xi∆yj

(5)

where f n+1/2
α (xb) represents the distribution at the cell interface xb at the time tn+1/2 = tn +

h (h = ∆t/2), and ex, ey, and ez are unit vectors in x, y, and z directions, respectively.
For clarity, new distribution functions are introduced:

f̃ n
α ≡ f n

α −
∆t
2

Ω( f n
α ), f̃+,n

α ≡ f n
α +

∆t
2

Ω( f n
α ) (6)

The collision term can be expanded in the BGK collision model, and Equation (6) can
be converted to the following equations:

f n
α,j =

2τ

2τ + ∆t
f̃ n
α,j +

∆t
2τ + ∆t

f eq,n
α,j , f̃+,n

α,j =
2τ − ∆t
2τ + ∆t

f̃ n
α,j +

2∆t
2τ + ∆t

f eq,n
α,j . (7)

The evolution equation of DUGKS from tn to tn+1 is simplified as:

f̃ n+1
α,j = f̃+,n

α,j −
∆t
|Vi,j,k|

Fn+1/2
α,j (8)

Based on the conservation of mass, momentum, the density ρ, and velocity u can be
computed from f̃α:

ρn = ∑
α

f̃ n
α , ρnun = ∑

α

ξα f̃ n
α (9)
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All other forms of the distribution function can be expressed in terms of f̃α and fα
eq.

So, the distribution function f̃α is mainly computed in the code.
The critical step is to evaluate the interface flux Fn+1/2

α,j . The midpoint integral formula

is employed to evaluate Fn+1/2
α,j , due to its easy implementation and fast computation. For

DUGKS with higher-order accuracy, more intermediate time steps need to be selected; for
example, the flux at the cell interface at t * = tn + ∆t/6 and t * = tn+ 3∆t/4 need calculating.

In the present study, Equation (1) is integrated within a half time step (h = ∆t/2) along
the characteristic line with the endpoint (xb) located at the cell interface, and the following
formula is obtained:

f n+1/2
α (xb)− f n

α (xb − hξα) =
h
2

[
Ω
(

f n+1/2
α (xb)

)
+ Ω( f n

α (xb − hξα))
]

(10)

Similarly, new distribution functions are introduced and can be computed by expand-
ing the collision term:

f
n+1/2
α (xb) ≡ f n+1/2

α (xb)−
h
2

Ω
(

f n+1/2
α (xb)

)
=

2τ + h
2τ

f n+1/2
α (xb)− f eq,n+1/2

α (xb) (11)

f
+,n
α (xb − hξα) ≡ f n

α (xb − hξα) +
h
2 Ω( f n

α (xb − hξα)),

f
+,n
α = 2τ−h

2τ+h f
n
α +

2h
2τ+h f eq,n

α .
(12)

With new distribution functions, Equation (10) is converted to the following equation:

f
n+1/2
α (xb) = f

+,n
α (xb − hξα) (13)

With the Taylor expansion around the endpoint (xb) located at the cell interface, the
right term of Equation (13) can be approximated as:

f
+,n
α (xb − hξα) = f

+,n
α (xb)− hξα · ∇ f

+,n
α (xb) (14)

where f
+,n
α (xb) and its gradients ∇ f

+,n
α (xb) can be approximated by the linear interpola-

tions. In x-direction, e.g.,

∂ f
+,n
α (xi,j,k+0.5∆xiex)

∂x ≈ f
+,n
α (xi+1,j,k)− f

+,n
α (xi,j,k)

(∆xi+∆xi+1)/2 ,

f
+,n
α

(
xi,j,k + 0.5∆xiex

)
≈ f

+,n
α

(
xi,j,k

)
+

∂ f
+,n
α (xi,j,k+0.5∆xiex)

∂x
∆xi

2 ,

(15)

The distribution function f
+,n
α can be computed from f̃α, as follows,

f
+,n
α =

2τ − h
2τ + ∆t

f̃ n
α +

3h
2τ + ∆t

f eq,n
α (16)

Then, we obtain the function f
n+1/2
α (xb). The density and velocity at the cell inter-

face can also be evaluated, which can be used for the equilibrium distribution function
f eq,n+1/2
α (xb) ,

ρn+1/2|xb
= ∑

α

f
n+1/2
α (xb), (ρu)

n+1/2
|xb

= ∑
α

ξα f
n+1/2
α (xb) (17)

Finally, the flux Fn+1/2
α,j is evaluated according to Equation (5) after the distribution

function f n+1/2
α at the cell interface is determined by Equation (11). The tracked distribution

function f̃α can be updated to the next time step after the flux is obtained.
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Particularly, the following equation will be used in the DUGKS,

f̃+,n
α =

4
3

f
+,n
α − 1

3
f̃ n
α (18)

For the present DUGKS, the relaxation time τ is computed from τ = µ/p, where µ is
the dynamic viscosity coefficient. p (p = ρRT) is the pressure, where R is the specific gas
constant. In the following simulations, the temperature T is constant in the isothermal flow
with cs

2 = RT = 1/3. The time step ∆t is determined by the Courant–Friedrichs–Lewy
(CFL) condition [67], which is independent of the relaxation time τ for all flow regimes.

2.3. The Present Slip Boundary Condition

It can be seen intuitively that, considering the actual case with anisotropic slip, slip
boundary conditions derived by adopting two-dimensional unidirectional flow are not
valid. Therefore, a new anisotropic slip boundary condition is proposed in 3D flows. In
this work, the anisotropic slip boundary condition is characterized and constructed by
adjusting the relative magnitude of the streamwise and spanwise slip lengths. It is noted
that x, y, and z denote the streamwise, spanwise, and wall-normal directions, respectively.
It is noted that the DUGKS tracks the distribution function f̃α, unlike the LBM.

Considering the impermeable wall boundary (UWz = 0), the unknown distributions
are obtained by the specular reflection ( f̃ sr

α ) and the stress exerted by the wall ( f̃ w
α ).

f̃α = f̃ sr
α + f̃ w

α (ξα · n > 0) (19)

As shown in Figure 2, the unknown distributions are f̃4, f̃8, f̃9, f̃12, f̃14.
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The specular reflection f̃ sr
α can be obtained by:

f̃ sr
4 = f̃3, f̃ sr

8 = f̃10, f̃ sr
9 = f̃7, f̃ sr

12 = f̃13, f̃ sr
14 = f̃11 (20)

With f̃ sr
α determined, USR can be obtained by:

ρ = ∑
α

f̃α (21)

ρUSR = ∑
ξα ·n≤0

(
f̃αξα

)
||
+ ∑

ξα ·n>0

(
f̃ sr
α ξα

)
||

(22)
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The stress f̃ w
α contributes to the change in tangential momentum caused by the wall

surface, as shown in the following equations:

σ′ρ(UW −USR) = ∑
ξα ·n>0

(
f̃ w
α ξα

)
||

(23)

0 = ∑
ξα ·n>0

(
f̃ w
α ξα

)
⊥

(24)

0 = f̃ w
α (for normal direction) (25)

UW and USR are the tangential velocity of the wall and the average tangential velocity
under the specular reflection by the impermeable boundary, respectively. σ′ represents a
modified tangential momentum accommodation coefficient. n is the normal direction of
the wall toward the fluid field. The subscripts “||” and “⊥” represent the tangential and
normal directions, respectively. The sum of normal parts is zero, ensuring that the function
f̃ w
α only changes the tangential momentum. It is also shown that the calculation of density

is not determined by ∑ f̃ w
α .

The following relations can be obtained for the case in Figure 2.

x - direction : ρUSRx = f̃1 − f̃2 + 2( f̃7 − f̃10) (26)

y - direction : ρUSRy = f̃8 − f̃5 + 2( f̃13 − f̃11) (27)

The momentum can change due to the shear stress imposed on the wall:

x - direction :σ′xρ(UWx −USRx) = ∑
ξα ·n>0

(
f̃ w
α ξα

)
x
= f̃ w

9 − f̃ w
8 (28)

y - direction :σ′yρ
(
UWy −USRy

)
= ∑

ξα ·n>0

(
f̃ w
α ξα

)
y
= f̃ w

12 − f̃ w
14 (29)

For positive normal direction of the wall (i.e., +z direction):

0 = ∑
ξα ·n>0

( f̃ w
α ξα)z = f̃ w

4 + f̃ w
8 + f̃ w

9 + f̃ w
12 + f̃ w

14 (30)

0 = f̃ w
4 (31)

Based on the Maxwell equilibrium distribution function and Ref. [22], the density can
be calculated,

ρ = f̃0 + f̃1 + f̃2 + f̃5 + f̃6 + f̃15 + f̃16 + f̃17 + f̃18 + 2( f̃3 + f̃7 + f̃10 + f̃11 + f̃13) (32)

Then, f̃ w
8 , f̃ w

9 , f̃ w
12, f̃ w

14 and USRx, USRy are still unknown. σ′x, σ′y are the manually
adjustable parameters, which are related to the streamwise and spanwise slip lengths,
respectively.

There are five known equations in the system:

ρUSRx = f̃1 − f̃2 + 2( f̃7 − f̃10)

ρUSRy = f̃8 − f̃5 + 2( f̃13 − f̃11)

σ′xρ(UWx −USRx) = ∑
ξα ·n>0

(
f̃ w
i ξα

)
x
= f̃ w

9 − f̃ w
8

σ′yρ
(
UWy −USRy

)
= ∑

ξα ·n>0

(
f̃ w
i ξα

)
y
= f̃ w

12 − f̃ w
14

0 = f̃ w
8 + f̃ w

9 + f̃ w
12 + f̃ w

14

(33)
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To make the system closed, the hypothesis is proposed:

f̃ w
8 = − f̃ w

9 or f̃ w
12 = − f̃ w

14 (34)

In summary, a new slip boundary condition is proposed for the upper horizontal wall
boundary in 3D:

f̃4 = f̃3

f̃8 = f̃10 − 1
2 σ′x

{
ρUWx − ( f̃1 − f̃2 + 2( f̃7 − f̃10))

}
f̃9 = f̃7 +

1
2 σ′x

{
ρUWx − ( f̃1 − f̃2 + 2( f̃7 − f̃10))

}
f̃12 = f̃13 +

1
2 σ′y

{
ρUWy − ( f̃6 − f̃5 + 2( f̃13 − f̃11))

}
f̃14 = f̃11 − 1

2 σ′y
{

ρUWy − ( f̃6 − f̃5 + 2( f̃13 − f̃11))
}

(35)

With the external forcing term, the local velocities u are computed by,

u =
1
ρ∑

i
ξα f̃α +

∆t ·→a
2

(36)

To eliminate the numerical slip due to force tangential to the wall, the external forcing
term is introduced to the new slip boundary condition:

f̃4 = f̃3

f̃8 = f̃10 − 1
2 σ′x

{
ρ(UWx − 0.5∆tax)− ( f̃1 − f̃2 + 2( f̃7 − f̃10))

}
f̃9 = f̃7 +

1
2 σ′x

{
ρ(UWx − 0.5∆tax)− ( f̃1 − f̃2 + 2( f̃7 − f̃10))

}
f̃12 = f̃13 +

1
2 σ′y

{
ρ(UWy − 0.5∆tay)− ( f̃6 − f̃5 + 2( f̃13 − f̃11))

}
f̃14 = f̃11 − 1

2 σ′y
{

ρ(UWy − 0.5∆tay)− ( f̃6 − f̃5 + 2( f̃13 − f̃11))
}

(37)

Similar manipulations can be applied to the lower wall and side walls boundary.

2.4. Relation between the Combination Parameters and Slip Lengths

Then, the relation between combination parameters (σ′x, σ′y) and slip lengths (bx, by)
is deduced to implement the new slip boundary condition. Previous research on the
derivation of the relation is studied by taking the two-dimensional unidirectional steady
flow as an example, which is expressed as [24–26]:

ρ = const, uy = 0, ay = 0,
∂φ

∂x
= 0,

∂φ

∂t
= 0 (38)

where φ denotes flow variable, such as the velocity or density.
In this work, it is assumed that the anisotropic slip includes two components in

streamwise and spanwise directions. Take the liquid slip on a horizontal plane (perpen-
dicular to the z-axis) as an example. The slip length includes two components, bx, by in
the x and y directions, respectively. With the assumption of anisotropic slip, the simula-
tion and characterization of the slip effect on a superhydrophobic surface can match the
actual situation.

The upper wall in 3D is employed to derive the relationship between the parameters
σ′x, σ′y and the slip lengths bx, by.

The flow near the wall satisfies the continuity equation:

∂ρ

∂t
+

∂ρux

∂x
+

∂ρuy

∂y
+

∂ρuz

∂z
= 0 (39)
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With the assumption of no density change in the incompressible flow, the continuity
equation can be written as,

∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z
= 0 (40)

In the 3D directional flows, the velocity distribution near the wall is assumed to be
satisfied the following equations:

∂ux

∂y
= 0,

∂uy

∂x
= 0, uz = 0 (41)

As shown in Figure 2, the local coordinate system (x, y, z) in 3D is established in the
lattice unit, where a node on the wall is served as the origin. The x− y plane is located
on the wall. The z direction is normal along the wall. In the local coordinate system, the
boundary of the upper wall is located at the plane z = 1, and the solid is located in the
region (z < 1), e.g., the plane z = 0.

As shown in Ref. [68], the measured velocity profiles across the channel with a
parabolic fit are observed and recorded. Therefore, in this work, it is assumed that the
nonlinear velocity profiles near the wall are parabolic in the z direction, conforming to the
quadratic term fitting. The velocity profiles can be linear when the quadratic coefficient is 0.
Then, the function of velocity profiles near the wall will be simplified as follows:

ux(x, z) = ux(x) + α1z2 + β1z + e1 (42)

uy(y, z) = uy(y) + α2z2 + β2z + e2 (43)

The acceleration can be approximated by relations as follows [69]:

ax ≈ −ν
∂2ux(x, z)

∂z2 , ay ≈ −ν
∂2uy(y, z)

∂z2 . (44)

Then, the coefficients can be obtained by the acceleration, α1 = −0.5 ax/ν, α2 = −0.5 ay/ν.
The slip velocity can be expressed as:

usx = ux(x, z)|z=1 −UWx, usy = uy(y, z)|z=1 −UWy. (45)

The slip velocity on a wall is characterized in the form of a Navier slip boundary
condition in both the streamwise direction and the spanwise direction [35]:

usx = bx
∂ux

∂z
|wall , usy = by

∂uy

∂z
|wall (46)

Considering Equations (42) and (43), (46) can be written as:

usx = bx
∂ux

∂z
|z=0 = bxβ1, usy = by

∂uy

∂z
|z=0 = byβ2. (47)

With the Taylor expansion around the z = 1 in the local coordinate system, ux(z) and
uy(z) can be approximated,

ux(z)|z=2 = ux(z)|z=1 + ∆z
∂ux(z)

∂z
|z=1 +

∆z2

2
(

∂2ux(z)
∂z2 )|z=1 + O(∆z3) (48)

uy(z)|z=2 = uy(z)|z=1 + ∆z
∂uy(z)

∂z
|z=1 +

∆z2

2
(

∂2uy(z)
∂z2 )|z=1 + O(∆z3) (49)
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With the assumption of parabolic velocity profiles near the wall, substitute the above
equations, and the following equations can be obtained,

ux(x, z)|z=2 − ux(x, z)|z=1 = (∆z2 + 2∆z)α1 + ∆zβ1,
uy(y, z)|z=2 − ux(y, z)|z=1 = (∆z2 + 2∆z)α2 + ∆zβ2.

(50)

Then, the relations between the coefficients are given as,

β1 =
(3− ∆z2 − 2∆z)
∆z− 1 + O(∆z)

α1 (51)

β2 =
(3− ∆z2 − 2∆z)
∆z− 1 + O(∆z)

α2 (52)

For D3Q19 lattice model, with ρu =
18
∑

α=0
ξα fα known, the local velocities ux, uy at z = 1

and 2 can be calculated as,

ρux|z=1 = f̃ 1
1 − f̃ 1

2 + f̃ 1
7 − f̃ 1

10 + f̃ 1
9 − f̃ 1

8 ,
ρux|z=2 = f̃ 2

1 − f̃ 2
2 + f̃ 2

7 − f̃ 2
10 + f̃ 2

9 − f̃ 2
8 ,

(53)

ρuy|z=1 = f̃ 1
6 − f̃ 1

5 + f̃ 1
13 − f̃ 1

11 + f̃ 1
12 − f̃ 1

14,
ρuy|z=2 = f̃ 2

6 − f̃ 2
5 + f̃ 2

13 − f̃ 2
11 + f̃ 2

12 − f̃ 2
14.

(54)

Combined with the proposed slip boundary condition, the following relations can be
obtained:

f̃9 − f̃8 = f̃7 − f̃10 + σ′x
{

ρUWx − [ f̃1 − f̃2 + 2( f̃7 − f̃10)]
}

,

f̃12 − f̃14 = f̃13 − f̃11 + σ′y
{

ρUWy − [ f̃6 − f̃5 + 2( f̃13 − f̃11)]
}

.
(55)

Then,
ρux|z=1 = (1− σ′x)[ f̃ 1

1
− f̃ 1

2
+ 2( f̃ 1

7
− f̃ 1

10
)] + σ′xρUWx,

ρux|z=2 = (1− σ′x)[ f̃ 2
1
− f̃ 2

2
+ 2( f̃ 2

7
− f̃ 2

10
)] + σ′xρUWx,

ρuy|z=1 = (1− σ′y)[ f̃ 1
6
− f̃ 1

5
+ 2( f̃ 1

13
− f̃ 1

11
)] + σ′yρUWy,

ρuy|z=2 = (1− σ′y)[ f̃ 2
6
− f̃ 2

5
+ 2( f̃ 2

13
− f̃ 2

11
)] + σ′yρUWy.

(56)

The difference value between velocity at z = 1 and z = 2 can be written as:

ux|z=2 − ux|z=1 = 1
ρ (1− σ′x){( f̃ 2

1
− f̃ 2

2
)− ( f̃ 1

1
− f̃ 1

2
) + 2[( f̃ 2

7
− f̃ 2

10
)− ( f̃ 1

7
− f̃ 1

10
)]},

uy|z=2 − uy|z=1 = 1
ρ (1− σ′y){( f̃ 2

6
− f̃ 2

5
)− ( f̃ 1

6
− f̃ 1

5
) + 2[( f̃ 2

13
− f̃ 2

11
) + ( f̃ 1

13
− f̃ 1

11
)]}.

(57)
Inspired by Guo et al. [69], the collision and streaming rule in the LBM is adopted to

establish the relationship between velocities near the wall. Considering the collision and
streaming rule of LBE with BGK operator [70], the following relations can be obtained:

x - direction : f̃ 1
7 − f̃ 1

10 = f̃
2

7 − f̃
2

10, f̃ 2
9 − f̃ 2

8 = f̃
1

9 − f̃
1

8 (58)

y - direction : f̃ 1
13 − f̃ 1

11 = f̃
2

13 − f̃
2

11, f̃ 2
12 − f̃ 2

14 = f̃
1

12 − f̃
1

14 (59)

where f̃ denotes the tracked distribution function in the collision.
Then, Equation (57) can be simplified as follows:

ux|z=2 − ux|z=1 =
3σ′x

τ(1− σ′x)
(ux|z=1 −UWx) (60)
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uy|z=2 − uy|z=1 =
3σ′y

τ(1− σ′y)
(uy|z=1 −UWy) (61)

The slip velocity could be calculated as:

usx = bx
∂ux

∂z
|z=0 = bxβ1 = ux|z=1 −UWx =

τ(1− σ′x)

3σ′x
(ux|z=2 − ux|z=1) (62)

usy = bx
∂uy

∂z
|z=0 = byβ1 = uy|z=1 −UWy =

τ(1− σ′y)

3σ′y
(uy|z=2 − uy|z=1) (63)

Finally, the relations between the slip lengths and parameters are obtained:

bx =
τ(1− σ′x)

3σ′x
(ux|z=2 − ux|z=1)/β1 = (∆z2 + 2∆z)

α1

β1
+ ∆z (64)

by =
τ(1− σ′y)

3σ′y
(uy|z=2 − uy|z=1)/β1 = (∆z2 + 2∆z)

α2

β2
+ ∆z (65)

With the known values of α1/β1, α2/β2, Equations (64) and (65) can be simplified,

σ′x =
1

1 + 3bx
Aτ

, σ′y =
1

1 + 3by
Aτ

. (66)

where A denotes the correction coefficient and is determined by:

A = (∆z2 + ∆z)
∆z− 1 + O(∆z3)

3− ∆z2 − 2∆z
+ ∆z (67)

where ∆z is the lattice grid spacing.
For the upper horizontal wall boundary in 3D, a new slip boundary condition is

significantly determined by Equations (35), (66), and (67). Similar derivation and operation
can be applied to the lower wall and side walls.

2.5. Corner Boundary Condition

The above discussion on boundary conditions focuses on straight surfaces. Consider-
ing the singularity, the treatment of corners should not be ignored in numerical simulations
of the flow, such as the lid-driven cavity flow. Although corners account for only a few
nodes, these corners should not be underestimated because the particle can stream in the
fluid domain, which has influences on the performance of the numerical simulation. One
single point may contaminate the numerical solution everywhere [71]. One of the earliest
systematic approaches to treating corners in DUGKS was proposed by Guo et al. [72].
However, this approach is limited to 2D implementations. In this work, to reduce the sin-
gularities and improve the performance of numerical simulation, an approach to treating
the corner boundary condition is proposed for the DUGKS based on the D3Q19 model with
19 independent moments [73].

0th : ρ = ∑
i

fi; 1st : ρuα = ∑
i

fiξiα; 2nd : Παβ = ∑
i

fiξiαξiβ;

3rd : Qαβγ = ∑
i

fiξiαξiβξiγ; 4th : Sαβγδ = ∑
i

fiξiαξiβξiγξiδ.
(68)

The 0th moment has 1 equation, the 1st moment has 3 equations, the 2nd moment
has 6 equations, the 3rd moment has 6 equations, and the 4th moment has 3 equations. In
the 3D domain, there are 12 unknowns at every corner. So, 12 linearly independent
moments are required. For the D3Q19 model, as shown in Figure 1b, the unknown
functions are f1, f3, f6, f7, f9, f10, f11, f12, f13, f15, f16, f17, considering the low-south-west
corner. We select the momenta ρux, ρuy, ρuz, the momentum fluxes and shear stresses
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Πxx, Πyy, Πzz, Πxy, Πxz, Πyz, and three higher-order moments Qxxy, Qyyz, Qxzz as 12 lin-
early independent moments.

rank



f̃1 + f̃9 − f̃10 + f̃15 − f̃16 + f̃17 ρux

f̃6 − f̃11 + f̃12 + f̃13 − f̃15 + f̃16 + f̃17 ρuy

f̃3 + f̃7 − f̃9 + f̃10 + f̃11 − f̃12 + f̃13 ρuz

f̃1 + f̃9 + f̃10 + f̃15 + f̃16 + f̃17 Πxx

f̃6 + f̃11 + f̃12 + f̃13 + f̃15 + f̃16 + f̃17 Πyy

f̃3 + f̃7 + f̃9 + f̃10 + f̃11 + f̃12 + f̃13 Πzz

f̃17 − f̃15 − f̃16 Πxy

f̃7 − f̃9 − f̃10 Πxz

f̃13 − f̃11 − f̃12 Πyz

f̃17 − f̃15 + f̃16 Qxxy

f̃7 + f̃9 − f̃10 Qxzz

f̃13 + f̃11 − f̃12 Qyyz



= 12 (69)

The moments can be approximated by the Chapman–Enskog expansion as follows:

Παβ = Π(0)
αβ + εΠ(1)

αβ + O(ε2) ≈ Π(0)
αβ , Qαβ = Q(0)

αβ + εQ(1)
αβ + O(ε2) ≈ Q(0)

αβ (70)

where the equilibrium part of the momentum flux tensor (Π(0)
αβ ) and the third-order moment

(Q(0)
αβ ) can be expressed as:

Π(0)
αβ = ∑

i
f (0)i ξiαξiβ = ρuαuβ + ρc2

s δαβ,

Q(0)
αβγ = ∑

i
f (0)i ξiαξiβξiγ = ρc2

s (uαδβγ + uβδαγ + uγδαβ).
(71)

The velocity is set to 0 at the corner, and some terms are assumed to be negligible. The
momentum fluxes and shear stresses Πxx, Πyy, Πzz, Πxy, Πxz, Πyz, and three higher-order
moments Qxxy, Qyyz, Qxzz are written as follows:

Πxx = Πyy = Πzz = ρc2
s = ρ/3,

Πxy = ρuxuy = 0, Πxz = ρuxuz = 0, Πyz = ρuyuz = 0,
Qxxy = ρ

3 (uxδxy + uxδxy + uyδxx) =
ρ
3 uy = 0,

Qyyz =
ρ
3 (uyδyz + uyδyz + uzδyy) =

ρ
3 uz = 0,

Qxzz =
ρ
3 (uxδzz + uxδxz + uzδxz) =

ρ
3 ux = 0.

(72)

The unknown functions are calculated as:

f̃1 = − ρ
3 + f̃2 + 2 f̃5 + 4 f̃14 + 4 f̃18

f̃3 = − ρ
3 + f̃4 + 2 f̃2 + 4 f̃8 + 4 f̃18

f̃6 = − ρ
3 + f̃5 + 2 f̃4 + 4 f̃8 + 4 f̃14

f̃7 = ρ
6 − f̃2 − f̃8 − 2 f̃18

f̃9 = f̃8

f̃10 = ρ
6 − f̃2 − f̃8 − 2 f̃18

f̃11 = f̃14

f̃12 = ρ
6 − f̃4 − f̃14 − 2 f̃8

f̃13 = ρ
6 − f̃4 − f̃14 − 2 f̃8

f̃15 = ρ
6 − f̃5 − f̃18 − 2 f̃14

f̃16 = f̃18

f̃17 = ρ
6 − f̃5 − f̃18 − 2 f̃14

(73)
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The density at the low-south-west corner is calculated as:

ρ = f̃0 + 2( f̃2 + f̃4 + f̃5) + 4( f̃8 + f̃14 + f̃18). (74)

Similar manipulations can be applied to other corner nodes.

2.6. Algorithm

The updating of f̃α from time tn = n∆t to time tn+1 = (n + 1)∆t in the DUGKS can be
performed as the following brief algorithm.

1. Initialize the density, velocity, and viscosity. Obtain the values of f eq,n
α and f̃ n

α at
time t = 0.

2. Compute the distribution functions f
+,n
α and f̃+,n

α using Equations (16) and (18).

3. Compute the value of ∇ f
+,n
α (xb) and f

+,n
α (xb) using Equation (15).

4. Compute the distribution function f
n+1/2
α (xb) using Equations (14) and (13).

5. Get the macro values of density and velocity using Equation (17). Compute the

equilibrium distribution function f eq,n+1/2
α (xb) .

6. Compute the distribution function f n+1/2
α (xb) using Equation (13). Obtain the flux

Fn+1/2
α by Equation (5).

7. For the unknown distribution functions at the boundary or corner, the boundary
conditions are employed, such as Equations (35) or (73).

8. Update the distribution function f̃ n+1
α using Equation (8). Obtain the macro values of

density and velocity.
9. Repeat steps (2)–(8) until the convergence criterion is satisfied.

In C++ DUGKS computer code, the convergence criterion for attaining the steady-state
solution is ∑ |u(t)− u(t− 1000∆t)|/∑ |u(t)| < 10−6, where u(t) represents the velocity in
the flow field.

3. Numerical Validation

The flow in a 3D channel is a fundamental case in science and engineering. Only a few
references on the anisotropic slip boundary condition are available for comparison, so the
flow in the 3D channel is selected as the case for numerical validation.

3.1. Comparison with Single-Component Lattice Boltzmann Simulation

In Ref. [11], the slip boundary condition is modelled by combining the bounce-back
and specular reflection (BSR) scheme using the single-component lattice Boltzmann method.
The relevant parameters in the present simulation remain the same as those in Ref. [11].
As shown in Figure 3, the microchannel’s length, width, and height are 600 µm, 300 µm,
and 30 µm, respectively. With the grid convergence study, the spatial discretization with
resolution 400× 200× 20 (X, Y, and Z directions, respectively) is selected for the subsequent
numerical simulations. The inlet and outlet along the X-direction adopt the periodic
boundary condition. The remaining four walls adopt the no-slip/slip boundary conditions.
For the no-slip case, the bounce-back scheme in LBM is used without treating the corner
in Ref. [11], and the bounce-back scheme in DUGKS is used with the corner boundary
condition in the present work. For the slip case, the BSR scheme is employed in Ref. [11],
and the present method is employed in this work.

In the no-slip case, the present results agree well with the exact solution [74] and
experimental result [9], as shown in Figure 4a. It is observed that the present results agree
a little better with the exact solution than the BSR scheme in Ref. [11], which shows that the
3D corner boundary condition improves the accuracy.
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In the slip case, the present results are closer to the experimental results [9] than those
in Ref. [11], as shown in Figure 4b. The present method is more accurate than the BSR
scheme in Ref. [11], which may be partly explained by the case that the BSR scheme can
generate numerical slip, but the present method with the external force term can eliminate
the numerical slip.

Entropy 2022, 24, x FOR PEER REVIEW 16 of 41 
 

 

 

0.0 0.2 0.4 0.6 0.8 1.0

0.0

5.0

10.0

15.0

20.0

25.0  PIV experimental results

 Exact solution

 Present

 Zhu et al. (2005)

P
o

si
ti

o
n

 f
ro

m
 w

al
l 

(m
m

)

Normalized vecolity(a)

Figure 4. Cont.



Entropy 2022, 24, 907 15 of 34
Entropy 2022, 24, x FOR PEER REVIEW 17 of 41 
 

 

 

Figure 4. Velocity profiles in the no-slip case (a) and slip case (b). The data are obtained from the 

line (X = 300 μm, Z = 15 μm) normal to the right sidewall as a function of Y. 

In the slip case, the present results are closer to the experimental results [9] than those 

in Ref. [11], as shown in Figure 4b. The present method is more accurate than the BSR 

scheme in Ref. [11], which may be partly explained by the case that the BSR scheme can 

generate numerical slip, but the present method with the external force term can eliminate 

the numerical slip. 

3.2. Comparison with Direct Numerical Simulation 

In Ref. [14], the value of the streamwise slip length is set to equal the spanwise slip 

length. Furthermore, the case where the value of streamwise slip length is not equal to the 

spanwise slip length should be considered. With the different values of streamwise and 

spanwise slip lengths, the effect of anisotropic slip on velocity profiles and drag has been 

addressed using direct numerical simulations (DNS) of a turbulent channel flow [75]. In 

Ref. [75], the Navier slip length boundary condition adopts a linear slip length model. In 

this work, the present boundary condition is related to the second partial derivative of the 

velocity, with the assumption of nonlinear velocity profiles near the wall. 

To test the accuracy of predicting the drag and velocity, the present method is per-

formed in six different cases at Reτ = uτ0δ/ν = 180: (1) Case 1: bx+0 = 0.1, by+0 = 1; (2) Case 2: bx+0 

= 0.316, by+0 = 1; (3) Case 3: bx+0 = 3.16, by+0 = 1; (4) Case 4: bx+0 = 10, by+0 = 1; (5) Case 5: bx+0 = 0.631, 

0.0 0.2 0.4 0.6 0.8 1.0

0.0

5.0

10.0

15.0

20.0

25.0

P
o
si

ti
o
n
 f

ro
m

 w
al

l 
(m

m
)

Normalized velocity

 PIV experimental results

 Zhu et al. (2005)

 Present

(b)

Figure 4. Velocity profiles in the no-slip case (a) and slip case (b). The data are obtained from the line
(X = 300 µm, Z = 15 µm) normal to the right sidewall as a function of Y.

3.2. Comparison with Direct Numerical Simulation

In Ref. [14], the value of the streamwise slip length is set to equal the spanwise slip
length. Furthermore, the case where the value of streamwise slip length is not equal to the
spanwise slip length should be considered. With the different values of streamwise and
spanwise slip lengths, the effect of anisotropic slip on velocity profiles and drag has been
addressed using direct numerical simulations (DNS) of a turbulent channel flow [75]. In
Ref. [75], the Navier slip length boundary condition adopts a linear slip length model. In
this work, the present boundary condition is related to the second partial derivative of the
velocity, with the assumption of nonlinear velocity profiles near the wall.

To test the accuracy of predicting the drag and velocity, the present method is per-
formed in six different cases at Reτ = uτ0δ/ν = 180: (1) Case 1: bx

+0 = 0.1, by
+0 = 1;

(2) Case 2: bx
+0 = 0.316, by

+0 = 1; (3) Case 3: bx
+0 = 3.16, by

+0 = 1; (4) Case 4: bx
+0 = 10,

by
+0 = 1; (5) Case 5: bx

+0 = 0.631, by
+0 = 1; (6) Case 6: bx

+0 = 2.51, by
+0 = 10. δ and ν denote

the channel half-height and kinematic viscosity, respectively. uτ0 denotes the wall shear
(friction) velocity in channel flow with no-slip walls. It is noted that the superscript +0
indicates slip length scales given in units of the viscous length scale ν/uτ0 in the respective
no-slip reference case [76].

The numerical results of the present method are compared to the data in Ref. [75]. The
mean streamwise velocity profile is shown in Figure 5, and the root-mean-square (rms)
velocity fluctuations are shown in Figure 6. As shown in Figures 5 and 6, the present
method is also accurate in predicting the velocity profiles in a turbulent channel flow
with an anisotropic slip wall. Similar conclusions to those reported by A. Busse and
N. D. Sandham [75] are obtained: the streamwise slip length is mainly responsible for
determining mean velocity profiles. Streamwise slip length always has a reducing effect
on the intensity of the turbulent fluctuations, and the reducing effect will increase with
increasing slip length. Finite streamwise slip length can limit the turbulence-intensifying
effects of infinite spanwise slip, thereby limiting the adverse effects of spanwise slip.
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Figure 5. The mean streamwise velocity profiles.

To investigate the influence of an anisotropic slip on drag, the DUGKS simulations
are conducted by adjusting the streamwise and spanwise slip lengths with the present slip
boundary condition. The investigated slip length values are selected randomly. The present
results are compared with those in Ref. [75].
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Figure 6. The rms velocity fluctuations of the streamwise velocity (a) and the spanwise velocity (b).

The percentage change in drag (DD) is defined by DD = (dp/dx–dp/dx|0)/(dp/dx|0),
where dp/dx and dp/dx|0 represent the mean streamwise pressure gradient in the present
and reference case, respectively. If DD < 0, the drag is reduced. The DD values are obtained
from numerical results in the case of Reτ0 = 180 based on friction velocity uτ0 in the
reference case.

As shown in Figure 7, the dots match well with the lines, indicating that the present
method is also accurate in predicting the change in drag. The same trends reported by
Min and Kim [14] are recovered: drag is reduced in cases with pure streamwise slip and
isotropic slip, but drag is increased in cases with pure spanwise slip.
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4. Application to the Two-Sided Orthogonal Oscillating Micro-Lid-Driven
Cavity Flow
4.1. Problem Description

The problem is the micro-lid-driven cavity flow with two moving walls, as shown in
Figure 8. For two-sided oscillating wall motion, the top and bottom walls move with oscillating
velocity U = U0cos(ωt), where U0 = 1.0 m/s, oscillating frequency ω = 1875 π/s. The directions
of the top and bottom walls are positive X-direction and Y-direction, respectively. The size of
the cavity is 400 µm × 400 µm × 400 µm. The cavity is filled with water. The density and
kinematic viscosity of water are ρ = 1000 kg/m3 and υ = 1.0× 10−6m2/s, respectively. The
Reynolds number is calculated as Re = U0 × L/ν = 1.0 × 0.0004/10−6 = 400. For simplicity, ω
has been dimensionalized as ω’ = ωL/U0 = 0.75π, and St = ωL2/ν = ω’Re = 300π.
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Figure 8. The two-sided orthogonal oscillating wall motion of the micro-lid-driven cavity.

4.2. Convergence Validation Study

To choose an optimal lattice size utilizing fewer computational resources, lattice size
convergence is studied. Numerical simulations with two-sided uniformly moving wall
motions are performed at Re = 400 using three lattice sizes: 803 (coarse), 1203 (medium), and
1603 (fine). Figure 9 shows the negligible improvement in the velocity profile on increasing
the lattice size from 1203 to 1603.

So, the spatial discretization with resolution 120 × 120 × 120 is used for performing
subsequent numerical simulations with two-sided orthogonal oscillating wall motions. To
keep Re = 400, U0lattice = 1.0/15 and the kinematic viscosity is set to νlattice = 0.02. The
present slip boundary condition is applied to the top and bottom wall, and the corner
boundary condition is applied to four corner nodes in the cavity. The four side walls remain
at rest with the no-slip boundary condition.



Entropy 2022, 24, 907 19 of 34

Entropy 2022, 24, x FOR PEER REVIEW 22 of 41 
 

 

4.2. Convergence Validation Study 

To choose an optimal lattice size utilizing fewer computational resources, lattice size 

convergence is studied. Numerical simulations with two-sided uniformly moving wall 

motions are performed at Re = 400 using three lattice sizes: 803 (coarse), 1203 (medium), 

and 1603 (fine). Figure 9 shows the negligible improvement in the velocity profile on in-

creasing the lattice size from 1203 to 1603. 

 

Figure 9. Velocity profiles for W on the horizontal centerlines of plane at y/L = 0.5. 

So, the spatial discretization with resolution 120 × 120 × 120 is used for performing 

subsequent numerical simulations with two-sided orthogonal oscillating wall motions. To 

keep Re = 400, U0lattice = 1.0/15 and the kinematic viscosity is set to νlattice = 0.02. The present 

slip boundary condition is applied to the top and bottom wall, and the corner boundary 

condition is applied to four corner nodes in the cavity. The four side walls remain at rest 

with the no-slip boundary condition. 

4.3. Results and Discussion 

There are mainly two types of slip distribution: pure streamwise slip emerges on both 

the top and bottom wall surfaces; and both streamwise and spanwise slips emerge on the 

top wall surface. For comparison, fourteen cases are considered: (a) both top and bottom 

walls: bx = by = 0; (b) top wall: bx = 0.1, by = 0, bottom wall: bx = by = 0; (c) top wall: bx = by = 0, 

bottom wall: bx = 0,by = 0.1; (d) top wall: bx = 0,by = 0.1, bottom wall: bx = by = 0; (e) top wall: bx 

= 0.1, by = 0, bottom wall: bx = 0, by = 0.1; (f) top wall: bx = 0.1,by = 0.1, bottom wall: bx = by = 0; (g) 

top wall: bx = 0.1, by = 0, bottom wall: bx = 0,by = 0.05; (h) top wall: bx = 0.1, by = 0.05, bottom 

wall: bx = by = 0; (i) top wall: bx = 0.05, by = 0, bottom wall: bx = 0, by = 0.1; (j) top wall: bx = 0.05, 

by = 0.1, bottom wall: bx = by = 0; (k) top wall: bx = 0.1, by = 0, bottom wall: bx = 0, by = 0.2; (l) top 

wall: bx = 0.1, by = 0.2, bottom wall: bx = by = 0; (m) top wall: bx = 0.2, by = 0, bottom wall: bx = 0, 

by = 0.1; (n) top wall: bx = 0.2, by = 0.1, bottom wall: bx = by = 0. In Ref. [9], their work yields a 

0.0 0.2 0.4 0.6 0.8 1.0

−0.40

−0.35

−0.30

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

0.05

W
/U

0

x/L

 803

 1203

 1603

Figure 9. Velocity profiles for W on the horizontal centerlines of plane at y/L = 0.5.

4.3. Results and Discussion

There are mainly two types of slip distribution: pure streamwise slip emerges on
both the top and bottom wall surfaces; and both streamwise and spanwise slips emerge
on the top wall surface. For comparison, fourteen cases are considered: (a) both top and
bottom walls: bx = by = 0; (b) top wall: bx = 0.1, by = 0, bottom wall: bx = by = 0; (c) top wall:
bx = by = 0, bottom wall: bx = 0,by = 0.1; (d) top wall: bx = 0,by = 0.1, bottom wall: bx = by = 0;
(e) top wall: bx = 0.1, by = 0, bottom wall: bx = 0, by = 0.1; (f) top wall: bx = 0.1,by = 0.1,
bottom wall: bx = by = 0; (g) top wall: bx = 0.1, by = 0, bottom wall: bx = 0,by = 0.05; (h) top
wall: bx = 0.1, by = 0.05, bottom wall: bx = by = 0; (i) top wall: bx = 0.05, by = 0, bottom
wall: bx = 0, by = 0.1; (j) top wall: bx = 0.05, by = 0.1, bottom wall: bx = by = 0; (k) top wall:
bx = 0.1, by = 0, bottom wall: bx = 0, by = 0.2; (l) top wall: bx = 0.1, by = 0.2, bottom wall:
bx = by = 0; (m) top wall: bx = 0.2, by = 0, bottom wall: bx = 0, by = 0.1; (n) top wall: bx = 0.2,
by = 0.1, bottom wall: bx = by = 0. In Ref. [9], their work yields a slip length of approximately
1 µm at the wall coated with hydrophobic octadecyltrichlorosilane for water flow. In the
present work, considering actual value of slip length, the values of 0.05, 0.1, and 0.2 in the
lattice unit correspond to 0.25 µm, 0.5 µm, and 1 µm, respectively. The symbols bx and by
represent the slip length in the X and Y directions, respectively.

The velocity components and vorticity are Important and common parameters to
describe the flow. The present work performs a comprehensive parametric study discussing
flow velocity components and vorticity. It is noted that U, V, and W are used to denote the
velocity component in the X, Y, and Z directions, respectively. The vorticity magnitude is
calculated as

√
{(∂W/∂Y-∂V/∂Z)2 + (∂U/∂Z-∂W/∂X)2 + (∂V/∂X-∂U/∂Y)2}.

The contours for velocity U, V, and W and the vorticity magnitude of cases (a-n) at t
= T, 0.25 T and 0.5 T are shown in Supplementary Material. It is found that nonphysical
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phenomena and numerical singularity do not exist, which shows that the present method
is effective and the present results are credible. Furthermore, the centerline velocity profiles
in the X, Y, and Z directions at t = T, 0.25 T and 0.5 T are shown in Figures 10–22.
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Figure 10. U along the centerline Z-axis at t = T. The red circles represent the points of intersection.

Figure 10 shows U (the velocity component in the X direction) along the centerline
Z-axis at t = T and its magnified view. As shown in Figure 10, the 14 curves are divided
into four groups according to the level of bx (bx = 0, 0.05, 0.1, and 0.2): group 1: cases (a, c,
and d); group 2: cases (i and j); cases (b, e, f, g, h, k, and l); cases (m, and n). The slip length
bx has greater influence on U than by. It is found that velocity profiles in each group are
very close. Therefore, for bx at the same level, the existence of by on the top or bottom wall
has almost no influence on the change in U along the centerline Z-axis. The greater bx is,
the greater the influence it has on the change in U along the centerline Z-axis for z/L < 0.9
(U < 0). For z/L > 0.9, U increases rapidly, and the closer the location is to the top wall,
the faster U increases, and the greater the velocity gradient. When the curves intersect,
the relative magnitude of the curves changes. The distribution of the intersection points is
chaotic, as shown in the red circle in Figure 10. Therefore, when bx = 0.1, the promotion
effect of by on increasing U will change with the change in of z.
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Figure 11. U along the centerline Y-axis at t = T. The red circles represent the points of intersection.

Figure 11 shows U (the velocity component in the X direction) along the centerline
Y-axis at t = T and its magnified view. As shown in Figure 11, U is negative along the
centerline Y-axis in cases (c-n), which indicates that the existence of by on the top wall or
bottom wall results in the negative U along the centerline Y-axis. The anisotropic slip on
the top wall with a larger slip length has a greater influence on the negative U along the
centerline Y-axis, such as case (l) and case (n). For y/L < 0.52018, the absolute value of U in
case (n) is less than that in case (l). For y/L > 0.52018, the absolute value of U in case (l)
is less than that in case (n). Maybe there are more intersecting points near y/L = 0.5 and
y/L = 0.915 because of the motion of the top and bottom walls and the interaction of the
sidewalls and fluid.
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Figure 12. V along the centerline Z-axis at t = T. The red circles represent the points of intersection.

Figure 12 shows V (the velocity component in the Y direction) along the centerline
Z-axis at t = T and its magnified view. As shown in Figure 12, the results of different slip
combinations are relatively close with a slight difference, indicating that anisotropic slip has
a minor influence on V along the centerline Z-axis. However, it can still be seen that the slip
combination in case (l) has the greatest influence on V along the centerline Z-axis, where
the absolute value of negative V is the largest, as shown in the magnified view. Near the top
wall, the anisotropic slip in case (l) results in the maximum positive V. For z/L > 0.06554,
the intersection points of the curves are mostly evenly distributed along the centerline
Z-axis, indicating that the strong or weak influence of slip distribution on V will change at
most positions along the centerline Z-axis. It may be caused by the time-dependent motion
of both top and bottom walls. Maybe, in this condition, the velocity V is mainly influenced
by the disordered flow driven by the walls, and the influence of slip on V is negligible. So,
the effect of slip may be greatly reduced in the disordered flow.
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Figure 13. V along the centerline X-axis at t = T.

Figure 13 shows V (the velocity component in the Y direction) along the centerline
X-axis at t = T. As shown in Figure 13, all curves have two troughs. For the no-slip condition,
two troughs are located at x/L≈ 0.07 and x/L≈ 0.93. The slip condition makes the troughs
closer to the center than the no-slip condition. Under the action of anisotropic slip, two
peaks appear in the curve. The fluctuation range is large at large slip lengths, such as case
(l) and case (n). Compared with pure slip in both top and bottom walls, anisotropic slip
on the top wall results in stronger fluctuation disturbance and increases the 3D mixing
of flow. The results of different slip combinations are similar near the side walls, and a
great difference occurs in the cavity (0.2 < x/L < 0.8). The influence of slip on flow hardly
propagates to the side walls, but mostly to the cavity.
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Figure 14. W along the centerline X-axis at t = T.

Figure 14 shows W (the velocity component in the Z direction) along the centerline
X-axis at t = T and its magnified view. As shown in Figure 14, 14 curves were divided into
four groups according to the level of bx: bx= 0,0.05, 0.1, 0.2. The larger bx is, the greater
the influence it has on the change in W along the centerline X-axis, and the larger the
fluctuation range is, the closer the position of the peak or trough is to the center. For the
same level of bx, the existence of by on the top or bottom wall has little effect on the change
in W along the centerline X-axis. For x/L ≈ 0.5, the direction of W reverses under the
interaction of the top and bottom walls. This can be explained by the fact that the liquid
inside the cavity flows clockwise.
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Figure 15. W along the centerline Y-axis at t = T.

Figure 15 shows W (the velocity component in the Z direction) along the centerline
Y-axis at t = T. As shown in Figure 15, the large slip length will enhance the oscillation
phenomenon of W along the centerline Y-axis and promote the increase in fluctuation
amplitude, such as case (m) and case (n). This can be explained by the fact that the large
slip length significantly increases the moving velocity of the wall. The existence of by on
the top wall has a stronger effect on enhancing the amplitude of the left peak, and the
existence of by on the bottom wall has a stronger effect on enhancing the amplitude of
the right peak. The direction of by intersects with the motion direction of the top wall
vertically, enhancing the disturbance of W near the left side wall; the direction of by is the
same as the motion direction of the bottom wall, enhancing the disturbance of W near
the right sidewall. So, the influence of slip on flow also depends on the slip direction
and wall motion direction.
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Figure 16. U along the centerline Z-axis at t = 0.25 T.

Figure 16 shows U (the velocity component in the X direction) along the centerline
Z-axis at t = 0.25 T and its magnified view. As shown in Figure 16, the 14 curves are divided
into four groups according to the level of bx (bx = 0, 0.05, 0.1, 0.2): group 1: cases (d, a, and
c); group 2: cases (j and i); cases (l, f, h, b, g, e, and k); cases (n and m). It is found that
velocity profiles for U in each group are very close. Therefore, for bx at the same level, the
existence of by on the top or bottom wall has almost no influence on the change in U along
the centerline Z-axis. So, the direction of slip is also an important consideration. The larger
bx results in a larger peak near the top wall, which has a greater influence on the change in
U along the centerline Z-axis. When bx and by are fixed, the anisotropic slip on the top wall
has a greater effect on the positive U than the pure slip on the top and bottom walls. This
may be explained by the directional inconsistency. When U > 0, there is no intersection
point in 14 curves, and with fixed bx = 1, larger by on the top wall results in larger U. With
the existence of by on the top wall, the increase in velocity is facilitated.

Figure 17 shows U (the velocity component in the X direction) along the centerline
Y-axis at t = 0.25 T. As shown in Figure 17, the pure slip on the top and bottom walls makes
the curve symmetrical, and the anisotropic slip on the top wall makes the trough closer to
the right-side wall. The asymmetry can be caused by the direction of slip normal to the
wall motion direction.
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Figure 17. U along the centerline Y-axis at t = 0.25 T.
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Figure 18. V along the centerline Z-axis at t = 0.25 T.
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Figure 18 shows V (the velocity component in the Y direction) along the centerline
Z-axis at t = 0.25 T and its magnified view. With the existence of by, the slip velocity
component in the Y direction appears on the top wall, and the larger slip length makes
the non-negative value of V larger, such as with the case (l). In the magnified view, the
order of peak value is k, c, i, e, m, g, a, d, b, j, h, f, l, and n. With the existence of by on the
bottom wall, the larger by results in a larger peak value. The existence of by can contribute
to influencing the flow. With fixed by = 0.1, the larger bx results in a smaller peak value.
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Figure 19. V along the centerline X-axis at t = 0.25 T.

At t = 0.25 T, the top and bottom walls move with oscillating velocity U = U0cos(ωt) = 0,
but the slip drives the flow in the cavity. The trough near the bottom wall is more obvious in
Figure 19 than that in Figure 13, owing to the different oscillating velocity. The trend in curves
in Figure 20 is similar to that in Figure 14. The order of peak value near the right side wall
in Figure 21 is consistent with that in Figure 15, which shows that the oscillating velocity of
the top and bottom wall has a weaker influence on W than on U and V. It is found that W is
positive along the centerline Y-axis in case (n) at t = 0.25 T. Anisotropic slip with large slip
length can result in the disruptive change. Maybe, in this condition, the flow is dominated by
anisotropic slip.
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Figure 20. W along the centerline X-axis at t = 0.25 T.

As shown in Figure 22, the profiles of U along the centerline Y-axis at t = 0.5 T show
no qualitative similarity with those at t = T and t = 0.25 T. The other five types of profiles at
t = 0.5 T show some approximative mirror symmetry with those at t = T. Because the top
and bottom walls move with oscillating velocity U = U0cos(ωt), the direction of velocity at
t = 0.5 t is opposite to that at t = T.

As shown in Figures S1, S5, S6, S10, S11 and S15 in the Supplementary Materials,
the contour of vorticity magnitude is concentrated on the top and bottom walls, owing to
shear stress affected by the motion of the top and bottom walls. As shown in Table 2, the
maximum vorticity magnitude at t = T and 0.5 T is about an order of magnitude larger
than that at t = 0.25 T, owing to the time-dependent oscillating velocity of the top and
bottom walls. Compared to the no-slip case, the maximum vorticity magnitude in slip
cases changes very little at t = T and 0.5 T, and the maximum percentage change is 3% in
case (k). Compared to the no-slip case, case (m) and case (n) obtain about a 120% increase
in the percentage of the maximum vorticity magnitude at t = 0.25 T. It is found that the
maximum vorticity magnitude makes no change at t = T and 0.5 T when the anisotropic
slip exists on the top wall.
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Figure 21. W along the centerline Y-axis at t = 0.25 T.
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Figure 22. Centerline velocity profiles in X, Y, and Z directions at t = 0.5 T.
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Table 2. Maximum vorticity magnitude at t = T, 0.25 T, 0.5 T.

t a b c d e f g h i j k l m nCase

T 11.3139 11.3139 11.4836 11.3139 11.4836 11.3139 11.3988 11.3139 11.4836 11.3139 11.6533 11.3139 11.4836 11.3139
0.25 T 1.08977 1.20004 1.0898 1.09042 1.20004 1.20603 1.20004 1.20154 1.07988 1.08963 1.20004 1.22381 2.40009 2.40309

0.5 T 11.3139 11.3139 11.1442 11.3139 11.1442 11.3139 11.2291 11.3139 11.1442 11.3139 10.9745 11.3139 11.1442 11.3139

5. Conclusions

The present method is validated by simulating the microchannel flow in 3D. Compared
with the reference data, the present method is more accurate than the bounce-back and
specular reflection slip boundary condition in LBM in Ref. [11]. The effect of anisotropic
slip boundary conditions on turbulent flow is investigated by considering different slip
lengths in streamwise and spanwise directions. Good agreement with DNS results shows
that the present method is also accurate and stable to simulate fluid slip on 3D hydrophobic
microchannel walls in a turbulent flow. The present method is effectively accurate and
stable to capture velocity profiles and predict drag changes to study the effect of anisotropic
slip. Then, the present method is applied to the two-sided, orthogonal, oscillating, micro-
lid-driven cavity flow. Some findings are obtained from the simulation results, which can
help in better understanding the anisotropic slip effect on the unsteady microflow and the
design of microdevices:

The oscillating velocity of the wall has a weaker influence on W than on U and V. In
most cases, large slip length has a more significant influence on velocity profiles than small
slip length. However, for V along the centerline Z-axis at t = 0.25 T, the larger streamwise
slip length on the top wall results in a smaller peak value with a fixed spanwise slip length.
Compared with pure slip in both top and bottom walls, anisotropic slip on the top wall has
a greater influence on flow, increasing the 3D mixing of flow. In short, the influence of slip
on the flow field depends not only on slip length but also on the relative direction of the
wall motion and the slip velocity.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/e24070907/s1. Figure S1: Contours for Velocity U, V, W and
Vorticity magnitude at t = T in case (a) and case (b). Figure S2: Contours for Velocity U at t = T
in cases (c–n). Figure S3: Contours for Velocity V at t = T in cases (c–n). Figure S4: Contours for
Velocity W at t = T in cases (c–n). Figure S5: Contours for Vorticity magnitude at t = T in cases (c–n).
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Figure S7: Contours for Velocity U at t = 0.25 T in cases (c–n). Figure S8: Contours for Velocity V at
t = 0.25 T in cases (c–n). Figure S9: Contours for Velocity W at t = 0.25 T in cases (c–n). Figure S10:
Contours for Vorticity magnitude at t = 0.25 T in cases (c–n). Figure S11: Con-tours for Velocity U, V,
W and Vorticity magnitude at t = 0.5 T in case (a) and case (b). Figure S12: Contours for Veloc-ity U
at t = 0.5 T in cases (c–n). Figure S13: Contours for Velocity V at t = 0.5 T in cases (c–n). Figure S14:
Contours for Velocity W at t = 0.5 T in cases (c–n). Figure S15: Contours for Vorticity magnitude at
t = 0.5 T in cases (c–n). Figure S16: Contours for Velocity U, V, W and Vorticity magnitude at t = 0.75 T
in case (a) and case (b). Figure S17: Contours for Velocity U at t = 0.75 T in cases (c–n). Figure S18:
Contours for Velocity V at t = 0.75 T in cases (c–n). Figure S19: Contours for Velocity W at t = 0.75 T
in cases (c–n). Figure S20: Contours for Vorticity magnitude at t = 0.75 T in cases (c–n).
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