Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (81)

Search Parameters:
Keywords = animal and nature course

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5606 KB  
Article
Implantable Bioresorbable Scaffold with Fucosylated Chondroitin Sulfate as a Promising Device for Delayed Stimulation of Hematopoiesis
by Natalia Y. Anisimova, Olga V. Rybalchenko, Natalia S. Martynenko, Georgy V. Rybalchenko, Elena A. Lukyanova, Maria I. Bilan, Anatolii I. Usov, Mikhail V. Kiselevskiy and Nikolay E. Nifantiev
Mar. Drugs 2025, 23(9), 344; https://doi.org/10.3390/md23090344 - 28 Aug 2025
Viewed by 1175
Abstract
The aim of this study was to evaluate the prospects of using natural fucosylated chondroitin sulfate (FCS) from the sea cucumber Cucumaria japonica as the active component of an implantable biodegradable scaffold to stimulate hematopoiesis in mice with cyclophosphamide (CPh)-induced myelosuppression. The scaffolds [...] Read more.
The aim of this study was to evaluate the prospects of using natural fucosylated chondroitin sulfate (FCS) from the sea cucumber Cucumaria japonica as the active component of an implantable biodegradable scaffold to stimulate hematopoiesis in mice with cyclophosphamide (CPh)-induced myelosuppression. The scaffolds were based on bioresorbable Fe–Mn–C and Fe–Mn–Pd alloys after equal-channel angular pressing (ECAP). The efficiency of the developed constructs with FCS was compared with the activity of the same scaffolds loaded with recombinant human granulocyte colony stimulating factor, as well as solutions of these active compounds administered subcutaneously after the end of the cyclophosphamide (CPh) course. It was found that implantation of the Fe–Mn–C scaffold loaded with FCS most effectively stimulated hematopoiesis, providing a complex effect. This design of the developed constructs contributed to an increase in the concentration not only of leukocytes and neutrophils, but also platelets in the blood, promoted the proliferation of bone marrow cells, increasing the concentration of Ki-67(+) cells, and contributed to the restoration of the morphology of the animals’ spleen. Full article
(This article belongs to the Special Issue Biologically Active Compounds from Marine Invertebrates 2025)
Show Figures

Figure 1

29 pages, 1164 KB  
Review
Induced Pluripotent Stem Cell-Based Cancer Immunotherapy: Strategies and Perspectives
by Xiaodong Xun, Jialing Hao, Qian Cheng and Pengji Gao
Biomedicines 2025, 13(8), 2012; https://doi.org/10.3390/biomedicines13082012 - 19 Aug 2025
Viewed by 1539
Abstract
Cellular immunotherapy has emerged as a transformative approach in oncology, revolutionizing cancer treatment paradigms. Since the groundbreaking development of induced pluripotent stem cells (iPSCs) by Yamanaka in 2008, significant progress has been made in generating various iPSCs-derived immunocytes, including T cells, dendritic cells, [...] Read more.
Cellular immunotherapy has emerged as a transformative approach in oncology, revolutionizing cancer treatment paradigms. Since the groundbreaking development of induced pluripotent stem cells (iPSCs) by Yamanaka in 2008, significant progress has been made in generating various iPSCs-derived immunocytes, including T cells, dendritic cells, macrophages, natural killer (NK) cells, and B cells. These engineered immune cells offer unprecedented opportunities for personalized cancer therapy as they can be derived from patients’ own cells to minimize immune rejection. In addition, various new techniques are being used for the induction and amplification of iPSCs-derived immunocytes, such as small-molecule techniques, 3D culture systems, nanotechnology, and animal models for the in vivo amplification of immunocytes. Of course, challenges remain in improving immunocyte characteristics. Targeting efficiency needs enhancement to better distinguish tumor cells from healthy tissue, while biological activity must be optimized for sustained antitumor effects. Safety concerns, particularly regarding potential off-target effects and cytokine release syndrome, require further investigation. The immunosuppressive nature of tumor microenvironment also poses significant hurdles for solid tumor treatment. Ongoing clinical trials are exploring the therapeutic potential of iPSCs-derived immunocytes, with researchers investigating combination therapies and genetic modifications to overcome current limitations. Full article
Show Figures

Figure 1

20 pages, 2524 KB  
Article
Wild Fauna in Oman: Foot-and-Mouth Disease Outbreak in Arabyan Oryx (Oryx leucorix)
by Massimo Giangaspero, Salah Al Mahdhouri, Sultan Al Bulushi and Metaab K. Al-Ghafri
Animals 2025, 15(16), 2389; https://doi.org/10.3390/ani15162389 - 14 Aug 2025
Viewed by 1736
Abstract
The Sultanate of Oman boasts remarkable biodiversity, exemplified by such species as the Arabian leopard (Panthera pardus nimr) and the Arabian oryx (Oryx leucoryx), national symbols that highlight the extensive conservation efforts required to protect the country’s natural heritage. [...] Read more.
The Sultanate of Oman boasts remarkable biodiversity, exemplified by such species as the Arabian leopard (Panthera pardus nimr) and the Arabian oryx (Oryx leucoryx), national symbols that highlight the extensive conservation efforts required to protect the country’s natural heritage. During decades, Omani authorities have taken significant measures to safeguard wildlife and preserve the natural environment. A sanctuary dedicated to the reintroduction of the Arabian Oryx, after extinction in nature in 1972, was established in 1980 in the Al Wusta Governorate under the patronage of the Royal Diwan and currently administrated by the recently established Environment Authority. During the almost 40 years since the reintroduction and the creation of the sanctuary, the oryx population has grown slowly but constantly. In 2021, the sanctuary hosted 738 oryx, allowing the start of the reintroduction of the species into the natural environment. Small groups of animals were released into the wild in selected areas. No animal health adverse events were recorded, and mortality was generally due to injuries received as a consequence of fighting, in particular during mating season. Standard veterinary care, including control of internal and external parasites, was regularly provided. In some occasions, immunization against certain diseases, such as clostridial infections, pasteurellosis, or mycoplasmosis, was also applied. In 2023, an FMD outbreak in cattle reported in Dhofar, about 500 km from the Al Wusta sanctuary, motivated specific prophylactic actions to prevent the risk of diffusion to oryx. From December 2023 to January 2024, an immunization program was undertaken using an FMD vaccine against serotypes A, O, and SAT 1, mostly in male oryx, while pregnant oryx were avoided for abortion risk due to handling. The following year, in January 2025, a severe outbreak occurred in oryx herds held in the sanctuary. The rapid onset and the spread of clinical symptoms among animals (100% morbidity in the second day after the first appearance of signs in some individuals) were suggestive of a highly contagious disease. The animals suffered from severe depression and inappetence, rapidly followed by abundant salivation, erosions of the oral mucosa and tongue, and diarrhea, with a short course characterized by prostration and death of the animal in the most severe cases. Therapeutical attempts (administration of antibiotics and rehydration) were mostly ineffective. Laboratory investigations (ELISA and PCR) ruled out contagious bovine pleuropneumonia (CBPP), Johne’s disease and Peste des petits ruminants (PPR). Both serology and antigen detection showed positiveness to foot-and-mouth disease (FMD). Out of a total population of 669 present in the sanctuary at the beginning of the outbreak, 226 (33.78%) oryx died. Despite the vaccinal status, the 38.49% of dead animals resulted being vaccinated against FMD. Taking into account the incalculable value of the species, the outbreak represented a very dangerous event that risked wiping out the decades of conservation efforts. Therefore, all the available means, such as accrued biosecurity and adequate prophylaxis, should be implemented to prevent the recurrence of such health risks. The delicate equilibrium of wild fauna in Oman requires study and support for an effective protection, in line with the national plan “Vision 2040”, targeting the inclusion of the Sultanate within the 20 best virtuous countries for wildlife protection. Full article
(This article belongs to the Special Issue Wildlife Diseases: Pathology and Diagnostic Investigation)
Show Figures

Figure 1

16 pages, 1921 KB  
Article
A Bivalent mRNA Vaccine Efficiently Prevents Gammaherpesvirus Latent Infection
by Yannan Yin, Jinkai Zang, Huichun Shi, Zhuang Wang, Linlin Kuang, Shuxia Wang, Haikun Wang, Ning Li, Xiaozhen Liang and Zhong Huang
Vaccines 2025, 13(8), 830; https://doi.org/10.3390/vaccines13080830 - 4 Aug 2025
Viewed by 955
Abstract
Background: It is still challenging to develop effective vaccines against tumorigenic human gammaherpesviruses such as Epstein–Barr virus (EBV). A major obstacle is the lack of a small animal model that reproduces the natural infection course of human gammaherpesviruses to allow for proper [...] Read more.
Background: It is still challenging to develop effective vaccines against tumorigenic human gammaherpesviruses such as Epstein–Barr virus (EBV). A major obstacle is the lack of a small animal model that reproduces the natural infection course of human gammaherpesviruses to allow for proper assessment of vaccine efficacy. Murine gammaherpesvirus 68 (MHV68) is a natural pathogen of wild rodents and laboratory mice and therefore can be used as a surrogate for human gammaherpesviruses to evaluate vaccination strategies. Methods: In this study, two mRNA vaccine candidates were generated, one encoding a fusion protein of the MHV68 gH with the gL (gHgL-mRNA) and the other expressing the MHV68 gB protein (gB-mRNA). The immunogenicity and protective efficacy of the mRNA vaccine candidates were evaluated in a mouse model of MHV68 infection. Results: The gHgL-mRNA but not the gB-mRNA candidate vaccine was able to induce neutralizing antibodies in mice, whereas both vaccines could elicit antigen-specific T-cell responses. Following MHV68 intranasal inoculation, complete blocking of the establishment of viral latency was observed in some mice immunized with individual gHgL-mRNA or gB-mRNA vaccines. Notably, co-immunization with the two mRNA vaccines appeared to be more effective than individual vaccines, achieving sterile immunity in 50% of the vaccinated mice. Conclusions: This study demonstrates that immunization with mRNA platform-based subunit vaccines is indeed capable of preventing MHV68 latent infection, thus validating a safe and efficacious vaccination strategy that may be applicable to human gammaherpesviruses. Full article
(This article belongs to the Special Issue The Development of mRNA Vaccines)
Show Figures

Figure 1

13 pages, 891 KB  
Review
The Role of Aldosterone and the Mineralocorticoid Receptor in Metabolic Dysfunction-Associated Steatotic Liver Disease
by Mohammed Barigou, Imran Ramzan and Dionysios V. Chartoumpekis
Biomedicines 2025, 13(8), 1792; https://doi.org/10.3390/biomedicines13081792 - 22 Jul 2025
Viewed by 1385
Abstract
Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is one of the fastest-growing hepatic disorders worldwide. During its natural course, MASLD tends to progress from isolated steatosis of the liver to Metabolic Dysfunction-Associated Alcoholic Steatohepatitis (MASH), advanced fibrosis, and finally cirrhosis, with the risk of [...] Read more.
Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is one of the fastest-growing hepatic disorders worldwide. During its natural course, MASLD tends to progress from isolated steatosis of the liver to Metabolic Dysfunction-Associated Alcoholic Steatohepatitis (MASH), advanced fibrosis, and finally cirrhosis, with the risk of developing hepatocellular carcinoma (HCC). Although frequently related to overweight or obesity and other components of the metabolic syndrome (MS), MASLD can also be present in individuals without such risk factors. The mechanisms leading to MASLD are incompletely elucidated and may involve many proinflammatory and pro-fibrotic pathways, disrupted biliary acid homeostasis, and gut microbiota dysbiosis. Aldosterone and its interaction with the mineralocorticoid receptor (MR) are thought to participate in the pathogenesis of MASLD through the modulation of inflammation and fibrosis. Remarkably, blockade of the MR in experimental models was shown to improve MASH and fibrosis through mechanisms that need further characterization. So far, however, few clinical studies have explored the effect of MR blockade in the management of MASH and associated fibrosis. This review is intended to summarize the recent animal and human data concerning the interaction between MR pathways and MASLD. Full article
(This article belongs to the Special Issue Novel Insights into Liver Metabolism)
Show Figures

Figure 1

14 pages, 1555 KB  
Review
Epigallocatechin Gallate as a Potential Therapeutic Agent in Endometriosis: A Narrative Review
by Anna Markowska, Zbigniew Kojs, Michał Antoszczak, Janina Markowska and Adam Huczyński
Nutrients 2025, 17(13), 2068; https://doi.org/10.3390/nu17132068 - 21 Jun 2025
Viewed by 2516
Abstract
Endometriosis is a chronic, hormone-dependent disease that affects women of reproductive age. It leads to numerous adverse clinical symptoms, which significantly impact women’s quality of life. The chronic nature of the disease and its recurrence are the main reasons for the search for [...] Read more.
Endometriosis is a chronic, hormone-dependent disease that affects women of reproductive age. It leads to numerous adverse clinical symptoms, which significantly impact women’s quality of life. The chronic nature of the disease and its recurrence are the main reasons for the search for new, non-hormonal drugs and drug candidates, either as adjunct treatment options or alternative therapies. The catechin found in green tea, epigallocatechin gallate (EGCG), has been shown to exhibit a wide array of biological activities, which may also contribute to its potential effectiveness in treating endometriosis. The poor physicochemical stability and relatively low bioavailability of EGCG have stimulated the development of a peracetylated prodrug (pro-EGCG) and other solutions, based on nanotechnology, that would eliminate the problems with EGCG. In this review article, we summarize the studies on the effects of EGCG, pro-EGCG, and EGCG-based nanoparticles on the course of endometriosis published in the GoogleScholar and PubMed databases. Of note is the fact that the results of in vitro and animal model studies have suggested that EGCG and pro-EGCG can reduce the number of endometriosis foci and their size and volume, and they can prevent fibrosis by affecting multiple molecular factors and signaling pathways. The promising results provide a basis for using green herbal extracts for endometriosis treatment in a clinical trial. Nevertheless, it should be emphasized that the number of studies on the topic is currently very limited; further expansion in the coming years is necessary. Broad, well-designed clinical trials are also essential to validate the true potential of EGCG and related compounds in the fight against endometriosis. Full article
Show Figures

Figure 1

29 pages, 455 KB  
Review
Current Challenges in Yersinia Diagnosis and Treatment
by Bogna Grygiel-Górniak
Microorganisms 2025, 13(5), 1133; https://doi.org/10.3390/microorganisms13051133 - 15 May 2025
Cited by 4 | Viewed by 4804
Abstract
Yersinia bacteria (Yersinia enterocolitica, Yersinia pseudotuberculosis) are commonly found in nature in all climatic zones and are isolated from food (mainly raw pork, unpasteurized milk, or contaminated water), soil, and surface water, rarely from contaminated blood. Yersinia infection occurs through sick or [...] Read more.
Yersinia bacteria (Yersinia enterocolitica, Yersinia pseudotuberculosis) are commonly found in nature in all climatic zones and are isolated from food (mainly raw pork, unpasteurized milk, or contaminated water), soil, and surface water, rarely from contaminated blood. Yersinia infection occurs through sick or asymptomatic carriers and contact with the feces of infected animals. The invasion of specific bacterial serotypes into the host cell is based on the type 3 secretion system (T3SS), which directly introduces many effector proteins (Yersinia outer proteins—Yops) into the host cell. The course of yersiniosis can be acute or chronic, with the predominant symptoms of acute enteritis (rarely pseudo-appendicitis or septicemia develops). Clinical and laboratory diagnosis of yersiniosis is difficult. The infection requires confirmation by isolating Yersinia bacteria from feces or other biological materials, including lymph nodes, synovial fluid, urine, bile, or blood. The detection of antibodies in blood serum or synovial fluid is useful in the diagnostic process. The treatment of yersiniosis is mainly symptomatic. Uncomplicated infections (diarrhea and abdominal pain) usually do not require antibiotic therapy, which is indicated in severe cases. Surgical intervention is undertaken in the situations of intestinal necrosis. Given the diagnostic and therapeutic difficulties, this review discusses the prevalence of Y. enterocolitica and Y. pseudotuberculosis, their mechanisms of disease induction (virulence factors and host response), clinical manifestations, diagnostic and preventive methods, and treatment strategies in the context of current knowledge and available recommendations. Full article
(This article belongs to the Special Issue Advances in Enteric Infections Research)
14 pages, 2484 KB  
Article
A Nutritional Supplement Containing Curcumin C3 Complex, Glucosamine, and Chondroitin Alleviates Osteoarthritis in Mice and Canines
by Enpei Zheng, Ting Cen, Ye Ma, Ziyuan Weng, Chuanheng Jiang, Luxi Hou, Jun Leng and Changmin Hu
Vet. Sci. 2025, 12(5), 462; https://doi.org/10.3390/vetsci12050462 - 12 May 2025
Viewed by 3281
Abstract
Osteoarthritis (OA) is a chronically progressive degenerative arthropathy characterized by the loss of cartilage, changes in subchondral architecture, and ongoing inflammation resulting in reduced mobility and pain. This study assessed the treatment potential of a combination of chondroitin and glucosamine enriched with Curcumin [...] Read more.
Osteoarthritis (OA) is a chronically progressive degenerative arthropathy characterized by the loss of cartilage, changes in subchondral architecture, and ongoing inflammation resulting in reduced mobility and pain. This study assessed the treatment potential of a combination of chondroitin and glucosamine enriched with Curcumin C3 Complex (C3GC) in modulating the pathophysiological features in mouse models with surgically induced OA and in dogs with naturally occurring OA. A cohort of 24 male C57BL/6 mice aged 3 months old were surgically destabilized with medial meniscus (DMM) to cause osteoarthritis. These animals underwent a nutritional intervention with C3GC or with GC over a course of 8 weeks. In order to evaluate cartilage health and subchondral bone structure, we carried out a combination of behavioral tests, micro-computed tomography (micro-CT), and histopathological examinations. In addition, a cohort of 12 OA-diagnosed retired police dogs were administered C3GC supplements or conventional care over a course of 30 days, with pain measurement and serum concentrations of MMP-3 and TNF-α determined before and after treatment. According to our findings, the administration of C3GC was determined to preserve subchondral microarchitectural structure integrity (p < 0.05) and resulted in better motor function in comparison with GC. In animals taking nutritional supplements, the OARSI scores of joint tissue sections were reduced, with the medial tibial plateau OARSI score being particularly low in the C3GC group (p < 0.0001). In dogs, treatment with C3GC resulted in a 24.5% reduction in serum MMP-3 levels (p < 0.01), and there was also a 20.8% decrease in serum TNF-α levels (p < 0.05), along with a decrease in subjective pain assessment. The results are in support of the chondroprotective, anti-inflammatory, and analgesic properties of C3GC and justify future research on the potential utility of C3GC in treating osteoarthritis. Full article
(This article belongs to the Special Issue Advanced Therapy in Companion Animals)
Show Figures

Figure 1

20 pages, 4749 KB  
Article
Type I Arabinogalactan and Methyl-Esterified Homogalacturonan Polysaccharides from Tamarillo (Solanum betaceum cav.) Fruit Pulp Ameliorate DSS-Induced Ulcerative Colitis
by Lara Luisa Valerio de Mello Braga, Carolina Silva Schiebel, Gisele Simão, Karien Sauruk da Silva, Mateus Henrique dos Santos Maia, Ana Carolina Vieira Ulysséa Fernardes, Georgia E. do Nascimento, Lucimara Mach Côrtes Cordeiro, Tufik Adel Issa, Marcelo Biondaro Gois, Elizabeth Fernandes Soares and Daniele Maria-Ferreira
Pharmaceuticals 2025, 18(4), 461; https://doi.org/10.3390/ph18040461 - 25 Mar 2025
Cited by 2 | Viewed by 872
Abstract
Background: Inflammatory bowel diseases, such as ulcerative colitis and Crohn’s disease, affect the gastrointestinal tract. Treatment aims to induce remission and relieve symptoms but may fail or cause side effects. Recent studies suggest that natural polysaccharides can reduce inflammation and promote healing. The [...] Read more.
Background: Inflammatory bowel diseases, such as ulcerative colitis and Crohn’s disease, affect the gastrointestinal tract. Treatment aims to induce remission and relieve symptoms but may fail or cause side effects. Recent studies suggest that natural polysaccharides can reduce inflammation and promote healing. The polysaccharides of the pulp of tamarillo (Solanum betaceum cav.) have shown beneficial effects, but their potential in colitis is still unexplored. Objective: To investigate the effect of polysaccharides from tamarillo pulp in an animal model of ulcerative colitis. Methods: Polysaccharides from tamarillo pulp (STWA) were extracted and tested in female mice (BALB/c) to investigate their effect on dextran sodium sulfate (DSS)-induced ulcerative colitis. Different doses of the polysaccharides were tested (10 mg/kg, 30 mg/kg, and 100 mg/kg). The course of the disease and the weight of the animals were monitored daily. At the end of the experimental protocol, the large intestine was removed and measured. Markers of oxidative stress and inflammation were then analyzed. Histological analysis was performed to assess microscopic changes. Results: Treatment with STWA (100 mg/kg) prevented weight loss in mice with DSS-induced colitis and reduced the disease activity index. The colon length was preserved, and occult blood in the feces was reduced. Treatment with STWA controlled oxidative stress. Glutathione S-transferase (GST) levels increased, while lipid peroxidation decreased. The inflammatory process was reduced, as indicated by the decrease in myeloperoxidase (MPO), N-acetylglucosamine (NAG), and tumor necrosis factor alpha (TNF-α) levels and the increase in interleukin 10 (IL-10) levels. STWA also improved the colon histology, while preserving the colonic epithelium. Conclusions: The results suggest that STWA has protective potential and reduces inflammation in an experimental model of ulcerative colitis in mice. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Figure 1

12 pages, 581 KB  
Brief Report
Morphological and Genetic Assessments of Coyote Diet in Qualla Boundary, North Carolina, Show Interaction with Humans
by Caitlin Miller, Donald Linzey and Eric Hallerman
Animals 2025, 15(5), 741; https://doi.org/10.3390/ani15050741 - 5 Mar 2025
Viewed by 1053
Abstract
Throughout the 20th century, coyotes (Canis latrans) expanded from their historical geographic range west of the Mississippi River to a current range of almost all of North America. Over the course of this expansion, coyotes have demonstrated diverse and variable omnivorous [...] Read more.
Throughout the 20th century, coyotes (Canis latrans) expanded from their historical geographic range west of the Mississippi River to a current range of almost all of North America. Over the course of this expansion, coyotes have demonstrated diverse and variable omnivorous diets that change with the food resources available. This study examined the stomach contents of 25 coyotes in an area where they are relatively new, the Qualla Boundary in North Carolina, to better understand the diets of coyotes in this area. A combination of morphological identification and DNA barcoding was used to characterize the stomach contents of coyotes. Both plant and animal material were identified from anthropogenic and natural sources, the latter including native mammals. This study provides one example of the breadth and flexibility of coyote diets and helps build an understanding of how coyotes can adapt to new conditions. Full article
(This article belongs to the Special Issue Ecology and Conservation of Large Carnivores)
Show Figures

Graphical abstract

16 pages, 1078 KB  
Review
Selected Mechanisms of Action of Bacteriophages in Bacterial Infections in Animals
by Renata Urban-Chmiel and Ewelina Pyzik
Viruses 2025, 17(1), 101; https://doi.org/10.3390/v17010101 - 14 Jan 2025
Cited by 6 | Viewed by 2480
Abstract
Bacteriophages, as ubiquitous bacterial viruses in various natural ecosystems, play an important role in maintaining the homeostasis of the natural microbiota. For many years, bacteriophages were not believed to act on eukaryotic cells; however, recent studies have confirmed their ability to affect eukaryotic [...] Read more.
Bacteriophages, as ubiquitous bacterial viruses in various natural ecosystems, play an important role in maintaining the homeostasis of the natural microbiota. For many years, bacteriophages were not believed to act on eukaryotic cells; however, recent studies have confirmed their ability to affect eukaryotic cells and interact with the host immune system. Due to their complex protein structure, phages can also directly or indirectly modulate immune processes, including innate immunity, by modulating phagocytosis and cytokine reactions, as well as acquired immunity, by producing antibodies and activating effector cells. They can therefore have a profound impact on the course of bacterial infections by stimulating and at the same time inhibiting the systemic pro-inflammatory response. This review article presents a characterization of the processes by which bacteriophages affect selected immune mechanisms in selected animal species. The results of our own experiments using calves are also presented as examples. The paper contains many new examples of potential uses of bacteriophages and their effects on eukaryotic cells, especially in the course of bacterial infections, which are extremely important in experimental treatments exploiting phages as alternatives to antibiotics. The positive results of the effects of bacteriophages on eukaryotic cells during infections open up promising new prospects for their use as natural tools in the treatment of bacterial, fungal, and viral diseases in animals and humans. Full article
(This article belongs to the Special Issue Phage-Bacteria Interplay in Health and Disease, Second Edition)
Show Figures

Figure 1

17 pages, 2784 KB  
Article
Pathological Alterations in Heart Mitochondria in a Rat Model of Isoprenaline-Induced Myocardial Injury and Their Correction with Water-Soluble Taxifolin
by Natalia V. Belosludtseva, Tatyana A. Uryupina, Lyubov L. Pavlik, Irina B. Mikheeva, Eugeny Yu. Talanov, Natalya I. Venediktova, Dmitriy A. Serov, Mikhail R. Stepanov, Mikhail A. Ananyan and Galina D. Mironova
Int. J. Mol. Sci. 2024, 25(21), 11596; https://doi.org/10.3390/ijms252111596 - 29 Oct 2024
Cited by 7 | Viewed by 1809
Abstract
Mitochondrial damage and associated oxidative stress are considered to be major contributory factors in cardiac pathology. One of the most potent naturally occurring antioxidants is taxifolin, especially in its water-soluble form. Herein, the effect of a 14-day course of the peroral application of [...] Read more.
Mitochondrial damage and associated oxidative stress are considered to be major contributory factors in cardiac pathology. One of the most potent naturally occurring antioxidants is taxifolin, especially in its water-soluble form. Herein, the effect of a 14-day course of the peroral application of the water-soluble taxifolin (aqTAX, 15 mg/kg of body weight) on the progression of ultrastructural and functional disorders in mitochondria and the heart’s electrical activity in a rat model of myocardial injury induced with isoprenaline (ISO, 150 mg/kg/day for two consecutive days, subcut) was studied. The delayed ISO-induced myocardial damage was accompanied by an increase in the duration of RR and QT intervals, and long-term application of aqTAX partially restored the disturbed intraventricular conduction. It was shown that the injections of ISO lead to profound ultrastructural alterations of myofibrils and mitochondria in cardiomyocytes in the left ventricle myocardium, including the impairment of the ordered arrangement of mitochondria between myofibrils as well as a decrease in the size and the number of these organelles per unit area. In addition, a reduction in the protein level of the subunits of the respiratory chain complexes I-V and the activity of the antioxidant enzymes catalase, glutathione peroxidase, and Mn-SOD in mitochondria was observed. The application of aqTAX caused an increase in the efficiency of oxidation phosphorylation and a partial restoration of the morphometric parameters of mitochondria in the heart tissue of animals with the experimental pathology. These beneficial effects of aqTAX are associated with the inhibition of lipid peroxidation and the normalization of the enzymatic activities of glutathione peroxidase and Mn-SOD in rat cardiac mitochondria, which may reduce the oxidative damage to the organelles. Taken together, these data allow one to consider this compound as a promising cardioprotector in the complex therapy of heart failure. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

20 pages, 12174 KB  
Article
Multisite Injections of Canine Glial-Restricted Progenitors Promote Brain Myelination and Extend the Survival of Dysmyelinated Mice
by Piotr Rogujski, Magdalena Gewartowska, Michal Fiedorowicz, Malgorzata Frontczak-Baniewicz, Joanna Sanford, Piotr Walczak, Miroslaw Janowski, Barbara Lukomska and Luiza Stanaszek
Int. J. Mol. Sci. 2024, 25(19), 10580; https://doi.org/10.3390/ijms251910580 - 1 Oct 2024
Viewed by 1543
Abstract
Glial cell dysfunction results in myelin loss and leads to subsequent motor and cognitive deficits throughout the demyelinating disease course.Therefore, in various therapeutic approaches, significant attention has been directed toward glial-restricted progenitor (GRP) transplantation for myelin repair and remyelination, and numerous studies using [...] Read more.
Glial cell dysfunction results in myelin loss and leads to subsequent motor and cognitive deficits throughout the demyelinating disease course.Therefore, in various therapeutic approaches, significant attention has been directed toward glial-restricted progenitor (GRP) transplantation for myelin repair and remyelination, and numerous studies using exogenous GRP injection in rodent models of hypomyelinating diseases have been performed. Previously, we proposed the transplantation of canine glial-restricted progenitors (cGRPs) into the double-mutant immunodeficient, demyelinated neonatal shiverer mice (shiverer/Rag2−/−). The results of our previous study revealed the myelination of axons within the corpus callosum of transplanted animals; however, the extent of myelination and lifespan prolongation depended on the transplantation site (anterior vs. posterior). The goal of our present study was to optimize the therapeutic effect of cGRP transplantation by using a multisite injection protocol to achieve a broader dispersal of donor cells in the host and obtain better therapeutic results. Experimental analysis of cGRP graft recipients revealed a marked elevation in myelin basic protein (MBP) expression and prominent axonal myelination across the brains of shiverer mice. Interestingly, the proportion of galactosyl ceramidase (GalC) positive cells was similar between the brains of cGRP recipients and control mice, implying a natural propensity of exogenous cGRPs to generate mature, myelinating oligodendrocytes. Moreover, multisite injection of cGRPs improved mice survival as compared to non-transplanted animals. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

14 pages, 660 KB  
Article
Fasciola hepatica Excretory-Secretory Products (Fh-ES) Either Do Not Affect miRNA Expression Profile in THP-1 Macrophages or the Changes Are Undetectable by a Microarray Technique
by Piotr Bąska, Alicja Majewska, Wojciech Zygner, Ewa Długosz and Marcin Wiśniewski
Pathogens 2024, 13(10), 854; https://doi.org/10.3390/pathogens13100854 - 1 Oct 2024
Cited by 1 | Viewed by 1743
Abstract
Fasciola hepatica is a liver fluke that resides in the bile ducts of various mammals. The parasitosis leads to economic losses in animal production estimated at USD 3.2 billion annually. It is also considered a zoonosis of great significance and a problem for [...] Read more.
Fasciola hepatica is a liver fluke that resides in the bile ducts of various mammals. The parasitosis leads to economic losses in animal production estimated at USD 3.2 billion annually. It is also considered a zoonosis of great significance and a problem for public health affecting 2.4 million people worldwide. Nevertheless, besides the negative aspects of infestation, the antigens released by the fluke, F. hepatica Excretory-Secretory Products (Fh-ES) contain several immunomodulatory molecules that may be beneficial during the course of type I diabetes, multiple sclerosis, ulcerative colitis, or septic shock. This phenomenon is based on the natural abilities of adult F. hepatica to suppress proinflammatory responses. To underline the molecular basis of these mechanisms and determine the role of microRNA (miRNA) in the process, lipopolysaccharide (LPS)-activated THP-1 macrophages were stimulated with Fh-ES, followed by miRNA microarray analyses. Surprisingly, no results indicating changes in the miRNA expression profile were noted (p < 0.05). We discuss potential reasons for these results, which may be due to insufficient sensitivity to detect slight changes in miRNA expression or the possibility that these changes are not regulated by miRNA. Despite the negative data, this work may contribute to the future planning of experiments by other researchers. Full article
(This article belongs to the Special Issue Immune Response of the Host and Vaccine Development—2nd Edition)
Show Figures

Figure 1

31 pages, 2179 KB  
Review
Advancing Post-Stroke Depression Research: Insights from Murine Models and Behavioral Analyses
by Mădălina Iuliana Mușat, Bogdan Cătălin, Michael Hadjiargyrou, Aurel Popa-Wagner and Andrei Greșiță
Life 2024, 14(9), 1110; https://doi.org/10.3390/life14091110 - 3 Sep 2024
Cited by 9 | Viewed by 4727
Abstract
Post-stroke depression (PSD) represents a significant neuropsychiatric complication that affects between 39% and 52% of stroke survivors, leading to impaired recovery, decreased quality of life, and increased mortality. This comprehensive review synthesizes our current knowledge of PSD, encompassing its epidemiology, risk factors, underlying [...] Read more.
Post-stroke depression (PSD) represents a significant neuropsychiatric complication that affects between 39% and 52% of stroke survivors, leading to impaired recovery, decreased quality of life, and increased mortality. This comprehensive review synthesizes our current knowledge of PSD, encompassing its epidemiology, risk factors, underlying neurochemical mechanisms, and the existing tools for preclinical investigation, including animal models and behavioral analyses. Despite the high prevalence and severe impact of PSD, challenges persist in accurately modeling its complex symptomatology in preclinical settings, underscoring the need for robust and valid animal models to better understand and treat PSD. This review also highlights the multidimensional nature of PSD, where both biological and psychosocial factors interplay to influence its onset and course. Further, we examine the efficacy and limitations of the current animal models in mimicking the human PSD condition, along with behavioral tests used to evaluate depressive-like behaviors in rodents. This review also sets a new precedent by integrating the latest findings across multidisciplinary studies, thereby offering a unique and comprehensive perspective of existing knowledge. Finally, the development of more sophisticated models that closely replicate the clinical features of PSD is crucial in order to advance translational research and facilitate the discovery of future effective therapies. Full article
(This article belongs to the Special Issue Feature Paper in Physiology and Pathology)
Show Figures

Figure 1

Back to TopTop